
SLAC-PUI3-3334

May 1984

WE)

ON THE LOGICAL FORM OF

PRIMITIVE RECURSIVE FUNCTIONS*

Christoffer Gefwert

Academy of Finland, Helsinki

and

Stanford Linear Accelerator Center

Stanford University, Stanford, California 94905

Submitted to Journal of Philosophical Logic

* Work supported in part by the Department of Energy, contract DEAC03-
76SF00515 and by the Academy of Finland.

. ..the difference between man and the

presently available computers: We exercise

judgment, and the computers do not.

Errett Bishop

1. INTRODUCTION

As an example of a philosophical investigation we shall engage in a aeman-

tical explanation of the syntax and semantics of mathematical Language based

on notes made of a lecture (unpublished) given by Per Martin-Liif in Oxford

1975 being an extension of a, likewise, unpublished paper with Peter Hancock

as co-author.’ The author expresses his gratitude to professor Martin-Lijf and

professor Georg Kreisel for making some clarifying comments. Without these

papers and the helpful comments this paper would never have been written.

In order to make the investigation more comprehensive we shall use as an ex-

ample the terminated program 0 + 2 = 2 which, as Wittgenstein says, is “a rule

of syntaxn .2 We are going to show that when primitive recursive functions are

understood, this is the case in virtue of a strict findid conception of philosophy.

Such a view has been attributed to Wittgenstein.3 To semantically evaluate the

program 0 + 2 we have to recover the logical depth grammar for primitive recur-

sive functions, which,when codified, evaluate this person program and uniquely

determines its use as an arithmetical sentence. This is more or less verbatim

in accordance with Errett Bishop’s insight that, since a “computer is lacking in

judgment, the theorems of constructive mathem&cs do not in general represent

computer programs. They represent person programs, which in some instances

can be transformed into computer programs and in other instances cannot”.*

This is, perhaps, the right place to spell out how we regard Brouwer’s position

vis-a-vis the person program idea being used here. This question has been inves-

tigated by GGran Sundholm. The view adopted in his exposition is essentially the

same as adopted here. It is therefore useful to quote Sundholm at length: “In-

. deed, when the theories of constructions are given their meaning-explanatory role

3

the separation will immediately arise between the mathematical activity reported

in the constructivist langua.ge and the meaning-explanations in the secondary re-

flective activity. Now for Brouwer, as witnessed by his philosophical writings

(1929) and(1948), mathematical reflection (reflection on the mathematical activ-

ity) is itself a part of mathematics: the secondary activity is indeed in the first.

A nice example of this is given in the remarkable self-reflexivity of his proof of

the Bar-theorem. An immediate consequence of such a view on the primary and

secondary activities would be that meaning-theoretical considerations are ruled

out; as soon as we have a language there arises questions of meaning over that

language” .’ Therefore Brouwer’s firat act of intuitioniam seems inevitable within

this framework?

Completely separating mathematics from mathematical

language and hence from the phenomena described by

theoretical logic, recognizing that intuition&tic

mathematics is an essentially langueless activity of the mind...

In the person program idea the use of language forces the separation of activity

and reflection over that activity, whereas for Brouwer activity and reflection are

one. So the activity must be essentially languageless. For Wittgenstein, on the

other hand, such an attitude expressed a profound misunderstanding concerning

the nature of human thought. This is well documented in his argument against

the possibility of a private language, being one of the corner-stones of his philo-

sophical doctrines, and which is adopted in the person program idea.

It might be useful to compare a person program with the output of an

e abstract machine of a certain kind presented by Alan Turing.7 A Turing ma-

chine can be understood as an “ideal” machine that provides a finite output of

instructions.8 By analogy, a person program can be understood as the output of a

generative “Turing machine” producing a finite string of rules by canonical steps

determining how a task is to be terminated. Furthermore, according to Crispin

Wright, these rules, being “grammatical propositions-what we ordinarily take

for necessary truths-must all be in some sense both independent of each other

and incapable of conflict with fact”.g In short: a person program is consti-

tuted by canonical expressions and sentences, the informal reading of which

provides complementary propositions expressing knowledge of meaning. These

grammatical propositions, provides instructions on what to do, in virtue of

Wittgenstein’s principle.lO

For pedagogical reasons we reverse the actual order a person program is

executed. If we were to engage in the philosophical investigation of primitive

recursive functions by canonical steps as such, it would be almost impossible

for the reader to follow what is going on. We have therefore chosen to tinker a

bit on the actual order of introducing a person program. The result is that the

Begriflschrqt (translation manual), i.e., the logical depth grammar, is introduced

in the later part of this paper, whereas it obviously should be formulated first

if it were to be faithful to Wittgenstein’s principle: one can only judge (assert)

the sense of a proposition once.”

5

2. ON EXPLICIT AND IMPLICIT KNOWLEDGE

The reason for our engagement in a person program in order to provide

the logical depth grammar for primitive recursive functions is that “primitive

recursive functions are so absolutely basic and foundationally unproblematic

(or rather, just as problematic as the natural number sequence), that they are

generally accepted as a starting point for meta-mathematical researchm.12 It is

precisely this insight that the use of primitive recursive functions are taken

for granted via-&is meaning that we want to correct and supplement. We

want to show how one is to understand (use) natural numbers and primitive

recursive functions. The use of primitive recursive functions cannot, when we

contemplate on this question more seriously, be taken for granted. If this were

the case one would never be able to use them in a correct way. And still: this is

exactly what we do. And this is the philosophical problem: to understand (know)

what we do with them. One must be able to explicitly show how they are to

be used if they are to be used correctly: this is the task of showing the logical

form of primitive recursive functions. When we engage in providing a philosoph-

ical investigation of the logical depth grammar of natural numbers and primitive

recursive functions we dissolve problems concerning their meaning (use).

In general a depth grammar, showing the logical form of a Language, is

constituted by a formal and a non-formal part.13 The investigation we are to

engage in, however, only concerns formal rules. Recall that the expression 0 + 2

essentially is a program that provides information of its own evaluation.14 It

provides information of its own logical depth grammar. What we know when we

have proved a statement is its truth, and what we know when we have understood

1 a statement is its meaning. That a person knows the truth of a proposition

manifests itself in his ability to prove (compute) it. In the terminology used by

Michael Dummett, knowledge of truth of a statement is verbalizable knowledge,

i.e., “when the speaker is able to atate, in other words, what the condition is for

the truth of a sentence”.15 We use the depth grammatical rules in a deductive

argument, and we verbalize them in the activity of proving (computing).

Thus the task in a philosophical investigation is to recover (codify and

explain) these rules which we, implicitly, use in practice. We use the notion

“implicit” as standing for implicit knowledge in the way Dummett uses the term

when he states that U . ..knowledge which, in general, constitutes the understand-

ing of the language of mathematics must be implicit knowledge. Implicit knowl-

edge cannot, however, meaningfully be ascribed to someone unless it is possible

to say in what the manifestation of that knowledge consists: there must be an

observable difference between the behavour or capacities of someone who is said

to have that knowledge and someone who is said to lack it”.16 If we want to

be more precise, we can formulate this insight like Dag Prawitz, and say that

“we have an adequacy condition on a sentence A where BA is a kind of behavior

counted as a sign of grasping the meaning of A, i.e.,17

if P knows the meaning of A, then P shows behavior BA” .

Knowledge of the meaning of a linguistic expression can only manifest itself in

the ability to use the expression correctly. Thus there is no one linguistic act, like

that of proving (computing) a theorem, which conclusively shows that we know

the meaning of a linguistic expression. In particular, it is not in our ability to

explain its meaning that our understanding of a linguistic expression manifests

a itself. If that were the case, almost no mathematician could be said to understand

7

the primitive notions of mathematics. As Dummett says:“...the understanding

of an expression cannot, in general, be taken to consist in the ability to give

a verbal explanation of it, and hence must constitute implicit knowledge of its

contribution to determining the condition for the truth of a sentence in which

it occurs; and an ascription of implicit knowledge must always be explainable in

terms of what counts as a manifestation of that knowledge, namely the possession

of some practical capacity”.18 As far as we are concerned the manifestation of

implicit knowledge takes the form of an ability to successfully terminate a task.

The task in this case is to be able to successfully compute the program 0 + 2.

As we said above, we regard an expression like 0 + 2 essentially as a program.

When we engage in a philosophical investigation, what do we have to recover from

the program in order for the investigation to terminate? We have to recover the

regulative rules, so “If you want to know what 2 + 2 = 4 means, you have

to ask how we work it out”.lg We have to recover the formal (canonical) rules

constituting the person program. When we engage in this we do it according

to the proposition-as-rules idea. That is, we follow Wittgenstein’s principle, as

explained elsewhere. 2o This is to say that when we codify formal (and non-formal)

rules, the codification,being a proposition, shows the sense of the expressions and

sentences respectively. It shows their logical form. And the sense is shown by a

canonical step in a canonical instantiation, i.e., codification. Or, alternatively,

we can say that when we engage in codifying rules we are creative (metaphysical)

subjects, that is, we participate in the person program.21

8

3. ON WITTGENSTEIN’S IMPERATIVE

The explanation of primitive recursive functions we are to engage in is typical

of how substance can be given to Wittgenstein’s idea that meaning is uae.22 To

be more explicit: the meaning of an expression is determined by the rules that

governs its use in the Language of which it forms a part. It is absurd to interpret

Wittgenstein’s idea as saying that meaning is conferred automatically on the

expressions and sentences of a Language. If this were the case no philosophical

problems would arise. We know they do. As Wittgenstein said: “The results

of philosophy are the uncovering of one or another piece of plain nonsense and

bumps that the understanding has got by running its head up against the limits

of language...“.23

This is clearly evident in the Language of primitive recursive functions, e.g.,

in the question of what determines the meaning of the symbol 0. The first

Peano axiom? Hardly. If the axiom automatically were to arrive equipped with

its meaning it would be impossible to understand which of the expressions “0”

or “natural number” is explanans and which is explanandum. We would only

achieve a vicious circle in attempting to explain the meaning of the first Peano

axiom: “0 is a natural number”. For example, one can try to arrive at a re-

alization of Wittgenstein’s imperative by making the futile attempt to define a

natural number as what we get to from zero by iterating the successor operation

a finite number of times. However, this is circular, because the definition uses the

words finite number which are synonymous to the words natural number whose

meaning it attempts to explain. There is no way out of this circle but to say

that a natural number is what we iterate up to: which is to explain nothing.

_ In essence, this is what Russell’s explanation tells us when it states that: “...‘O’

9

and ‘number’ and ‘successor’ cannot be defined by means of Peano’s...axioms,

but must be independently understoodn.24

What Russell requires to be independently understood is exactly what a per-

son program sets out to explain. It is important to realize that the two first

Peano axioms “0 is a natural number” and “the successor of any number is a

successorV, as far as meaning is concerned, are redundant, since they presup-

pose understanding of the expressions “0” and “natural number”. This does not

mean that 0 is not a natural number, it certainly is, but the first Peano axiom is

not the rule from which the meaning of the symbol is learnt. In the semantical

(philosophical) investigation of the program 0 + 2 the expressions standing for

the canonical (normal) forms are the rules T, b and S(S(0)). The explanations

are not redundant via-&via meaning, since the symbols, the meaning of which we

are to recover, do not occur in the explanans except for the primitive function

constant 0. Here, again, it is important to recall that to understand a rule, we

must understand the conclusion under the assumption that the premises have

been understood. The premiss, being a canonical step, is understood because the

predicate is contained in the subject and we take the subject to be the object:

the limit of Language. 25 It is evident that the two Peano axioms, as they are

usually formulated, are not in accordance with Wittgenstein’s principle. Indeed,

an expression is a natural number, not in virtue of its form, but in virtue of its

function as we shall see later.

~.THE ALPHABET

The symbols that we are going to use in the person program will have the

following form and be divided into function constants:

a 0, s, +,...

10

and numerical varia blea:

Furthermore, we divide function constants into primitive and defined ones. In

the investigation we are to put up only 0 and S are primitive. All the rest are

defined. An ezpreaaion (meaningless in general) is simply a string of symbols like:

y + 2, x + S(O),...

in conjunction with a parenthesis notation. To construct the Language, as we

shall do when formulating its syntax and semantics, we also need syntactical

variables. We symbolize these by:

which stand for function constants. Furthermore we have:

0, w, . . .

which stand for numerical variables, and:

a, 6, c,...

which stand for arbitrary object-valued functional expressions. Thus, in general,

will stand for an arbitrary object-valued functional expression whose variables are

among q, vk rather as in the ordinary notation for polynomials. A different

placing of ~1, vk within the parentheses reflects a difference of input place

within the functional expression. A single occurrence of a variable within the

parentheses may stand for many linked argument places within the functional

* expression. Although one writes variables over functional expressions in two

11

parts, these being a part for the variables, and a part for the expression over and

above the variables, these two parts cannot in any sense be separated in an actual

functional expression. One may vary the functional expression while retaining

the same structure of inputs, but not take away what is varied here, leaving the

input structure, so to speak, on its own. With this the alphabet is introduced.

The meaning of a statement of the form:

x is a natural number

is the way in which a natural number is determined as the value of a recursively

defined function for z as principal and natural numbers as subordinate arguments.

Thus, to understand that 2 is a natural number, we must know how to determine

a natural number y such that,

fh . ..) Xk, 2) = y

under the assumption that f is a (k + 1)-place function defined by recursion

and ~1, xk are natural numbers. What determines the value of a recursively

defined function for given arguments is the scheme of recursion, being, according

to Wittgenstein Ua standard for the classification of casesb.26 A recursion schema

expresses the general form of a contezt, that is, it is what we acquire when we en-

gage in explaining an expression or sentence in accordance with the constructivist

imperative of Frege’s contextual principle.n We seek a clarification of the depth

grammar of the numerals and the word “number”, that is, “(i)f the question:

‘What are numbers?’ is approached from this point of view we will no longer

succumb to its suggestive spell. Instead of setting up the nature of number in a

-formula we will describe the uses of the word “number” and of the “numerals”.28

12

Arithmetic is simply the depth grammar of number-words.29 Hence we cannot

understand a particular statement of the form that we are considering without

looking back on this scheme. As is implicit in what we just have said, a natural

number is an expression for which we have understood the statement above. Or,

as we may say, a natural number is an expression which we have understood as a

natural number. Its relation to Wittgenstein’s answer: “A natural number is the

exponent of an operation”,30 becomes clear if we reformulate it thus: A natural

number is the principal argument of functions defined by recursion.

The meaning of a statement of the form:

4% "'9 wk) is a numerical function

is the way in which a natural number is determined as the value (denotation) of

4% "'f vk) when natural numbers are assigned as values to the variables ~1, Q.

Thus, in order to understand that a(q, q) is a numerical function, we must

know, given natural numbers q, zk, how to determine a natural number z

such that:

u(wl, wk) = x for 81 = 21, ??k = xk

What determines the value of u(q, Q) for given arguments are the rules of

denotation, and hence we cannot understand a statement of this form without

looking back on these rules before we can proceed. We shall return to the meaning

of numerical functions later.

~.DENOTATION RULES

In his famous article On Denoting Russell differentiates between acquaintance

and knowledge about as “the distinction between the things we have presenta-

- tions of, and the things we only reach by means of denoting phrases”.31 Here

13

the subject encounters object.9 of thought, i.e., “(a)11 thinking has to start from

acquaintance; but it succeeds in thinking about many things with which we have

no acquaintance” .32 In a philosophical investigation we are not primarily inter-

ested in a subject acquainted with an object of thought (expressing knowledge

of facts) since ((... it is not the property of an object that is ever ‘essential’, but

rather the mark of a concept”.33 That is, if we construct the depth grammar by

canonical steps in virtue of Wittgenstein’s principle, the object, as far as meaning

is concerned, “drops out of consideration as irrelevant”.34 We are interested in

what it is to engage in an activity of denoting (expressing knowledge of mean-

ing). Especially we want to focus on what goes on when one denotes a form as a

numerical function.

In order to understand that a statement of the form a(vr, Q) is a numerical

function we must refer back to statements of the form a(vr, vk) = x. Here

we have denoted the form a(vl, vk) as a numerical function which is shown

by the denotation line above the expression. But to denote is to engage in

an activity according to certain rules. These rules must be made explicit by

canonical steps. Hence one cannot determine the value of a numerical function

until the denotation rules have been given. They read:

zr =x

6 =o

73=x
S(a) = S(x)

14

81 = xl, -&k = xk a= x f(xl,..., xk;x) = y
f(%-,ak;a)= Y

In the last rule, f is a (k + 1)-place function defined by recursion. We can now

also explain the meaning of a statement of the form:

fis a (k + 1)-pl ace function defined by recursion

Its meaning, like that of any statement, is what we know when we have un-

derstood it. And, to understand it, we merely have to understand that the

expressions a(q) . . ., Vk) and b(q) Vk; V, w) which in a purely formal way are

associated with the symbol f, are numerical functions.

~.THEMEANINGOF NATURALNUMBERS

Before we engage in explaining the meaning of natural numbers we must

explain the notations for arbitrary computations. For arbitrary computations

we use the following notation:

Vl = xl, vk = "k

&, "k) = x

Here the upper lines show the assignments x1, xk to the variables VI, vk of

the functional expression and correspond to what inputs have been fed into what

input holes in virtue of a person program. The result of a computation:

Vl = xl, vk = xk

a(?& vk) = x

iS that U(Vl, Vk) = x for ?ijl = x1, . ..vk = zk. This can be translated verbally

* in the following way:

15

1. x is the value of u(q , vk) for arguments xl, xk in the argument places

Vl, “‘, Vk respectively, or when the variables VI, vk are assigned values

Xl , “‘, Xk respectively.

2. 2 iS the output of u(vl,vk) for inputs xl,xk in the input position

Vl , “‘, vk respectively.

3. u(v1, . ..) vk) denote8 2 when vr, vk denote xl, zk respectively.

We can now realize that “value”, “output” and “denotation” have a common

canonical form. As far as meaning is concerned they are, when used within

different disciplines (mathematics, computer science, philosophy), used in a

redundant way. This is one of the redundancies that we eliminate by person

programs in virtue of Wittgenstein’s principle.

One may never proceed in a computation using in different places assignments

of different object expressions as values to the same variable. For occurrance of

the same variable at different places show that the argument places shown by

these occurrences are places for the same argument. Furthermore, a computa-

tion (proof) is not in the proper sense a proof of its result. It is something that

produces its result, i.e., it is not an essential part of the result as far as mean-

ing is concerned. One could say that proofs proper, establishing links between

grammatical propositions, themselves belong to grammar. Their function is to

make connections between propositions created by canonical steps: “The proof

is part of the surroundings of the proposition”.35 A computation (proof proper)

is a process of which its result is the upshot, and not an argument for it, i.e., “a

constructively valid proof already constitutes a realization of the computational

content of the result being proved. In other words, a proof is a computation”.36

- One can imagine a notation like the arrangement of addition and multiplica-

16

tion sums children are taught which one has no inclination to call the successive

inference of propositions.

Given these explanations, it is clear that what allows us to understand

(determine the meaning of) the first Peano axiom is the first clause:

vl = xl, vk = xk ----------
t+, vk) = x

f(xl, xk; 0) = x

of the recursion schema. Indeed, that f is a (k + 1)-place function defined by

recursion means that the expressions u(vl, Vk) and 6(vl, vk; v, w) in terms

of which it is defined, are numerical functions. Hence, given natural numbers

Xl, “‘9 Xk, we know how to determine a natural number z such that a(vl, Vk) =

x for ?71 = x1, ?jk = zk. The first clause of the recursion scheme stipulates

that this number x is to be the value (output, denotation) of ffor the subordinate

arguments $1, xk and the principal argument 0. And, of course, since we deal

with canonical forms, there is no other rule which allows us to derive a statement

of the fOrIn f(xl, xk;o) = x. This is the meaning of the first Peano axiom,

that is, the way in which a natural number is determined as the value (output,

denotation) of a recursively defined function for the principal 0 and natural

numbers as subordinate arguments. Now we can realize why “(d)isputes do not

break out (among mathematicians, say) over the question whether a rule has

been obeyed or not...That is part of the framework on which the working of our

language is based...“.37 It is also the philosophical answer to the question:

What is zero?

.because, as stated in the opening sentence of Frege’s Foundationa of Arithmetic,

17

the question what the number zero is, comes to the same as to the question whut

the symbol 0 means.% It is to answer the question what zero means according to

the proposition-as-rules idea. More importantly, it shows also the principle by

which every axiom can be read ua a rule. This gives substance to Wittgenstein’s

interest in Weyl’s remark that “a formalist conceives of the axioms of mathe-

matics as like chess-rules” .3g The idea, itself, is expressed by Wittgenstein in the

following way: “It seems to me that the idea of the consistency of the axioms

of mathematics, by which mathematicians are so haunted these days, rests on a

misunderstanding. This is tied up with the fact that axioms of mathematics are

not seen for what they are, namely, propositions of syntax”.N

To understand the second Peano axiom, which, when formulated as a rule,

reads:

x is a natural number
S(x) is a natural number

we must know how to evaluate a recursively defined function for the principal

argument S(z), given that we know how to evaluate it for the principal argument

x. So let fbe a (k + 1)-place function defined by recursion and ~1, zk natural

numbers. By assumption, we know how to determine a natural number y such

that f(xr, Sk; x) = y. Since /is a (k + 1)-place function defined by recursion,

the second of the expressions associated with the symbolf, call it b(vl, vk; v, w),

is a numerical function. Hence, ~1, zk, z and y being natural numbers, we

know how to determine a natural number z such that b(vl, vk; v, w) = ,Z for

*zil = Xl, . ..zik = Sk, ‘ii = X and m = y. The second clause of the recursion

18

scheme:

~l=xl,...,~k=xk ?i=x m=y
----------------_

f(xl, m-e, xk; x) = Y b(vl, vk; v, w) = t
f(% ---> xk; s(x)) = z

stipulates that the number z is to be the value of ifor the subordinate arguments

Xl, **-, xk and the principal argument S(z). This is the meaning of the second

Peano axiom, or, what amounts to the same, the meaning of the symbol S. Our

explanation of the meaning of S(z) in terms of the meaning of 2, is at the same

time our answer to the question:

What is the successor of a natural number?

because, to ask for the meaning of the expression S(z), is the same as to ask

what S(2) is. It is of extreme importance to realize that the two Peano axioms

do not stipulate what a natural number is. That would be to say that a natu-

ral number is an expression for which we have derived (instead of understood)

the statement “x is a natural number”. This is to confuse natural numbers with

numerals, which is the formalist misinterpretation of the concept of natural num-

ber: “Frege ridiculed the formalist conception of mathematics by saying that the

formalists confused the unimportant thing, the sign, with the important, the

meaning...Frege’s idea could be expressed thus: the propositions of mathematics,

if they were just complexes of dashes, would be dead and utterly uninteresting

whereas they obviously have a kind of life... But if we had to name anything

which is the life of the sign, we should have to say that it was its usen.41 An

expression is a natural number, not in virtue of its form, but in virtue of its

function, as stated above. This is how the two Peano axioms are to be under-

. stood. In general, axioms, by themselves, do not provide knowledge of meaning.

19

As Wittgenstein said: “Something is an axiom, not because we accept it as ex-

tremely probable, nay certain, but because we assign it a particular function...“.42

And this function is to serve as the principal argument of functions defined by

recursion.

We will now turn our attention to the rules of function formation. In general,

one can say that a functional expression is like a machine that operates in a

certain way. This may be a black box with zero or more input holes, various

gadgets inside, and an output hole. Exactly how it is made up, of plastic, some

metal, wood, or what not, is not essential to its operation. One could put it

together with no idea of how it worked. Similarly to a functional expression there

belongs something inessential, say an expression in certain variables. The places

occupied in it by the variables, linked together as indicated by the identity and

difference of the variables, correspond to the input holes of the machine. Beyond

their serving the purpose of showing the input places of the functional expression,

the variables are inessential. One can imagine many devices that would serve the

same purpose.

It is not a matter for stipulation that something is a functional expression,

just as it is not up to us that some metal parts we have bolted together should

constitute a functioning machine. Rather it is in virtue of there being a definite

rule for the evaluation of the functional expression under an assignment of things

(fed into its input holes) that the machine continues with some operation on these

things until a final product emerges from the output hole. What we put in are

the arguments. What we get out, if anything, is the value, i.e., the circumstance

- of being correct.

20

The working out of the value from the arguments is called the evaluation,

or calculution, of the functional expression of those arguments. To evaluate is

to work out the logical form of the arguments. The rules for the calculation

of a functional expression are like the internal mechanism of a machine. To

the exterior casing of the machine there corresponds the formal aspect of the

functional expression, that is, something identifying its calculation rules, and

its structure of inputs: the form. Again, it is important to realize that it is

not in virtue of its exterior casing that something is a machine. It is essential

to a functional expression that we know the rules for its calculation, and that

these should be unambiguous. It is like a deterministic machine which contains

no random element by which it could proceed differently every time it was put

into operation. Thus should a functional expression produce a value, it will always

produce the same value. Consequently, in order to understand a statement of the

form:

4% .“f Vk) is a numerical function

we must know, given natural numbers xl, Sk, how to determine a natural

number x such that a(?~, vk) = x for VQT~ = xl, vk = xk. And, indeed, we

do understand the statement:

u is a numerical function

for a numerical variable u, by looking back on the denotation rule which says

that:

?j=x

provided z is assigned as value to the variable u. It is this stipulation which

allows us to understand the symbol u as a numerical function.

. The statement:

21

0 is a numerical function

is understood from the stipulation:

u=o

and the first Peano axiom. Thus we cannot understand the symbol 0 as a nu-

merical function until after we have understood it us a natural number.

The rule:

a is a numerical function
S(u) is a numerical function

is understood from the denotation rule:

?i=x
S(u) = S(x)

and the second Peano axiom. Suppose, namely, that u is a numerical function,

that is, we know how to determine a natural number zsuch that z = x. Then S(z)

is a natural number by the second Peano axiom, and the denotation rule above

stipulates that S(u) = S(x). This is the meaning of the above rule of function

formation, that is, the way in which a natural number-S(z j-is determined

as the value of S(u) under the assumption that u is a numerical function. Note,

again, that we can understand this rule only after we have understood the second

Peano axiom.

The final rule of function formation is:

.
a1 9 “‘I uk are numerical functions

fh “‘, uk; u) is a numerical function

22

where fis a (k + I)-place function defined by recursion. To understand it, we

must know how to evaluate f(al, ak; a) under the assumption that we know

how to evaluate al, ak and u, that is, that we know how to determine natural

numbers xl, xk and z such that El = x1,zk = xk and Z = 2. But this is

precisely what the last denotation rule formulated above tells us. Indeed, since f

is a (k + l)-place function defined by recursion and the subordinate arguments

Xl, ..‘7 xk are natural numbers, we know that a natural number is determined

as its value whenever a natural number is inserted into its principal argument

place. In particular, this is so for z, that is, we know how to determine a natural

number y such that f(xr, zk; x) = y. The denotation rule stipulates that this

number y is to be the value (denotation, output) of /(al, ak; u). This is how the

meaning of the expression f(ur, ak; a) as a numerical function is determined

in terms of the meanings of the expressions al, ak and a.

9. COMPOSITION OF FUNCTIONS

We are now coming to the thesis of composition of functions. Functional

expressions will be either simple or composite. Composing functional expressions

is like connecting two machines together so that the product of one is imme-

diately taken as the input of the other, the two so connected forming a third

less elementary machine. A simple functional expression is one which is not

connected in this way. Thus, when we give the functional expressions of the

Language, there will be clauses that relate to the simple functional expressions

and their computation, and clauses that relate to composite functional expres-

sions expressing how computations such things are formed from computations of

their components. This thesis tells us that al, ak and b(vr, vk) = y pro-

. vided Zr = xl, ?ik = zk and b(vl, Vk) = y for 31 = 21, vk = Xk. This

23

thesis cannot be proved, it has to be understood. And what has to be understood

is the way in which b(ur, ak) is evaluated, and that its value is the same as is

obtained by first evaluating al, izk and then evaluating b(vl, ,.., Vk) for these

values as arguments. So suppose that ur, ak are nUmeriCal functions, that is,

that we know how natural numbers xl, xk are determined as their values

. . . .
Ttl = xl . . . !-ik = xk

Suppose further that b(vr, vk) is a numerical function. Then, xl, xk being

natural numbers, we know how to determine a natural number y as the value of

@1, Vk) for these arguments:

v’1 = xl,. . . ,?jk = xk
__--_-----

bh, “k) = Y

Replacing the variables vr, Vk in this evaluation by the expressions al, ak

and attaching to it the evaluation of these:

.

a1 = xl . . . iik = xk
__-__-----

@1t 2.‘k) = Y

we see that the natural number y is determined as the value of b(ur, ak).

This is how we understand that b(ur,ak) is a numerical function. The last

part of the statement about composition of functions states that the tralrle of

u composite function is determined by the uuluea of its componenta. If we read

Frege’s Bedeutung for value, we recognize this as one of the theses that was set

. forth by him, i.e., that “the reference (Bedeutung) of a sentence may always be

. 24

sought, whenever the reference of its components is involved; and this is the case

when and only when we are inquiring after the truth value”.43 Remember that

uulue (the circumstance of being true) is not something which can be proved, but

must be understood.

10. ON DEFINITIONAL EQUALITY

In the Begriflschrift we find that Frege formulated the conception of equality

as follows:44

Es bedeute nun

dus Zeichen A und dus Zeichen B huben denselben

begrifiichen Inhult, soduss mun iiberull an die

Stelle uon A B setzen kunn und umgekehrt.

In virtue of Wittgenstein’s principle we realize that the form of Language excludes

a metaphysical doctrine of identity as far as meaning is concerned since “(i)t

is necessary to distinguish carefully between, on the one hand, the relation of

definitional equality which...is a relation between linguistic expressions and, on

the other hand, the relation of identity between the abstract entities that they

denote”.45 But we do have definitional equality which is “a relation between

linguistic expressions and not between the abstract entities which they denote and

which are the same. This is the view that Frege took of the relation of equality

of content (Inhultsgleichheit) which enters into his Begriflschriff but which he

later abandoned”.46 According to Martin-Lijf the relation of definitional equality

is determined by the following three principles and by these principles uloneP7

(i) A definiens is always definitionally equal to its definiendum.

25

(ii) Definitional equality is preserved under substitution. That is, if

we substitute two definitionally equal expressions for a variable

in a given expression, then the resulting expressions are also def-

initionally equal.

(iii) Definitional equality is an equivalence relation, that is, it is re-

flexive, symmetric and transitive.

What we still need are the rules for definitional equality. The meaning of

definitional equality, that is, statements of the form:

U(Vl, Vk) = b(vr, ,.., vk)

for v1 = zl,...,gk = xk. Another way of expressing this is to say that two

expressions are definitionally equal if they both are numerical functions, and, if

they take the same value for arbitrarily given natural numbers as arguments.

Consider now the first rule of definitional equality. Using the notation IX = 8,

rather than a G 6, it reads:

a1 (I UE are numerical functions

f(a1 , . ..ak. 0) = +l, ak)

To understand it, we must understand the conclusion under the assumption that

the premises have been understood. So, suppose that we know how to determine

natural numbers xl, Sk such that al = xl,?ik = zk. By composition of

functions u(al, ak) is a numerical function, and u(ur, ak) = 2, where 2 is

the natural number such that a(?~, vk) = 5 for 81 = x1, ?jk = xk. On

* the other hand, the first clause of the recursion schema and the denotation rules

26

yield:

?jjl =xl...-iik=xk
---m-m--- .

. . a(vl,...,“k)=x
al=21 . . . ak = xk fi=o f(xl, . . . , xk; 0) = 2

f((Zl,...,(Zk;o)=x

This is how we determine the natural number x such that:

fh .“Y uk; 0) = x = +I, ak)

The second rule is:

a1 I “‘7 uk; u are numerical functions

fh --.,ak; s(a)) = G1, ..a, a/c; a, f(al, -me, ak; a))

It is understood in a similar way as the first one. Assume that we know how

to determine natural numbers xl, Xk and x such that Zl = x1,Bk = xk

and -& = x. Then, since f is assumed to be a (k + I)-place function defined by

recursion, we can determine, first, a natural number y such that f(xr, Sk; x) =

y and, second, a natural number t such that b(vr,vk.v, w) = z for ?Jr =

X1,vk = xk, ?j = X and m = y. In virtue of the last denotation rule and

composition of functions we get:

On the other hand, this number z is determined as the value of f(ul, uk; S(u))

. by the second clause of the recursion scheme and the denotation rules as follows:

27

. gl=xl...?Tk=xk v=x m=x
_____-----------

f(Xlt - * - 7 xk; 2) = Y b(vr,. . . , ‘Uk; v, W) = Z

f(xl,--,x/$(d) = z

. . . .

i&x
31 = xl . . . ak = xk -

S(u) = s(2) fh, - - - , xk); s(2)) = 2
. , ak; s(a)) = z

This is how we understand the second rule of definitional equality.

The third rule is the principle that definitional equality is preserued under

substitution:

?il = 31,Gk = Fk
6(ul, t&k) = 6(cl, ck)

Assume that its premises have been understood, that is, we know how to deter-

mine natural numbers xl, xk such that:

81 = xl =i!l,...,iik = xk =i?,+

Since, by assumption, b(vl, vk) is a numerical function, we know how to de-

termine a natural number y such that b(v1, vk) = y for VI = 21,vk = zk.

By composition of functions we get:

6(ul, ak) = y = b(cr, Ck)

. which is precisely what we had to understand.

28

The remaining rules of definitional equality are refiezioity:

a is a numerical function

and sylnmetry:

These rules are understood immediately. The last rule stands for tranaititrity:

Transitivity is to be understood as follows. Suppose that we know how to deter-

mine natural numbers z and y such that:

Then, since both z and y are determined as the value of b, they must be the same

expressions. Therefore, the same natural number z is determined as the value of

both a and c, which is precisely what we must know in order to understand z = F.

With this the formulation and explanation of the rules needed to undertake the

person program 0 + 2 is complete. Note that each of the rules determines the

logical form of this program.

To engage in a person program provides the function of contributing a syn-
. .

optic view (Uberaichtlichkeit) of the codified activity. The idea of a synoptic view

. is also embraced by formalism as understood by Hilbert and Bernays. Note the

29

similarity with Wittgenstein’s use of ri’berblickbar, or, as Kreisel calls it, iiber-

achaubar, in comparison with ti'beraehbar in Hilbert’s and Bernay’s definition of

finitist meta-mathematics.48 But, in comparison with meta-mathematics, it is

only the formal part of the Language where the formalist view is correct. In the

Language of primitive recursive functions we are dealing with the formal part of

a more extensive Language: the Language of mathematics. We shall engage in

an extension of the Language elsewhere.

Now, we can treat, by conversion, the logical depth grammar of primitive

recursive functions meta-mathematically in the sense of Hilbert. To be con-

vertible in virtue of a person program requires understanding, i.e. knowledge

of meaning. Conversion is not something we prove: it is something we under-

stand. When the Language is treated in this way, the expressions become meta-

mathematical objects of an inductively defined type, and the five different, but

necessary (complementary), forms of statements that we have been considering

are turned into inductively defined meta-mathematical propositions proper. They

become propositions which can be proved (computed) and combined by means of

logical connectives and quantifiers. As an example, in particular, the expression

z is a natural number

is turned into a property proper, and

u(vl, vk) = x for ‘is1 = x1, vk = xk

into a (k + I)-place relation proper between expressions as meta-mathematical

_ objects. Therefore we can form the meta-mathematical proposition:

30

xk) (x&k , & “ku)
(3X) (u(x) & u(u1, uk) = x for 81 = Xl, ?jk = zk)

Here the quantifiers range over expressions as meta-mathematical objects. It

expresses that the open expression as meta-mathematical object a(vr,...,z.~k) is

convertible in the sense of William Tait.4g It is not to be confused with the

statement:

4w “‘7 uk) is a numerical function

The former is a proper meta-mathematical proposition which we may try to

prove. The latter can only be understood: it is a depth grammatical state-

ment. And, it contributes to a synoptic view. Now we can also make sense out

of Wittgenstein’s statement that “(t)here is no metamathematics”.50 What we

deal with, after conversion, is a depth grammar read as a meta-language, not a

meta-language in the way Hilbert understood the term. Indeed, from the view

of a philosophical investigation, a meta-mathematical attitude is only possible

after a conversion, which, in turn, requires understanding. But, it is precisely

a philosophical investigation which provides understanding in virtue of a per-

son program. We have to realize that in both the formulation and the proof of

a meta-mathematical proposition we use linguistic expressions in the ordinary

sense. Furthermore, a proof must be underatood.51 If it is not understood it

cannot be executed. And understanding the meta-language in which a proof of

convertibility is carried out, is at least as difficult as understanding the object

language, in this case, the Language of primitive recursive functions.

Even a meta-language needs to be understood. And it is understood pre-

-cisely in virtue of a person program. Now we can understand why Wittgenstein

31

was dissatisfied with Russell’s proposal that a meta-language is “another lan-

guage dealing with the structure of the first language, and having itself a new

structure n.52 In virtue of Wittgenstein’s principle, there simply is no criterion of

the adequacy concerning our dealing with the object language as Andre Maury

points out. 53 The criterion of adequacy is not provided by induction. The clauses

specifying the forms of the Language are not induction clauses. Were that so, it

would be essential to the notion of expression that one could define functions on

expressions by recursive clauses. This is evidently nothing a child has to grasp

when it learns what are the expressions of its mother language. The sense of

expressions which is prior to meta-mathematics is so fundamental that we fail to

appreciate it. This point was explicitly stressed by Wittgenstein: “A mathemati-

cian is bound to be horrified by my mathematical comments, since he has always

been trained to avoid indulging in thought and doubts of the kind I develop. He

has learned to regard them as something contemptible and, to use an analogy

from psycho-analysis (this paragraph is reminiscent of Freud), he has acquired

a revulsion from them as infantile. That is to say, I trot out all the problems

that a child learning arithmetic, etc., finds difficult, the problem that education

represses without solving. I say to those repressed doubts: you are quite cor-

rect, go on asking, demand clarification. . 1” 54 As an example one would do well to

remember just how radically original a step was taken when meta-mathematics

began with the introduction of the idea of an expression as a mathematical ob-

ject. By this step questions of meaning and understanding became suppressed

as superfluous. This is not the case in a philosophical investigation. On the

contrary, it is absurd to maintain, at least in the Language of primitive recursive

functions, that we do understand a meta-language but not the object language.
.

32

I

In fact, there is not a genuine need for a proof of convertibility. At least not in

this case. And it certainly does not provide us with any philosophical insight.

The requirement of a synoptic view serves the function of providing under-

standing of numerical expressions. The grammatical rules (syntax) introduces

order for expressions and sentences, in this case, in the context of primitive re- .

cursive functions. The demand by Wittgenstein of perspicuity (ijberaichtliclrkeit)

is not a puzzling extra requirement in Wittgenstein’s characterization of math-

ematical proof (computation). If proofs lacked this feature, they could not be

executed at all: perspicuity is an essential part of proof (computation).55 Person

programs show that “proof must be a procedure it plain to view. Or again: the

proof is the procedure that is plain to view. It is not something behind the proof,

but the proof, that proves”.56 Indeed, as we saw in the execution of the person

program 0 + 2 above, it is the case that “(i)f I have once grasped a rule I am

bound in what I do further. But of course that only means that I am bound

in my judgment about what is in accord with the rule and what is not”.57 One

can execute a deduction in virtue of knowing wlrut one is to do, as emphasized

elsewhere.58 The principal defect of Language and the source of philosophical

perplexity is the lack of ijberaichtlichkeit in the rules of depth grammar. It

is to lack knowledge concerning what to do. The corrective is to engage in a

person program in order to create by canonical steps an iiberaichtliche Duratel-

lung that encapsulates an adequate view of the connections of expressions and

sentences in a Language. One can say that: “A main source of our failure to

understand is that we do not command u clear view of the use of our words. -

Our grammar is lacking in this sort of perspicuity. A perspicuous representa-

.tion produces just that understanding which consists in ‘seeing connexions”‘.5g

33

In Language ijberaichtlichkeit is of fundamental importance, but it is created,

not found. Indeed, the mathematician, being a participator, “...is an inventor,

not a discoverer” .60

12. THE LOGICAL FORM OF PRIMITIVE RECURSIVE FUNCTIONS

When we engage in the philosophical task of formulating the logical depth

grammar of primitive recursive functions we formulate it as a translation munuul.

The phrases following the syntactical statements in the translation manual only

show how to read these statements in English. They must not be regarded as

explanations of the meanings of the criteria, i.e., the canonical expressions. If

this were the case they would have to be understood already, and it would be

absurd to assume this, since the task is precisely to explain the meanings of

these statements. It would not be in accordance with Wittgenstein’s principle.

It is totally irrelevant whether they are expressed in mathematical notation or

in English at this stage. However, since the Begriflachrift is to be formulated

in English, it will be convenient to have the option to express the statements

whose meanings we are to explain in English as well. When we engage in the

philosophical task of formulating the depth grammar (logical form) of primitive

recursive functions we end up with statements of five forms. In each of the five

forms we have a general rule, which is to be explained first, and a number of

applied rules.

34

lX& B&$R I77SCUR ITT

Rules of Computation:

General rule:

-y is the value of the recursively defined

function f for the subordinate arguments

Xl, “‘, xk and the principal argument z

Applied rules:

f(xl, Xk; 0) = x

/(Xl, “‘, xk; s(x)) = e?

Rules of Denotation:

General rule:

z=x

Applied rules:

v=x

- u denotes z

-x is the value of a

-2 is the output of a

- assignment

F=o

35

Ti=x
S(u) = S(x)

al = xl, ak = “k 3 = x f(x1, xk; 5) = y

f(%-,ak;d = Y

First and second Peuno axioms:

General rule:

z is a natural number

Applied rules:

0 is a natural number

x is a natural number
S(x) is a natural number

Function Formation:

General rule:

a is a numerical function

Applied rules:

u is a numerical function

0 is a numerical function

u is a numerical function
S(u) is a numerical function

a1 9 *--, uk; u are numerical functions

f h, “‘7 uk; u) is a numerical function

36

Definitional equality:

General rule:

zi =6 or u=b - the functions u and 6 are definitionally

equal, or have the same value

Applied rules:

al, "'9 uk are numerical functiOnS

fbl, ..‘> a/&S(a)) = bh, ..-, uk; 0, f(Ul, ..v uk))

81 = Fl,iik = ifk
b(ul, uk) = b(cl, ck)

a is a numerical function
- reflexivity

- symmetry

- transitivity

13. VERIFICATION OF THE PROGRAM

We are now, finally, in the position to verify (compute) the person program

0 + 2. To successfully engage in this task is to show that this program is true. It

is of the form “p is truen.61 That is, when we compute the program 0 + S(S(O)),

-we treat the expressions occurring in the program as objects of knowledge. We

37

1

do understand them (they are aurueyuble to us), which enables us to use them in

the surveyable computation:

z=o
S(z) = S(0)

o+o=o s(z)=S(O)
0 + S(0) = S(0)

Since to understand a rule is to understand the conclusion under the assumption

that the premises have been understood, this derivation (computation) is faithful

to Wittgenstein’s principle. We have explained the meaning and truth of the

person program 0 + 2 = 2 Q.E.D.

The person program provides the logical form of the primitive recursive func-

tions we use in order to verify (compute) the terminated program 0 + 2 = 2.

As Poincare says: “We have confined ourselves to bringing together one or other

of two purely conventional definitions, and we have verified their identity; noth-

ing new has been learned. Verification differs from proof precisely because it

is analytical, and because it leads to nothing. It leads to nothing because the

conclusion is nothing but the premisses translated into another language. A real

proof, on the other hand, is fruitful, because the conclusion is in a sense more

-general than the premisses. The equality 2 + 2 = 4 can be verified because it is

. 38

particular” .62 Verification provides knowledge of truth of the definitionul equality

of the terminated program 0 + 2 = 2 (contrary to Poincare’s identity). In fact,

it is possible to verify the program 0 + 2 precisely because it has a logical depth

grammar showing how it ia to be used. This is the same as to understand that

0 + 2 essentially expresses a task providing information of its own evaluation.

Since to understand a rule is to understand the conclusion under the assumption

that the premisses have been understood, there is nothing to understand con-

cerning the rules of computation and denotation. If we know how to derive the

premises, we know how to derive the conclusion: by applying the rule in question.

If one reads verification as demonstration one can say like Wittgenstein: “In a

demonstration we get agreement with someone. If we do not, then we’ve parted

ways before ever starting to communicate in this language”.63

In this verification (computation) we have demonstrated that 0 + S(S(0))

= S(S(0)). It presupposes, if we are to philosophically understand the demon-

stration, a philosophical investigation of this person program. This distinction

between a demonstration and a philosophical investigation, or a canonical proof,

is made by Dummett when he says that “(w)e thus appear to be forced to ac-

knowledge a distinction between a proof, in the strict sense of the word, and a

mere demonstration, the latter being related to the former by the fact that a

demonstration supplies effective means of constructing an actual proof. What

appears in ordinary mathematical articles and textbooks are demonstrations, not

proofs in the strict sense; and a demonstration provides an adequate ground for

the unqualified assertion of its conclusion. But the primary notion is that of a

proof in the strict sense, which we shall refer to as canonical proof: the notion

A of a demonstration is a secondary one, definable in terms of that of a canonical

39

proof...“.64 As far as we are concerned, in this investigation, one could say that

for us a canonical proof is:

person program + demonstration= canonical proof

which provides understanding of how to execute the program 0 + 2. In other

words, a canonical proof provides understanding (meaning) and knowledge of

fact concerning the result (output) of a task. This is in accordance with Martin-

Lijf ‘s view: “(f)or example, 1O1* + 1 is either prime or composite-we have a

demonstration (convincing argument) of that fact, but we don’t have a proof

of either disjunct. However, our demonstration provides us with a method of

finding a canonical proof of the disjunction, which would provide a proof of

one disjunct...This fits nicely with Martin-Lof’s philosophy, in which every set,

including the set of proofs of a proposition, has canonical elements to which other

elements reduce” .65

40

REFERENCES

1. Martin-LGf, Per., Syntuz and Semantica of Mathematical Language, notes

written by Peter Hancock on half a lecture series given by Per Martin-Liif

at Oxford University in Michaelmas Term 1975 (Unpublished). This paper

is an extension of a joint paper with Peter Hancock, Syntuz and Semantics

of Primitiue Recursive Functiona, Preprint No. 3, 1975, Department of

Mathematics, University of Stockholm, Stockholm, Sweden.

2. Wittgenstein, Ludwig., Philosophical Remarks, Oxford (1975), 143.

3. Wright, Crispin., Witlgenatein on the Foundation of Mathematics, London

(1980), 80: “Such an anti-realism generates the Strict Finitiat philosophy

of mathematics outlined by Dummett. There is some evidence in RFM

- notably, the repeated emphasis on the surveyability of proofs and the

character of some of the criticisms of Russell’s conception of logicist foun-

dation for mathematics - to suggest that Wittgenstein may have favoured

such a view.” Cf. also Kreisel, G., Wittgenstein’s Remarks on the Foun-

dations of Mathematics, British Journal for the Philosophy of Science 8,

(1958), 195-58, section 7.

4. Bishop, Errett., Foundations of Conatructiue Anulyaia, New York, (1967),

954-5.

5. Sundholm, G&an., Constructions, Proofs and The Meaning of Logical

Constants, Journal of Philosophical Logic 12 (1983) 163.

6. Brouwer. L. E. K., Brouwer’a Cum6ridge Lectures on Intuitioniam, van

Dalen (ed.), Cambridge (1981) 4.

A 7. Turing, Alan., On computable num6era, with an application to the Entachei-

. 41

dungs - problem, Proc. London Math. Sot. /2 (1936) 230-65.

8. van Dalen, Dirk., Algorithms and Decision Problema: A Cruah Courae in

Recursion Theory, in G. Gabbay and F. Guenther (eds.), Handbook of

Philosophical Logic, Vol. I, 417.

9. Wright, Crispin, Wittgenatein and the (cf.n.3), 592.

10. Maury, And&, Wittgenatein and the Limits of Language, Acta Philosoph-

ica Fennica, Vol. 32 (1981) 151.

11. Wittgenstein, L., Philosophical Remarks, (cf.n.2) 111.

12. van Dalen, D., Algorithms and Decision ProQlema:..., (cf.n.8) 425.

13. Gefwert, Christoffer., The Propoaition - Aa - Rules Idea, SLAC-PUB-3303

(March 1984), 24

14. Gefwert, Christoffer., A Participator: The Metuphyicul Subject, SLAC-

PUB3277 (December 1983), 24-5.

15. Dummett, Michael., The Philosophical Buaia of Intuitioniatic Logic, reprinted

in Paul Benacerraf & Hilary Putnam (eds.) Philosophy of Muthemutica, sec.

ed. Cambridge (1983) 106.

16. Dummet, Michael., The Philosophical Basis . . . , (cf.n.15) 19.

17. Prawitz, Dag., Proofs and the Meaning and Completeness of the Logicul

Constants, in Hintikka, J., Niiniluoto, J., and Saarinen, E (eds.) Eaauya in

Muthemuticul and Philosophical Logic, Dordrecht: Holland (1979) 27.

18. Dummett, Michael., Elements of Intuitioniam, Oxford (1977) 376’.

19. Wittgenstein, Ludwig., Philosophical Grammar, Oxford (1974) 333.

a 20. Gefwert, Christoffer., The Proposition - Aa - Rules Idea, (cf.n.13) 10-11.

. 42

21. Gefwert, Christoffer., A Participator: (cf.n.l4), 19-22.

22. Wittgenstein, Ludwig., Philosophical Inueatigutiona, Oxford (1958) 943:

For a large class of casees - though not for all in which we employ the

work “meaning” it can be defined thus: the meaning of a word is its use

in the language.

23. Wittgenstein, L., Investigations, (cf.n.22) $119.

24. Russell, Bertrand., Introduction to Muthemuticul Philosophy, London (1920),

sec. ed., 9.

25. Gefwert, Christoffer., The Proposition - Aa - Rules Idea (cf.n.l3), 25.

26. Wittgenstein, Ludwig., Remarks on the Foundations of Mathematics, Re-

vised Edition, Oxford (1978) V $39: The theory of functions as a schema,

into which on the one hand a host of examples fits, and which on the other

hand is there as a standard for the classification of cases.

27. Frege, Gottlob., The Foundations of Arithmutic, sec. ed., Oxford (1980) 2;

Gefwert, C., The Proposition - Aa - Rules Idea, (cf.n.13) 26-7.

28. Waismann, Friedrich., Introduction to Muthemuticul Thinking, New York

(1951) 117.

29. Wittgenstein, L., Philosophical Remarks, (cf.n.2) 190.

30. Wittgenstein, Ludwig., Tructutua - Logic0 Philosophicus, London (1974)

$6.021.

31. Russell, Bertrand., On Denoting, reprinted in R. C. Marsh ed., Logic and

Knomledge, London (1956), 41.

* 32. Ibid. 42.

43

33. Wittgenstein, L., Rem&s on the (cf.n.26) 1573.

34. Wittgenstein, L., Investigations, (cf.n.22) 8293: That is to say: if we con-

strue the grammar of the expression of sensation on the model of ‘object

and designation’ the object drops out of consideration as irrelevant.

35. Wittenstein, L., Rem&s on the (cf.n.26) VII 570.

36. Bishop, Errett., Fouradations of Constructive Analysis, New York (1967)

s54.

37. Wittgenstein, L., Investigations, (cf.n.22) 8240.

38. Frege, Gottlob., The Foundations of Arthmetic, (cf.n.27) i.

39. McGuinness, B. ed., Wittgenstein and the Vienna Circle, Oxford (1979)

103.

40. Wittgenstein, L., Philosophical Rem&s, (cf.n.2) 189.

41. Wittgenstein, L., The Blue and Brown Books, Oxford (1969) 4.

42. Wittgenstein, L., Remarks on the (cf.n.26) IV $5.

43. Frege, Gottlob., Philosophical Writings of Gottlob Frege, (Black, Max and

Geach, Peter eds. and Transl.) Oxford (1970) 68.

44. Frege, Gottlob., Begriflac hrilt, Hildesheim (1964) 15.

45. Martin-Lijf, Per., About Models for Intuitioniatic Type Theories and the

Notion of Definitional Equality, in Kanger, S., (ed.), Proc. 3rd Stand.

Logic Symp., Amsterdam (1975) 101.

46. Ibid. 93.

1 47. Ibid. 93.

44

48.

49.

SO.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Kreisel, Georg., Essay-review of Wittgenatein (1956), British Journal of

Philosophy of Science, Vol. Xl (1958), 135-58, section 7.

Tait, William., Constructive Reasoning, in B. van Rootselar and J. F. Staal

eds. Logic, Methodology and Philosophy of Science III, Amsterdam (1968),

185-200

Wittgenstein, L., Philosophical Grammar, (cf.n.19) 286.

Gefwert, Christoffer., A Participator: The Metaphysical Subject, (cf.n.14)

94-S.

Russell, Bertrand., Introduction, in Wittgenstein, L., Tructutua, (cf.n.30)

xxii.

Maury, Andre., Wittgentein and the Limits of Language, Acta Philosophica

Fermica, Vol32 (1981) 154-5.

Wittgenstein, L., Philosophical Grammar, (cf.n.19) $81-2.

Wittgenstein, L., Remurb on the (cf.n.26) I $154.

Ibid. IlI $42.

Ibid. VI $27.

Gefwert, Christoffer., The Proposition - Aa - Rules Ideu, (cf.n.13) 16-17.

Wittgenstein, L., Investigations (cf.n.22) $122.

Wittgenstein, L., Remarks on the (cf.n.26) I $168.

Gefwert, Christoffer., The Proposition - Aa - Rules Idea, (cf.n.13) 17-19.

Poincard, Henri., On the Nature of Mathematical Reasoning, reprinted in

Paul Benarerraf & Hilary Putnam (eds.) Philosophy of Muthemutica, sec.

ed., Cambridge (1983) 995-6.

45

63. Wittgenstein, L., Remarks on the (cf.n.26) I $66.

64. Dummett, Micheal., Elements of Intuitioniam, Oxford (1977) 391-2.

65. Beeson, Michael J., Problematic Principles in Constructive Mathematics,

in D. van Dalen, D. Lascar and T. J. Smiley (eds.), Logic Colloquium ‘80,

Amsterdam (1982) 15-f 6.

46

