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Abstract 

We present a new technique which extends the quantum chromodynamic 
evolution formalism in order to predict the short distance behavior of multiquark 
wavefunctions. In particular, predictions are given for the deuteron reduced 
form factor in the high momentum transfer region, and rigorous constraints on 
the short distance effective force between two baryons are predicted. These new 
techniques can be generalized in order to analyze the short distance behavior of 
multibaryon systems. 

1. Introduction 

A systematic analysis in quantum chromodynamics (&CD) of exclusive pro- 
cesses involving the transfer of large momenta has been presented in Ref. 1. A 
large number of experimentally accessible phenomena including the elastic and 
inelastic electromagnetic and weak form factors and large-angle elastic scatter- 
ing processes can be analyzed in terms of a simple picture for exclusive processes 
based on light-cone perturbation theory. For example, the baryon form factor 
at large Q2 is represented by the factorized form (see Fig. 1)2 
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where xi is the light-cone longitudinal momentum fraction of ith quark Xi = 
(kp + $)/(qO + p3), [dz] E dzl dx2 dz3 6 (1 - Ci Zi) and Q, E mini(ziQ). The 
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Fig. 1. The general structure of the baryon magnetic form factor at large Q2. 

dominant Q2 dependence ((rs(Q2)/Q2)2 ’ d IS erived from the hard scattering am- 
plitude Tlf(zi, yi, Q). For r* + 3q + 3q with the only weak (logarithmic) Q2 
dependence coming from quark distribution amplitude 4(Zi, Q) (70 is the leading 
anomalous dimension). The essential feature of Eq. (1.1) is that a very com- 
plicated process can be simply represented by the factorization into product of 
three amplitudes, and, thus, the main calculation for this process turns out to be 
the calculation of 2”’ (sum of tree diagrams for r* +3q -+ 3q). The distribution 
amplitude $(zir Q) is in principle determined by nonperturbative bound state 
physics, and it is independent of the process. 

The quark distribution amplitude #(Zi,Q) is the amplitude for converting 
the baryon into three valence quarks at impact separation bl - 0(1/Q). It is 

2 



related to the equal r = t + z hadronic wave function $(zi, z~i)~: 

Q 3 

4(zi, Q) E J n (1.2) > j= 1 

and contains the essential physics of that part of the hadronic wave function 
which affects exclusive processes with large momentum transfer. In this talk, we 
present a new technique4 for constructing #(Zi, Q) in order to predict the short 
distance behavior of multiquark systems. 

The distribution amplitude for a baryon is determined by an evolution equa- 
tion which can be derived from the Bethe-Salpeter equation at large transverse 
momentum projected on the light-cone: 

a 
3 Q2@ 2p 

4(x;,&) = FJ IVY] V(zi, Y~I +(Yi, Q) 9 P-3) 

where CF = (r$ - I)/%, = 4/3, CB = (nc+ 1)/2n, = 2/3, ,8 = 11 -(2/3)nl, 
and V(Zi, yi) is computed to leading order in as from the single-gluon-exchange 
kernel.5 The general solution of this equation is 

$(xi, Q) = -% $,(x ) i 9 (14 

where the anomalous dimensions yn and the eigenfunctions &(xi) satisfy the 
characteristic equation: 

In the large Q2 limit, only the leading anomalous dimension 70 contributes, as 
indicated in Eq. (1.1). 

In the simple three quark case, the color singlet property of the baryon sys- 
tem guarantees all three quarks have different quantum numbers. Thus, we do 
not necessarily have to antisymmetrize the system according to Pauli’s princi- 
ple and Jn(xi) may be derived by expanding V(x,-, vi) on a polynomial basis 
{xy x~l~,n=O* However, if we consider multibaryon systems of 3n quarks, then 
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the color singlet requirement does not guarantee that all the quarks of the sys- 
tern have different quantum numbers and a&symmetric representations in the 
total quantum space are needed. This is the essential point of the new technique. 

The antisymmetrization technique will be presented in detail the next sec- 
tion. If we apply this method to three quark system, then we have consistency 
with preceding result.8 but additionally we obtain a distinctive classification of 
nucleon (N) and delta (A) wave functions and the corresponding &* dependence 
which discriminates N and A form factors. In Section 3, we derive QCD predic- 
tions for the reduced form factor ’ of the deuteron and compare them with the 
available experimental results. Furthermore, we can combine these results with 
the fractional parantage technique of Harvey,8 and we can derive constraints on 
the effective force between two baryons at short distances. This will be explained 
in Section 4. Conclusions follow in Section 5. 

2. The AntisymmetriEation Technique 

In order to solve the evolution equation (1.3) we use the following procedure: 

1. Construct the representations in each of the quantum spaces color (C), 
isospin (T), spin (S), and orbital (0) using Young diagramatic techniquesP 
Each quantum state is constructed by filling up the Young tableaus with 
corresponding specific quantum numbers. “Orbital” states are classified -z 
by polynomials ni zli, with the minimal powers dominant in the high &* 
region. We use the symmetry of the zi dependence of ia in analogy 

a with the orbital dependence of nonrelativistic wave functions as far as 
permutation symmetry is concerned. After an orthonormalization proce- 
dure, the orbital functions satisfy the condition: 

J [dz] w(z) ik(zi) Jn(xi) = &lrI 9 (2.1) 

where W(Z) = Hi 2;. 

2. Construct the inner-product of Young diagrams in order to produce com- 
pletely antisymmetric representations in the CTSO total space. The 
Clebsch-Gordan coefficients of the permutation group are used. A conve- 
nient algebraic method will be discussed in detail in Ref. 4. 

3. Calculate the QCD kernel matrix in the basis of completely antisymmetric 
representations. For example, the one gluon exchange kernel for the three 



quark system is given by (i, j, k = 1,2,3) 

v(xi, Yi) =( g +*$)[ idYl 5 etYi-zi)6t2)-flk) 

(2.2) 

x yj 6hilii + A 
2. ( Xi + Xj 

, k # j,i 
3 Yi - Xi ) 

where the X, are SU(3)c Gell-mann matrices, A4(yi) = #(yi) -q5(x,j, and 

‘hiEj = 0( 1) when the helicities of constituents are antiparallel (parallel). 
From this kernel, we find the following &CD evolution properties: 

(a) Color singlet states are preserved by the action of V. 

(b) Isospin cannot be changed, i.e. N and A cannot mix with each other. 
(c) Spin states can mix by the spin annihilation term (&hi). 

(d) Orbital states can also mix, with total n = xi ni preserved. 

As an example, let’s consider the leading n = 1 amplitude of the s*p 
excited nucleon state lo of P*r 1 ami p;;,:, (z*z) 

(the x dependence of q5 is 
given by the orbital Young diagram). 

r 

Y Y x 

b 

(2.3) 

If we split the kernel V in terms of a spin annihilation term I$ and the 
remainder VA, we find 
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4. Diagonalize the kernel matrix (V = I$ +VA) to determine the eigenvalues 
and eigensolutions. For example, from Eq. (2.4) we find the following 
results: 

where 7 = (2bCB + (3/2)C~)//3. 

Following the above procedures (1 through 4), we can find the anomalous 
dimensions and construct the corresponding eigenfunctions for arbitrary multi- 
quark systems. In the three quark case, we find that the results coincide with 
preceding calculations, 6 but here we can unambiguously resolve the N and A 
states wave functions and discriminate their form factors. 

3. Deuteron Reduced Form Factors 

As outlined above, we can derive the six-quark leading anomalous dimen- 
sions and predict the Q* dependence of the reduced deuteron form factor. It 
is conventional to represent the deuteron form factor by the standard “impulse 
approximation” form: 

J’dQ*) = Fdmy(Q2) FN(&*) 9 (3.1) 

where FN is the on-shell nucleon form factor. However, as easily seen, for 
example using 43 theory, the impulse approximation form can only be valid 
in the nonrelativistic regime Q* s 2M& (Md and cd are the mass and the 
binding energy of deuteron) because the struck nucleon is necessarily off-shell at 
large momentum transfer. However, from much more general considerations, in 
particular, from constituent interchange, we can readily showrl that the correct 
form factor factorization in terms of on-shell nucleon form factors for cd + 0 is 

which is valid at all range of Q *. Thus, in order to make correct and experi- 
mentally accessible predictions at high Q*, we define the reduced form factor’ 
from Eq. (3.2): 
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---.-._ 
Since the leading anomalous dimension for the helicity zero deuteron is given 

bY 70 = cF/5/9, 
fd(&*) id3 

l2 the &CD prediction ~for the asymptotic Q*-behavior of 

Q2 -?T 

f&i!*) - a8;2’ (In 3) > (34 

where -(2/5)(C~/p) = -8/145 for n/ = 2. Although the QCD prediction 
is for asymptotic momentum transfer, it is interesting to compare Eq. (3.4) 
directly with available high Q* data14 and this is shown in Fig. 2. The results 
appear consistent with experiment even for Q* as low as 1 Gev. The effect of 
nonleading anomalous dimension should make only small modifications.* 
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Fig. 2. (a) Comparison of the asym totic &CD pre- 
diction fd(Q*) CI: &[tn(Q*/A*)]-‘- 2/s)(c~/~) with P 
data of Ref. 14 for the reduced deuteron form factor, 
where FN(&*) = (1 + Q*/O.71 GeV*)-*. the normal- 
ization is fixed at the Q* = 4 Gev data point. (b) 
Comparison of the prediction [l + (Q*/mg)] fd(Q*) E 
(~n(Q2/A2)]-1-(2/5)(c~~~) with the above data. The 
value m& = 0.28 Gep is used (see Ref. 7). 

4. The Effective Force Between Baryons 

In Section 2, we have shown how we can solve QCD evolution equations in 
order to predict the short distance behavior of multiquark systems using Young 
diagramatic- methods. Since the eigensolutions obtained in this way have defi- 
nite permutation symmetry, we can apply the fractional parantage technique8 
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-- - .- ._ 
for the multibaryon system in order to relate the eigensolutions to cluster repre- 
sentations which have physical baryon, or alternatively, “hidden-color” degrees 
of freedom. - 

For example, if we apply this technique to the simple case of the 4 quark 
system under SU(2)c, l5 then we find the transition matrix given by Table I (T = 
s= 0 case) which relates the symmetry basis represented by four-quark eigen- 
solutions and the physical basis represented by “toy”-dibaryon and hidden-color 
degrees of freedom. From this table we can expand the distribution amplitudes 
of the physical basis in terms of eigensolutions: 

-0.02c,/B 

~NN(x~, Q) = 0.0741(x;) + . . . 

-0.02+/B 

tiAA(Zi, Q) = + . . . 

4cc(xi, Q) = --O*Vl(xi) 

where CF = 314 in this case. 

0.13@//!9 -o.o*c*/p 
- 0.35fj*( xi) + . . . 

(4-l) 

Table I. The relationship between four-quark anitsymmetric 
SU(2) color representations and effective two-cluster represen- 
tations (T = S = 0 case). Isospin singlet and triplet states both 
with color singlet are denoted N and A, while color triplet state 
is represented by C. The square and curly brackets represent 
orbital (0) and spin-isospin (TS) symmetries separately. 

141 cw P4 cw WI 60 

NN 4 -a 3 
AA % f 3 
cc 1 

Jii 
-1 

3 
0 

Thus, we find that the NN, AA and CC states have completely different Q* 
evolution. As Q* goes to infinity, the NN and AA components are negligible but 
the CC components are large. In other word, the dominant degrees of freedom 
at the origin of the dibaryon system at zero impact separation are hidden- 
color states rather than physical baryon states. This indicates that the physical 
dibaryons have a repulsive core at the origin l6 while the colorful hidden-color 
clusters behave as in an attractive well. In this way, we derive constraints on the 
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-- - .- ._ 
effective force between two baryons.” Analogous results hold for the six-quark 
states in SU(3)c. 

- 

5. Conclusion 

By using a new technique based on completely antisymmetric representa- 
tions, we can analyzed the quark distribution amplitudes #(zi,Q) in QCD in 
order to predict the short distance behavior of multiquark systems. Through 
this analysis we find that multiquark wave functions have the following QCD 
evolution properties: 

1. Color singlet states are preserved. 

2. Isospin states cannot be changed. 

3. Different spin states can mix with each other. 

4. Different orbital polynomials with same n are mixed. (These eigensolu- 
tions are the Lz = 0 projection of true solution to the valence Fock states 
of multiparticle systems). 

Since the new technique is based on permutation symmetry, we can readily 
classify the mult,iquark systems. In the 3-quark case, we can resolve the N and 
A form factors. In the multibaryon system, this technique is essential since it 
cannot be guaranteed that all quarks have different quantum numbers. 

The QCD predictions for the Q* dependence of the deuteron reduced form 
factor in the high Q* regime above 1 Gev agree well with the available ex- 
perimental data. We have also decomposed the multiquark systems into multi- 
baryon physical components and hidden color components, and expanded each 
component in terms of the &CD eigensolutions. Through the evolution of each 
components we can derive constraints on the effective force between the clusters. 
Using the toy-SU(2)c-dibaryon analysis, we find that colorless clusters tend to 
be repulsive but colorful clusters are attractive at short distances. 

In conclusion, we have developed a new technique which is essential and 
useful for analyzing the short distance behavior of multiquark systems. 
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