
SLAC-PUB-3332 
CERN/DD/84/4 
April 1984 
(E/I) 

THE 3081/~ PROCESSOR* 

P.F.KuNz,M. GRAVINA,G. OXOBY, P. RANKIN, AND Q. TRANG 
Stanford Linear Accelerator Center 

Stanlord Unioersity, Stanford, Cal(fornia iJJ!?OS 

and 

P. M. FERRAN, A. Fuccr, R. HINTON, D. JACOBS, 
B. MARTIN, H. MASUCH, AND K.M. STORR 

CERN 
1211 Geneva 23, Switzerland 

1. Introduction 

Since the introduction of the 168/~,’ emulating processors have been used over 
a wide range of applications2 including both offline event reconstruction and Monte 
Carlo applications, and online triggering and filtering. 

This paper will describe a second generation processor, the 3081/E. This new 
processor not only has much more memory space, incorporates many more IBM 
instructions, and has full double precision floating point arithmetic, but it also has 
faster execution times and is much simpler to build, debug, and maintain. 

Nonetheless, with the 168/~, valuable experience has been gained on how to 
make efficient use of this kind of processor which, unlike computers or commercial 
microprocessors, does not run an operating system nor have a direct connection 
to I/O devices. The 3081/E takes advantage of this experience by maintaining 
the same style of flexible but simple interface as t,he 168/~. This paper will also 
describe how such processors have been and will be used. 

l Work supported by the Department of Energy, contract DE-AC0376SF00515 

a Invited paper presented at the Symposium on Recent Developments in 
Computing, Processor, and Software Research for High-Energy Physics, 

Guanajuato, Mexico, May 8-11, 1984 



2. The Processor 

The architecture of the 3081/E is shown in Fig. 1. The details of the processor 
have been given elsewhere,3 so only a brief summary will be given here. The pro- 
cessor has a modular structure. There are four execution units interfaced to two 64 
bit wide busses, called the ABUS and the BBUS. The busses each carry 8 bytes of 
data and I parity bit per byte. Also interfaced to these busses are the control and 
register unit, data memory, and the interface. The control and register unit serves 
four functions: it contains the microprogram address counter, conditional branch- 
ing logic, the data memory address logic, and the register files. A microinstruction 
can transfer two operands simultaneously on the ABUS and BBUS busses from data 
memory and/or registers to an execution unit. The results from an execution unit 
are transferred on the BBUS to a register, to memory, or along with a new operand 
on the ABUS to another execution unit. Instructions are fetched on a third, 32 bit 
wide bus, the PMD bus (not shown in Fig. 1). There is a single clock which has a 
cycle time of 120 nsec. 

Fig. 1. Block diagram of 3081/~ 

An important goal of the 3081/E processor project is to produce a processor 
that is simple, reliable, and easy to debug and maintain. The choice of the modular 
archit.ecture helped tremendously to reach these goals. The design of the processor 
is much simpler than the 168/~. The design is much more conservative and uses 
off-the-shelf multiple source TTL components. Every effort was made to reduce the 
man-power cost to build, debug, and maintain the processor. FORTRAN simulations 
have been done of each execution unit which have made a valuable contribution to 
the designing and in debugging. For example, the Add/Subtraction execution unit 
with over 200 MS1 circuits, had only one design error when it was debugged, and 
this error was just one signal that had the opposite polarity in the hardware due to 

2 



an erroh: in the simulation. The cost of the processor, power supply, and chassis is 
expected to be under US$ 10,000 excluding the cost of memory. 

2.1 MEMORY 

Memory is one of the most important aspects of any computer or processor. In 
the high energy physics held, both the size of analysis programs and the quantity of 
data per event have grown so that the memory space needed is measured in units 
of Megabytes. 

The memory of the 3081/E is implemented using the less dense but faster static 
memory circuits. Today they have 55 nsec maximum access and cycle time, come in 
packages of 16 Kbits, and cost about US$ 5,000 per Megabyte. The speed of memory 
is important because even with the best of compilers, a processor still obtains one 
operand (of the two for an arithmetic instruction) from memory over 75% of the 
time. Thus the speed of a processor tends to be dominated by its memory access 
time. The fast memory and 64 bit data path to it is also the best solution for online 
applications which must support FASTBUS I/O rates. 

A 3081/E memory board at present contains one half Megabyte of either pro- 
gram or data memory with byte parity. The processor can accept a maximum of 
iourteen memory boards or 7 Megabytes. It is expected that 64K static memory 
circuits will be introduced in 1984 so by 1985 they will be reasonably priced. Their 
use will lower the cost of the processor’s memory and make it possible to have a 
processor with 28 Megabytes. 

2.2 EXECUTION UNITS 

For high energy physics code, good floating point performance is essential, es- 
pecially due to the heavy use of trigonometric functions in most analysis codes for 
solenoidal detectors. Attempts to use commercially available microprocessors with 
their floating point cc>-processors have led to disappointingly poor performance. 

The following sections give a short description of each of the execution units. 

Floating point add/subtract 

A REAL*4 or REAL*8 add/subtract is done in 360 nsec, including reading 
one operand from memory. The floating point compare instruction needs only to 
generate the condition codes and not a result, thus it is one cycle shorter, This 
execution unit is also able to do an integer to floating point conversion in 360 nsecs. 

Multiply 

The implementation of the multiply execution unit has been optimized for sin- 
gle precision execution time. INTEGER*4 and REAL*4 multiplies take 360 nsec 
including reading one operand from memory. Modern, multiple-sourced (thus cost 
&mpetitive) 16 by 16 multiplier circuits are used. To implement double precision 
multiplication in the same way would take a considerable number of circuits, there- 
fore, an iterative technique is used that is reasonably fast. The results of a REAL*8 

3 



multiply is available after only 4 internal cycles for an overall time fo 720 nsecs 
including reading one operand from memory. 
Divide 

The divide execution unit does division iteratively, 2 bits per cycle which leads 
to a INTEGER*4 divide in about 2 psecs and a REAL*4 divide in about 1.5 psecs. 
Integer 

All integer instructions except multiplication and division are done in the in- 
teger execution unit. This unit handles the four-byte (INTEGERd) and two-byte 
(INTEGER*2) arithmetic operations, and also the instructions with one-byte 
operands (LOGICAL~ and CHARACTER*n). This is especially important for im- 
plementation of the instructions required by the FORTRAN ‘77 compilers. Both 
single word (32 bit) and double word (64 bit) shifts by any number of places are 
done in one cycle. Shift instructions are important for online trigger applications, 
when packed binary information needs to be expanded to individual words. 
Optional units 

It is possible to add other execution units to the 3081/~ busses. For example, 
one could add a matrix multiplier/accumulator for lattice gauge theory calculations, 
PROM based look up tables, or other specialized ‘hardware subroutines’. For the 
moment such devices are beyond the scope of the 3081/E project. They are also 
less necessary as the processor is already inherently very fast. It will also be possible 
to upgrade any of the existing execution units, when sufficient technology advances 
warrant the change, thus achieving higher performance and/or lower cost. 

2.3 INSTRUCTION PIPELINING 
The separation of execution units, each capable of operating on its operands 

internally, allows for instruction pipelining. First there is pipelining of memory 
address calculation on the control and register board. Secondly, the Add/Subtract 
and Multiply execution units are capable of pipelining internally. That is, they 
can accept a new operand pair every cycle, then output the results in the next two 
cycles. Thirdly, one cycle can send an operand pair to say the add/subtract unit, 
and the next cycle can send an operand pair to the multiply. Fourthly, in the same 
cycle an execution unit can output results and another execution unit, or memory, 
can accept the results, thus overlapping input and output cycles. In addition, the 
separation of program and data memory and the separate program data bus means 
that program and data memories are accessed simultaneously. 

Pipelining leads to substantial performance improvements in typical high energy 
physics code. For example, the following line of FORTRAN code: 

- XC = VIX * (XA - XZERO) + VIY * (Y-D - YZERO) 

would require 23 cycles without pipelining, but only 14 with the pipelining capabil- 
ities of the 3081/E. 

4 



2.4 THEWCROCODEANDTHETRANSLATOR 

The processor’s instruction set is not that of the IBM, but is its own microcode, 
which resembles that of a Reduced Instruction Set Computer (RISC).I One could 
in principal write a compiler to generate the microcode, as done with IBM'S 801 
project,5 instead it is generated by a software program, called the Translator. This 
program reads IBM object code modules, translates them to object microcode, liiks 
them together to form an absolute load module for the processor, thus using the IBM 
object code as an intermediate language. The source of the IBM object code could 
be the output of a FORTRAN compiler from any IBM compatible vendor or that of 
a linkage editor on either the VM/CMS, MVS, or MVT operating systems. For all 
practical purposes the translator step has little impact on the user. It can be looked 
on as a modified compile or link step. The user will be no more concerned with the 
3081/E microcode then he would be about the object code from the compiler. 

The microcode requires more memory space then the object code. The ex- 
pansion factor is three in the worst case of no pipelining, and 1.2 in the case of 
complete pipelining. Nevertheless, at least 30,000 lines of FORTRAN source code 
can be accommodated per Megabyte of program memory, and many more lines 
when pipelining is generated. 

The advantage of using a translator is the elimination of the complex hardware 
that decodes IBM instructions into microinstructions. This hardware, called the 
I-unit by IBM engineers, can consume well over half the total design and debugging 
effort of a processor. A further advantage of using the translator with the 3081/~ 
is that instruction pipelining will be generated with a full knowledge of the context 
of each instruction. 

2.5 INTERFACE 

The interface to the 3081/E processor is of the same style as the 168/E’s. 
That is, either the CPU or the interface has control of the internal busses. When 
the processor is not running, all of the processor’s memory is directly addressable 
through the interface. The processor thus appears as a simple slave device on, say, 
a FASTBUS cable segment. The transfer rate to or from the processor could be 
over 32 Megabytes per second if FASTBUS cable segments were sufficiently fast or 
64 Megabytes per second if a 64 bit interface bus were used. VME and CAMAC 
interfaces are also being considered. 

There are features to make it easier to debug the processor and/or program. 
The interface halts the processor if there is a parity error on the ABUS, BBUS, or 
PMD bus. The interface also has registers to allow one to halt the processor when 
certain conditions arise in a way similar to the Program Event Recording (PER) 
registers of IBM mainframes,. For example, there is a stop on a Store within an 
address range, a stop on modification of a certain register, etc. Debugging some 
kinds of program error may be more user friendly on the 3081/~ processor than it 
is on a mainframe computer. 

5 



2.6 PERFORMANCE 

To accurately predict the execution speed of the 3081/E is rather difficult, as, 
in common with many processors, it will depend on program’s instruction mix. The 
pipelining of instructions makes predictions even more difficult. However, three 
studies have been made to predict the upper and lower bounds of the expected 
performance. 

The lower bound of processor performance can be estimated by assuming that 
instruction pipelining never occurs. With this assumption the execution time of each 
IBM instruction is known. Ten different event reconstruction and other programs 
were traced while in execution to measure the frequency of instructions executed. 
With these numbers, the performance of the 3081/E processor would be 0.98 to 
1.01 times that of an IBM 370/168. 

An upper limit is estimated by assuming that pipelining occurs to such an extent 
that every instruction takes effectively 1 cycle. With the same samples of code, this 
implies execution times 2.5 times faster than an IBM 370/168; a figure that can not 
be realistically expected. 

A third measure was obtained by translating an inner loop of one of these prc+ 
grams. The loop consisted of 82 FORTRAN statements containing 32 IF statements. 
Since IF statements break instruction pipelining, it was important to try a loop with 
a typical number of them. This loop also consisted of several divides and memory 
references with a non-zero index register. The calculated execution time for one 
pass through the loop for the 3081/~ is 47 psecs, while for an IBM 370/168 the 
time would be 71 psecs. Thus the processor would be 1.5 times faster for this loop. 

One can conclude, therefore, that the performance of the 3081/~ will be at 
least that of an IBM 370/168 for typical high energy physics event reconstruction 
code, or about four times that of the VAX 11/780, and up to 50% faster under 
the condition that most of the execution time is spent in floating point loops. The 
performance of the 3081/~ is comparable with a well known array processor. The 
FPS-1646 has a theoretical maximum execution speed of twelve MFLOPS, while 
the 3081/~ theoretical maximum is 8.3 MFLOPS. In practice,‘l Lattice gauge pro- 
grams, implemented in microcode of the array processor, achieve about six MFLOPS, 
while examples of that same code, implement,ed in FORTRAN, would achieve four 
MFLOPS on the 3081/E. 

3. Use of Processor 

In the high energy physics environment, the use of computing resources could 
be put into two broad categories. The first consists of the thousands of short jobs to 
write and debug analysis programs, do alignment and calibrations, do physics anal- 
ysis on processed events, etc. This category includes editing, compiling, generation 
of load modules, using interactive symbolic debuggers, etc. The second category is 

6 



the long production jobs on raw data or for generation of Monte Carlo events, or 
in the online environment running filtering programs or analysis programs. Usu- 
ally there are adequate computing resources for the first category and the limits 
on productivity are set by user friendliness of the operating system, response time 
to small needs of CPU time, the fast access to disk files, printers, graphic devices, 
and the memory paging of the computer. For the second category, the limits on 
the number of events that can be processed or Monte Carlo generated are set by 
the available CPU power. It is this category of processing where the inexpensive 
powerful emulating processors can play an important role. 

As the 3081/E is a processor and not a computer, it, like other processors, 
requires support from a host computer to handle input and output operations to 
physical I/O devices. When multiple processors are to be used (as is frequently 
the case since one processor is only a fraction of a mainframe computer), this I/O 
support must be carefully designed for performance.8 A multi-processor system 
consisting of five 3081,‘~ processors, for example, will have the CPU power of a 
3081K, and its I/O support system must be able to supply the data bandwidth to 
keep the processors busy. In practice, this means tape drives, disks, and channel 
rates comparable to those found on mainframe or supermini computers. 

Much experience has been gained on multiple processor systems with the 168/~ 
in both the offline and online environments. The planned uses of the 3081/~ will 
build on this experience by preserving the same style of interface as the 168/~ which 
worked well and making a few improvements in areas that only became apparent 
after much 168/~ experience. The remainder of this section describes how 168/~‘s 
have been used and thus how we expect the 3081/~ will be used. The interface of 
the 3081/~ is designed for both the online and ofIline multi-processor environment. 
The oflline environment will be discussed first as it is easier to understand. 

3.1 MODEL OF OFFLINEEVENTANALYSIS 

Consider the following model of how an event analysis program is structured. 
The typical program has the following steps: 

1. Initialize. Initialization starts with the loading of BLOCK DATA statements 
into memory and continues with reading constants from disk and perhaps call- 
ing some subroutines to calculate fixed arrays that will be used in 
event processing. 

2. 

3. 

* 

Read Event. An event is read from a mass storage medium, usually tape. 
Checks are made to see that the record is an event record and not some 
other type of record on the tape. 
Process Event. Event processing involves unpacking the raw data, generating 
coordinates, finding tracks, fitting tracks, etc. It is important to note that this 
processing uses much more memory for temporary variables than the initial 
size of the raw data. At the end of event processing, data is compressed into 
a block for writing to an output tape. 

7 



4. Write Event. The event is written to the output tape and the program loops 
back to read the next event. 

5. Print Job Summary. When the event processing is complete, the program 
prints a summary of the job in the form of statistics gathered, histograms, etc. 

Four remarks can be made about this structure. First, only the event processing 
step is CPU intensive. That is, even if the initialization or summary steps take a 
considerable amount of CPU time, they are only done once, thus don’t really matter 
for a job that will run for many hours. Second, all the steps except the event 
processing step are I/O intensive. That is, the event processing step usually only 
has a few print statements for an occasional error message. Third, the program as 
shown above was written to run on a single processor. That is, it will process events 
on the same processor doing the I/O and the events are processed sequentially 
in the same order that they appear on the input tapes. Fourth, there is a large 
amount of temporary memory space used in the course of analyzing an event and, 
typically, a complex interrelation between this space and the program in various 
stages of processing. 

It is therefore natural to move the event processing step to the processors, and 
leave a skeleton program on the host CPU for the other steps. For a single processor, 
the original program is modified by: 

1. inserting I/O calls to download the processor with program and constant data 
after initialization is completed and before the first event is read. 

2. replacing the processing step with I/O calls to send and receive event data 
with the processor. 

3. and inserting I/O calls to receive the job summary data from the processor 
after the last event is written to tape and before the printing of job summary 
is started. 

These modifications can usually be made with little dif-llculty by anyone with 
some knowledge of the program. 

For a multi-processor environment, the program can be further modified so that 
it reads events and sends them to a processor until each processor has an event, then 
for each event received back from a processor the host program writes it to tape, 
reads another event, and sends to the next available processor. At the end of the 
job, the host program would just receive events and write to tape until all processors 
are empty. Also the job summary data would be received from each processor, and 
combined before the printing of job summary. 

This model of using multiple processors allows a single host program to make 
efficient use of all the processors while requiring only a single set of input and output 
devices working on a single data stream. Letting each processor completely handle 
an event on its own, from input to output, avoids the difllculty of breaking up the 
program into stages with each stage being run on a different processor. It also allows 

8 



multiple slave processors with a simple interface to be attached to a single bus for 
transferring data. 

When the host computer is an IBM compatible mainframe, then there are the 
following additional advantages: 

1. The.initialization step can remain entirely on the host. After initialization 
is done, the labelled COMMON blocks with the initialized data can be down- 
loaded to the same labelled COMMON blocks in the processors 
without translation of any kind. Thus the initialization code does not need 
any modification. 

2. The output event data received from the processors can be written to tape 
directly without translation of any kind. 

3. The job summary data can be received from a processor by direct copy from 
labelled COMMON blocks in the processor to the same labelled COMMON 
blocks on the host, thus the print summary routines do not need modification 
and can be called directly. 

This model has in fact been realized in the use of 168/E processors at many 
laboratories and universities.Q The reorganization of the original program has not 
been radical, indeed it is logical, and once done it has presented little problem even 
when, at a later date, major changes have been made to the code. In practice, the 
host computer may be attached to the processors via another computer with event 
buffers for further efllciency. The buffers allow event data to be unloaded from 
the processors as soon as it is ready, and new event data to loaded into processors 
immediately, thus causing minimum idle time on the processors and overlapping 
physical I/O with processing. At SLAC,lotll and CERN,12-14 PDP-11s were used 
for attached 168/E processors as early as 1979. A Nord computer was used at 
DESY?~ It is also possible for the tape drives to be on a superminicomputer, such 
has been done with attached 168/E processors at Toronto” and Saclay,17 with 
some loss of ease due to diflerences in floating point formats. 

3.2 ONLINE USE 

Multiple 168/~ processor systems have been used in the online environment 
in a configuration that closely resembles that of the offline systems.18*‘Q Similar 
online systems are being planned for SLC and LEP detectors.20-24 In the online 
environment, the input data comes directly from the detector, being processed by 
the emulators before it reaches the data acquisition computer. The bus interface 
to the processor is, for example, FASTBUS. Everything else about the running of 
‘jobs’ is virtually the same as the ofIline environment. 

The 3081/E has many important characteristics for the online environment. 
Being an emulator of a mainframe, programs can quickly be moved from the off- 
line to the online environment. It also has high I/O data capability to minimize 
deadtime, fast integer instructions including shifting and multiplies for unpacking 

9 



data, large memory space to buffer data blocks from different parts of the detector, 
memory parity checking, etc. The separation of program and data memories helps 
avoid accidental overwriting of program in complex data acquisition systems. Dual 
port interfacing, which allows simultaneous loading of one processor and unloading 
of another is easily accomplished 8t18. Part of the data acquisition system can plug 
into the internal busses of the processor as has been done with the 168/g 25p26 

3.3 OTHER USES 

It is clear that event orientated jobs fit well into the structure described above. 
But other types of job, such as simulations based on lattices or numerical integra- 
tion, can also use such a system. Although one’s first inclination is to put one 
processor per node in a lattice simulation, it has been pointed out by Foxn that 
one processor per node will lead to large inefficiencies in the processor communi- 
cating with nearest neighbors. At SLAC, nine 168/~ processors have been used 
by running the entire lattice on a single processor, but having different sets of pa- 
rameters, such as coupling constants or lattice size, running on different processors 
simultaneously.28 

Thus, for this type of job the ‘event’ is a set of parameters, each processor may 
work on a single ‘event’ for hours and the job summary printing is the comparison 
of the results with different parameters. These kinds of jobs require no hardware or 
software changes to a multiple processor system that can also run the event analysis 
jobs, thus various kinds of jobs can be submitted to the system just like one would 
submit jobs to a batch queue on a computer. 

In some cases, some limited I/O capability is desirable, ‘limited’ is important 
because if I/O capability becomes very important one probably doesn’t have a CPU 
bound job and such a job would run best on a real computer. I/O capability if 
it is physically done on a host computer and only virtually done on a processor 
is mostly a question of the software interfacing and not the processor hardware. 
For example, limited PRINT statements can be accommodated by the processor 
writing to a buffer in it’s own memory, with the buffer only being read out at 
the end of processing an event as has been done at Saclay with the 168/~ pro- 
cessors. In the other extreme, a processor could run part of the operating system; 
such is the case with IBM’S XT/370 where the 370 processor runs the CMS com- 
ponent of the VM/SP operating system while the 8088 processor of the IBM PC in 
which it is housed handles the physical I/O by emulating the I/O component of the 
operating system. 

4. Conclusion 

The 3081/E project was formed to prepare a much improved IBM mainframe 
emulator for the future. Its design is based on a large amount of experience in 
using the 168/E processor to increase available CPU power in both online and 

10 



&line environments. The processor will be at least equal to the execution speed 
of a 370/168 and up to 1.5 times faster for heavy floating point code. A single 
processor will thus be at least four times more powerful than the VAX 11/780, 
and five processors on a system would equal at least the performance of the IBM 
3081K. With its large memory space and simple but flexible high speed interface, 
the 3081/~ is well suited for the online and oflline needs of high energy physics in 
the future. 

The project is being carried out as a collaboration between SLAC and CERN DD 
division. The work has been divided equally between them. Final debugging should 
occur at SLAC soon with processors being generally available for use by early 1985. 

References 

1. Paul F. Kunz, “The LASS hardware processor”, Nucl. Instr. Meth. 35, 435 
(1976). 

2. P. F. Kunz, “Use of Emulating Processors in High Energy Physics”, Phys. Ser. 
23, 492 (1981). 

3. P. F. Kunz et ol., “The 3081/~ Processor”, Proc. of the Three Day In-Depth 
Review on the Impact of Specialized Proceaaora in Elementary Particle PhySiC8, 
Padova, Italy, March 23-25, 1983 

4. D. A. Patterson and C. H. SCquine, “REX-l: A Reduced Instruction Set VLSI ,, 
Computer”, Proc. Eighth Ann. Sym. on Computer Architecture, May, 1981. 

5. G. Radin, “The 801 Minicomputer”, IBM J. Res. Develop. 27, 237 (1983). 
6. Floating Point Systems, Beaverton, Oregon. 
7. Ken Wilson, Private Communication. 
8. A. Fucci and K. M. Storr, ‘Using 3081/~ Emulators in On-Line and Off-Line 

Environmentsn, Proc. of the Three Day In-Depth Review on the Impact ojSpc- 
cialited Processors in Elementary Particle Physica, Padova, Italy, March 23-25, 
1983. 

9. A .W. Edwards, N. A McCubbin and J. P. Porte, “Preparation of Off-line 
Programs for the Present 168/~ and Recommendations for the Future”, CERN 
DD/83/21, Ott 1983. 

10. P. F. Kunz, Richard N. Fall, Michael F. Gravina, J. H. Halperin, L. J. Levinson, 
Gerard J. Oxoby and Quang H. Trang “Experience Using the 168/E Micropro- 
cessor for Off-line Data Analysis”, IEEE ‘Dans. NS-27, 582 (1980). 

11. L. S. Rochester, “Microprocessors in Physics Experiments at SLAC”, Topical 
Conj. on Application of MiCrOprOCeJJOrJ to High Energy Phyaica Experimenta, 
Geneva, Switzerland, May 4-6, 1981. CERN Microproc. 204 (1981). 

12. C. Bertuzzi, D. Drijard, H. Frehse, P. Gavillet, R. Gokieli, P. G. Innocenti, 
_ R. Messerli, G. Mornacchi, A. Norton and J. P. Porte, “On-line use of the 

168/E Emulator at the CERN ISR SFM detector”, Topical Conj. on Application 
oj Microprocessor8 to High Energy Physic8 Experimenta, Geneva, Switzerland, 
Mfy 4-6, 1981. CERN Microproc. 329 (1981). 

11 



13, D. R. Botterill and A W. Edwards, “Experiences using the 168/,?~ Micropro- 
cessor Within the European Muon Collaboration (EMC)“, Topical Conj. on 
Application of Microproceaaora to High Energy Physics Ezperimenta, Geneva, 
Switzerland, May 4-6, 1981. CERN Microproc. 336 (1981). 

14. D. Lord, P. Kunz, D. R. Botterill, A. Edwards, A. Fucci, G. Lee, B. Martin, 
G. Mornacchi, P. Scharff-Hansen, M. Storr and T. Streater “The 168/~ at 
CERN and the MARK II: An Improved Processor Design”, Topieol Conj. on 
Application of Microprocessors to High Energy Physics Ezperimcnta, Geneva, 
Switzerland, May 4-6, 1981. CERN Microproc. 341 (1981). 

15. T. Barklow, thesis, University of Wisconsin-Madison. 
16. Steve Bracker, private communications. 
17. Jacques Prevost, private communications. 
18. J. T. Carroll, M. DeMoulin, A. Fucci, B. Martin, A. Norton, J. P. Porte and K. 

M. Storr, 4 Data Acquisition using the 168/E”, Proc. of the Three Day In-Depth 
Review on the Impact of Specialized Proceaaora in Elementary Particle Phyaiea, 
Padova, Italy, March 23-25, 1983. 

19. G. Arnison et al., Phys. Lett. 126B, 398 (1983). 
20. A. J. Lankford and T. Glanzman, u Data Acquisition and FASTBUS for the 

Mark II Detector”, IEEE Trans. Nucl. Sci. NS-31, 228 (1984). 
21. A. Lankford, Paper submitted to these proceeding. 
22. The L3 Collaboration, “Trigger and Data Acquisition System of L3”, CERN/- 

LEPC/845, LEPC/PR3/L3, January 1984. 
23. ALEPH Collaboration, u Data Acquisition and Data Analysis”, CERN/LEPC/- 

848, LEPC/M46, January 1984. 
24. P. Gavillet, B. Heck and F. Udo, ‘Proposal for Triggering DELPHI”, DELPHI 

Note 83-3 ELEC. 
25. D. Bernstein, J. T. Carroll, V. H. Mitnick, L. Paffrath and D. B. Parker, 

“SNOOP module CAMAC Interface to the 168/~ Microprocessor”, IEEE Trans. 
Nucl. Sci. NS-27, 587 (1980). 

26. J. T. Carroll, J. Brau, T. Maruyama, D. B. Parker, J. S. Chima, D. R. Price, 
P. Rankin and R. W. Hatley “On-line experience with the 168/E”, Topical 
Conj. on Application of Microproce8aor8 to High Energy PhyJica Experiments, 
Geneva, Switzerlund, May 4-6, 1981. CERN Microproc. m(l981) 

27. G. Fox, u Scientific Calculations with Ensemble Computers”, Proc. oj the Three 
Day In-Depth Review on the Impact of Specialized Proceaaora in Elementary 
Particle Phyaica, Padova, Italy, March 23-25, 1985. 

28. J. E. Hirsch, R. L. Sugar, D. J. Scalapino and R. Blankenbecler, “Monte Carlo 
Simulations of One-dimensional Fermion Systems”, NSF-ITP-82-44. 

e 

12 


