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One of the outstanding problems in supersymmetric theories is to understand 

the circumstances under which supersymmetry is broken, and to-identify an order 

parameter associated to this breaking. Since the spectrum of supersymmetric 

theories is positive semidefinite, SUSY is broken if there are no states with zero 

energy. This has led Witten’ to introduce an index that counts the number of 

bosonic zero energy modes minus the number of fermionic zero energy modes: 

A = Tr(-f = ng(E = 0) - no@ = 0) . (1) 

If the Hilbert space of the theory is split into bosonic and fermionic subspaces, 

the supersymmetry charge can be written as1 

Q=(s-j-+) (2) 

acting on the vector with a bosonic upper component and a fermionic lower 

component. Therefore A can be identified2 with the index of the operator L: 

A = dimKer(L) - dim Ker(L+) = dim Ker(L+L) - dim Ker(LL+) . (3) 

In most of the interesting cases L is elliptic and one is led to the general study 

of the index of such operators. 

In supersymmetric quantum mechanics 

(4 

and we shall concentrate on the behavior of the index for this problem. In general 

the formal expressions (1) and (3) are ill defined and need regularization. Witten 

has suggested a heat kernel regularization’ 

Ap = Tr(-l)Fe-BH , (5) 
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whereas Callias2 introduced the form 

A.(4 = Tr(-ly&. (6) 

Actually (5) and (6) are directly related by a Laplace transform. 

It has been recognized3 that despite the fact that the non-zero energy states 

of fermions and bosons are paired, the expressions (5) and (6) are actually regu- 

larization dependent if the theory has a continuum of states. Thus the index of 

interest is defined as the limits 

A+& Ag and A = d lea+ A(z) . 

Moreover in recent papers3p4 it has been found that the index is fractional in 

certain circumstances. It has been suggested that such fractional values may 

arise when the continuum extends to E = 0. However, no explanation has been 

provided for the particular fraction l/2 found in examples nor why no other 

values have been found. The quantity A(Z) of Eq. (6) will be studied in the 

case of SUSY quantum mechanics and in the process we will clarify its physical 

meaning, interpretation, and possible values. 

The action of the Dirac-type operator (2) onto the boson and fermion states 

can be cast as 

w=(;+ i) (;)=a(;). 
In our examples we write 

L=i (.g + (b(z)) L+ = ;(& -w) 

(8) 

(94 
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and then H is diagonal with elements 

Hll=H =LL+= + az .- 
-jg+42+4t 

. 

H22~H-=L+L= a2 
-@+42-4t 

Therefore, we may write 

‘(‘) = Tr [H?+ t - H+‘+ z = 1 
where 

det H-+z 
JR(z) = 

J-(4 [ 1 HV+z F(F)= 

6-v 

w-9 

(11) 

The quantities J*(z) are the Jost functions 5~6 (F’redholm determinants) of an 

associated Schroedinger equation with energy E = --z. The comparison Hamil- 

tonian Hv will be chosen to ensure the existence of J- and J+. If the spectrum 

of H* is discrete (d(z) unbounded as x --) &co) the pairing properties of the 

non-zero energy states assures that A(Z) is z independent and equal to the inte- 

ger index. However we are interested in the case when there is a continuum in 

the spectrum, and will therefore study the case when the background fields 4(z) 

in (9) are bounded as x -+ foe. The general situation can then be considered by 

performing appropriate limits. 

In Eq. (ll), HV is any suitable and solvable Hamiltonian with potential V(z). 

We will make the simplest possible choice for V(z) such that it has no bound - 

states and achieves the same asymptotic values as $(z) when x + foe. In the 

specific example #(z = -00) = #- and 4(z = +oo) = 4+, the potential V(z) 
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can be chosen to be V(z) = 42-0(-z) + &t?(~). This choice of Hv guarantees 

the existence of the Jost function. Indeed the Jest functions can be written as 

(12) 

where U* = +2(z) - V(z) f 4’(z). The f*(z) are the solutions to 

2 2 
(13) 

where &,#i are two linearly independent solutions of Hv with Wronskian w. 

The normalization of 40(z) is fixed to be a unit incoming wave for z < 0 and a 

pure transmitted wave for x > 0. It can be easily seen that 

where TV, T* are the transmission coefficients for Hv, Hf. The Jost functions 

have zeros at the bound states of H*, and are complex above threshold with a 

phase equal to the negative of the scattering phase shift. Although an evaluation 

of J*(E) requires a nontrivial computation involving knowledge of the detailed 

behavior of 4(x), their ratio can be computed easily in terms of asymptotic 

quantities only. 

The scattering states of H+ have the boundary conditions 

e ik-z + R+e-ik-z x j --oo 

‘+(‘) = T+eik+Z x--,+00 
(15) 
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-_ - .- __ where E = k!.+qbt = k;+#2,. Since the eigenstates of H- and H+ with 

nonzero energy are related by the operator of & in Eq. (2),-one then has 

l/L)-- = 
i( ik- - qL)t+-= + R+i( -ik- - #-)e+-= x + -oo 

i( ik+ - q++)T+eik+= 
(16) 

x-+00. 

Therefore the Jost ratio JR is itself a topological invariant given by 

JR(E) = g = (17) 

It is remarkable that JR only depends on the asymptotic values of 4(x). Indeed 

the dependence of J+ and J- on the local details of the background fields +4(x) 

cancels in the ratio JR. To obtain A(Z) in (10) we continue to negative E = -z, 

and finally achieve 

A(z) = z -&en JR(Z) = ; (19) 

This is the expression given by Calhas However we have obtained it from the 

knowledge of the Jost function ratio and the behavior of the scattering states. 

The functions -&en J*(E) h ave the following structure in the complex E 

plane: isolated poles (zeros of J*) at the bound state energies and a cut for the 

continuum states starting at threshold ET = min(&, #+). However, the poles 

for E # 0 cancel between J+ and J- in & &a JR(E) due to the property of 

pairing of the energy levels (see Eqs. (2) and (6)). The only possible remaining 
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pole is at E = 0 (a zero of J- or J+). Now A(z) is analytic in the complex 

z plane with a cut along the negative real axis from (--00) toz = -ET. Any 

possible pole at z = 0 is cancelled by the factor z in the numerator in (19). 

From the expression (19) the index is obtained as the Zy o+ A(Z). However 

if we want to study the limiting case #+ = 0 or qL = 0, the correct prescription 

is to keep z finite, let q5+ or q5- go to zero, and then let z -+ O+. Since A(a) is 

analytic in the cut z plane and vanishes for large Z, it satisfies an unsubtracted 

dispersion relation of the form 

(20) 

where the contour c runs above the cut on the negative real axis from z = -oo 

to z = -ET, around the edge of the cut and then below the cut from z = -ET 

to z = -oo. For ET # 0 ($+ # 0 and qL # 0) JR does not have a zero (or a 

pole) at the edge of the cut because of the pairing property. Therefore the circle 

at the edge of the cut does not contribute to (18). Furthermore even if ET = 0 

(c$+ = 0 or qL = 0) and JR either vanishes or has a pole there, it can be seen 

that the circle around the edge of the cut still does not contribute to (20) for 

finite z > 0. 

Now above the cut, one has 

en JR(Z) = Cnl JR(z)~ - ib~(-Z) (21) 

where 6~ = 6- - 6+ is the relative phase shift between the scattering states of 

H- and H+. Therefore for finite z A(z) becomes 

co 
E’ 

Ah(*) = G J dE’ G -& &(E’) 
ET 

(22) 



-- - .- ._ and the index is 

A@+) = i [6R(k = 0) - 6~(k = oo)] . - (23) 

To relate (23) to the number of bound states, we use Levinson’s theorem.5Jg The 

standard proof proceeds by simply observing that the quantity & Cn JR(%) has 

poles at the (zero energy) bound states of H- and H+. If ET # 0, these poles 

are within the contour c of Eq. (20) and we obtain 

f -!- tf8 JR(%‘)d%’ = 
c dz’ 

i i?R(k = 0) - 6R(k = cm)] = ni(E = 0) - n;(E = 0) 

(24 
where nz(E = 0) is the number of zero energy bound states of H+ and H-. 

However when ET = 0 the situation is different. The contour c now extends 

to %’ = 0 and JR has structure at Z’ = 0. Indeed if +- = 0 then JR(%‘) vanishes 

as J7 or if 4+ = 0 Ji’(%‘) vanishes as @. Since there are no bound states 

within c, the contour integral in (24) has a contribution both from the continuum 

cut & from the small circle around the origin that yields a factor &i (arising 

from the fl singularity) and we find 

f 

d J7 en JR( z’)d%’ = ; (jR(k = 0) - bR(k = 00) 1 =i= ; = o , (25) 
where the (-) sign corresponds to $- = 0 and the (+) sign to ++ = 0. Levinson’s 

theorem allows us to relate the behavior of the relative phase to the number of 

bound states. 

Therefore the index becomes 

n;(E = 0) - n;(E = 0) if 4+ # 0, 4- # 0 

A(O+) = l/2 if&=0 (26) 

-l/2 iff$+=O 



-_ - .- __ When qL = 0 the zero energy (threshold) state that contributes the factor +i 

to (25) is “half bound” in the sense that its wave function decays exponentially 

as z -+ +oo and remains constant as z + -co (vice versa for #+ = 0). This 

then translates into a & singularity in JR. It is easy to see that this will always 

be the case when the continuum cut starts at the origin. 

In a recent paper Akhoury and Comtet? have found that their computation of 

the index (with heat kernel regularization) was ambiguous in a particular model. 

The direct calculation of the index did not agree with the evaluation using the 

standard relation between the phase shifts and the density of state. However we 

will show that there is no ambiguity - one must take care when the continuum 

can contain a threshold “bound state”. The density of states is obtained in the 

following way. Since 

2nip(E) =q zo+ 

from the definition of A(Z) one has 

1 1 
H-E-&-H-E++ 1 1 (27) 

-: 

1 6-W) - ptm] = & { yI,p-E-iq - y I,--,,,> ’ (28) 
where p* are the density of states of Hf. Thus 

P-m - P+(E) 1 = S(E)A(O+) + -& ImA(-E + iq) . (29) 

Using the result (19) we find 

P-(E) -P+(E) = f 44+) - 4&-) 1 1 1 WI 
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where 

lz>O 
1z>o- 

c(x) = oz=o and 6(z)= . 
ox<0 

-lz<O 

From Eq. (30) we can easily understand why A(Z) is generally not independent 

of z when the spectrum contains a continuous part despite the pairing of states 

argument. We see that the density of states at finite k are different for H- and 

H+ as one would expect since their potentials differ. 

It is instructive to examine Eq. (30) in a specific case. If #+ is positive and #- 

is negative but smaller in magnitude, then the density of states below E = & 

is 

[ 1 P- - P+ = S(E) - & I44 
j/E? 

fl(E - $5) 

whereas if r+L - 0, then 

[ 1 p--p+ =2 
1 b(E) . 

Now for finite 14-j the total difference in the number of states between E = 0 

and #“+ is 

f+i tanB1(J&.). 
+- - 

This is seen to smoothly approach l/2 as 14-I goes to zero, and 1 as 14-I -+ t$+. 

Thus even though the density of states is quite discontinuous, the relative number 

of states is smooth. As (b- --+ 0 and 4+ + 00 we see from Eq. (30) that there is 

a “half state” at E = 0 and a deficit of a “half Staten at E = 00. The former 

yields a contribution of l/2 whereas the latter gives vanishing contribution to 
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-_ - .- __ the regularized index. This resolves the ambiguity and agrees with our general 

result (26). - 

We are now in a position to study the index using the heat kernel regulariza- 

tion. To this purpose we write (following Goldberge?) 

(31) 

where the contour d extends above the 

and returns below the axis closing at 

negative real axis from z = 0 to z = -co 

z = O+. Then it is easy to see that Eq. 

(31) can be rewritten using Eq. (28) as 

00 

A@ = 6-W) - P+(E)) 9 (32) 
0 

where (p-(E) - p+(E)) ’ g’ 1s iven by Eq. (30). A simple calculation yields 

43 = f 
1 
44+) - 44-j 1 + f +#+rfc (J&Z) - f t(4+)erfc (j/j&@ . (33) 

The index is obtained as the limit /3 -+ 00. From (33) it is seen to coincide with 

A(O+) in (19) d p an ex ressions (26). The dependence of A@ on /3 is again due to 

the difference in the density of states of H+ and H-. 

The limit of p + 0 in (31) should give the formal expression Tr (-l)F (same 

as z -+ 00 of A(Z)). However it is exactly zero because the total deficit of states 

(including zero modes) between H- and H+ is zero i.e., there are the same 

number of states in both. This is dictated by Levinson’s theorem. 

It is amusing that from Eq. (31), the Witten index can be interpreted as 

the difference of the second virial coefficients for particles whose interactions are 

given by H- and H+.7r8 
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Although we have concentrated on one dimensional examples, our results can 

be easily extended to three dimensions. The only difference-is that if JR in (21) 

vanishes or is singular at ZI = 0, the extra l/2 only arises from the S-wave phase 

shifts5 (in which case the state is “half bound” aa in the one dimensional case). 

For e 2 1, it is a true normalizable bound state with a contribution of f1.5 

Therefore we conclude that the index is an integer (or zero) whenever there 

is a mass gap in the theory. It is half integer if the continuum extends to zero, 

indicating that there is a zero energy (bound or resonant) state. Even though 

the index does not count states properly, only Levinson’s theorem does this, it 

still contains the information about the existence of zero energy states. 
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