
COMPUTER BUSES: A TUTORIAL

SLAC-PUB-3326
April 1984
(N)

David B. Gustavson*

Stanford Linear Accelerator Center

Address:

StAnf ord Linear Accelerator Center

P. 0. Box 4349, Mail Stop 88

Stanford, CA 94305

*Work supported by the Department of Energy under contract number

DE-X03-76SF00515.

(Submitted to IEEE Micro)

INTRODUCTION

Computer buses are the communication paths between the

various parts of a computer system. Most computers, even small

ones, contain several different buses, each optimized for a

particular kind of communication. Most buses are private, hidden

within an integrated circuit or confined to a single circuit

board. Some buses appear in accessible places and are described

in the computer’s documentation so that optional equipment or

features can be easily added to the system. Some buses are not

only easily accessible but follow public standards; this allows

easy communication among a variety of devices made by different

manuf acturerr;.

Though there are many different buses in common use, they

just represent different choices in the solution of a few basic

design problems. We will not present any one bus design

("architecture") in detail but rather will describe the general

problems which each bus must solve, mentioning a few common

solutions for each. This should provide the reader with the

necessary perspective for making sense out of the detailed

documentation for any particular bus of interest. Because many

readers have entered the computer field without training in

electrical engineering, we will review the elementary principles

as needed.

The term “bus” generally implies at least the possibility of

communication among more than two devices. Connections limited

to two devices are usually just called wires or traces or

signals. Furthermore, “bus” usually implies parallel related

connections, so that several related signals travel together

along approximately the same route and at about the same time.

Such parallel structures can be simulated by a sequence of

signals on a single connection, which is then called a serial

bus. This tutorial will emphasize parallel buses.

Today's buses are made of electrical conductors, usually

copper line patterns etched on printed circuit boards, copper

wires, or fine aluminum line patterns on integrated circuits.

Optical communication is not yet economical for bus structures;

optical signals are difficult to distribute to multiple

destinations and converting between electrical and optical

signals is expensive.

-2-

HOW BUSES WORK

When one device on a bus (say M3 in figure 1) wishes to

communicate with another (say S5), M3 sends signals on the bus

which cause S5 to respond. The particular signals which select

S5 rather than some other device, say S7, are called the

“address. I’ If M3 then sends data to S5, we say M3 "writes to" S5.

On the other hand, if S5 sends data to M3 we say M3 “reads from”

s5. M3 tells S5 whether this is a read or a write by sending a

control signal in addition to the address.

The device which initiates and controls the communication is

called the “master” (hence the label Ml, and the responding

device is called the "slave" (label S). Some devices (such as

M4/S2) can act as either masters or slaves, but usually not at

the same time.

What if there is another device (say Mb) which wishes to use

the bus? If Mb starts to put signals on the bus while M3 is

using it, everyone will get confused because bus lines can only

carry one signal at a time. So any device which wants to use the

bus must make certain that the bus is free before putting any

signals on it.

What if M3 and MCI both decide at the same time that they want

to use the bus? They would each think the bus was free and would

try to send their signals, interfering with each other. Any bus

which can be used by more than one device has to have some

mechanism which prevents more than one master from using it at a

-3-

time. This mechanism is called "arbitration." There are several

good ways to handle arbitration; the choice is one of the reasons

buses differ.

We have skipped over some other major problems, too. How are

signals sent and received electrically? How does the receiver

know when there is data to be received? How did S5 know to look

for its address? How did S5 know what its address was? How are

connections to the bus made?

Let us back up a bit and start at the beginning.

-4-

BUS MECHANICS

Figure 2 shows a typical arrangement for a publicly

accessible bus. The “motherboard,” or backplane, has copper

printed circuit traces in more or less parallel lines, with

connectors located at convenient intervals. The bus devices are

printed circuit cards, sometimes called modules or daughter

boards, which plug into the connectors in order to make contact

with the backplane. In addition to signal lines, the

backplane usually has heavy conductors providing the electrical

power needed by the daughter boards. Several connector pin5 are

also connected to an electrical common point, or ground, which is

sometimes a broad inner copper layer (ground plane) in the

motherboard, and sometimes a broad trace on the back side of the

motherboard.

The connector shown is a card-edge connector made by plating

gold on a finger pattern on the edge of the daughter board, so

that contact springs on the motherboard make a sliding contact as

the daughter board is inserted. The contact springs usually make

separate connections to signal traces on both sides of the

daughter board, and they are protected by a plastic housing (not

shown) which guides the daughter board into proper alignment.

Two-piece connectors are becoming more popular nowg in these

a plastic shell holding machined contact pins is attached to the

daughter board instead of relying on plated printed traces for

contact. A corresponding plastic shell with machined sockets is

mounted at each access point on the motherboard. Many variations

-5-

of this configuration are used, with different contact sizes and

connector sizes and with sockets and pins reversed.

The primary problem of connector design is providing good

reliable contact even after hundreds of uses or after sitting in

a dirty and mildly corrosive environment for years, without

requiring large insertion and removal forces, even if the mating

pieces are not perfectly aligned or the circuit boards are not

perfectly flat.

Usually the system requires the electrical power to be turned

off before inserting or removing daughter boards. In multiple-

processor systems, this may result in significant delay due to

the need to reload and reinitialize every processor. Some

systems are therefore designed to tolerate power-on insertion and

removal, which is generally called "live insertion" capability. 7

This saves the state and contents of other boards, but usually

still requires the bus activity to be stopped temporarily,

because it is difficult to design boards which never cause

interference as they power on or off. A board which has been

removed and replaced is no longer in its original state, of

course, so it must be initialized and programs communicating with

it may need to be restarted. In some cases this is so complex

that live insertion provides no advantage.

Bus specifications normally include details of the mechanical

aspects, such as board sizes, card guide size and location,

permitted cable connector locations, and maxi mum component height

on the boards. A few also specify maximum power dissipation and

-6-

I

provide for cooling air flow.

-7-

BUS SIGNAL TRANSMISSION

Signal transmission is very simple, All the devices using

the bus are electrically connected to each signal line, and the

signal lines are electrical conductors; when the master puts a

voltage on a signal line, the same voltage appears everywhere

along the bus and can be sensed by all receivers. The master

just changes the voltage from time to time in order to send

signa15.

Well, that’s almost correct. There are many buses which

assume it is correct. But, this really isn't adequate any more,

so we'll come back to it later, after discussing drivers and

receivers a bit.

The circuit that changes the voltage on the signal line is -:

called a bus driver. Any ordinary digital integrated circuit

would almost do, since a digital output is always at one of two

possible voltage levels. But since bus signal lines have to be

shared, driven by different devices at various times, there has

to be some way of disconnecting an ordinary digital output when

it is not using the bus.

One way of doing that is to use a three-state driver, which

has output states "high", "low", and “off”. A special input to

the driver is used to turn it off except when it is using the

bus. The “off ” state lets the output go to whatever voltage

another driver determines without interference. This must be

done with care, so that two devices never try to drive the line

-8-

at the same time; otherwise they will fight each other, resulting

in high-current spikes and indeterminate voltage levels on the

bus, electrical noise, and possibly premature component failures.

Another way is to tie the signal line to a voltage source

through a resistor and use drivers which either let the line

float or force it to a particular voltage level. If no driver is

turned on, the line will float to the signal level set by the

voltage source. If two drivers turn on at once, they both force

the line to the same level so they share the load and there is no

conflict. Drivers like this are called “open collector" drivers

in the TTL families of integrated circuits, or “open drain"

drivers in MOS -circuits. All ECL circuits have this kind of

output, called “open emitter. ”

This scheme not only eliminates the possibility of electrical -:
conflict on the bus, but makes possible a very useful kind of

logic, called "wire-OR" (or "wire-AND", depending on the

assignment of voltage levels to logic values). If any driver or

combination of drivers turns on, a signal appears which is the

logical OR of all the driving signals. This is useful in solving

the arbitration problem, as we shall see later. Most buses use

wire-OR for at least a few lines; some allow its use on all

signal lines.

Receivers are circuits which compare the signal voltage at

their input with a standard value, which is usually set by

internal circuitry, and then generate a logic level output

suitable for use on the rest of the daughter board. Transceivers

-9-

contain a receiver and a driver internally connected to a common

pin.

Now let us return to the description of signal propagation

given in the first paragraph of this section. The fundamental

problem with this description is that it takes no account of the

time it takes for a signal to travel. No signal can travel

faster than the speed of light in empty space, about 300

millimeters per nanosecond; on a typical bus made of practical

materials the signal speed will be a fraction of this.

A more realistic description would start with the bus line

held at one signal voltage level by a resistor tied to a voltage

source at the end of the line. When a driver turns on somewhere

along the line, it pulls the line to the other signal level at

the point where the driver is attached. The resulting voltage -:

change travels in both directions away from the driver, moving a

bit slower than the speed of light, until the whole line is at

the new signal level.

But this is still not quite realistic enough to explain what

happens in real buses. Electrical charges are distributed along

the signal line in proportion to the voltage. They repel one

another, but are attracted to charges of opposite polarity which

may be nearby. More voltage helps them crowd together, but the

precise number and distribution depends on the detailed shape of

the line and on the distribution of electrical charges in the

neighborhood of the line (i.e., the dielectric constant of the

circuit board, and the configuration of neighboring conductors).

- 10 -

The charge present per voltage applied is the capacitance of the

line, and the capacitance per unit length varies from point to

point depending on the local shape and-environment of the line.

When a driver turns on and changes the voltage, the charges

move, making a current. The moving charges create a magnetic

field which affects the motion of nearby charges. The net

effect, called inductance, tries to keep the current from

changing. The inductance depends on the precise shape of the

signal line and nearby materials, and the inductance per unit

length varies from point to point in a different way than the

capacitance does.

The ratio of the signal voltage to the resulting signal

current, called the characteristic impedance (201, depends

on the inductance per unit length (LO) and the capacitance

per unit length (CO):

20 = J Lo / CO (1)

How much current flows when the driver turns on? This

depends on the characteristic impedance and varies from point to

point. The speed of the signal travelling along the bus depends

mainly on the effective dielectric constant of the bus; the

propagation delay per unit length is:

T Pd - J LO * co (2)

Both answers are simple for an ideal signal line

- 11 -

(transmission line) like the coaxial cable shown in Figure 3A. A

real line, however, looks more like Figure 3l3, with strange

projections here and there due to connectors, circuit traces, and

components on connected daughter boards.

As the signal travels along a real line, it encounters

regions with different propagation velocities and impedance.

Wherever the impedance changes, the signal cannot proceed

unchanged because the relationship of current and voltage

required by the line no longer matches the signal. Part of the

signal continues onward, but the rest is reflected back the way

it came; part of that may be subsequently ra-ref lected and so on, .~

leading to a very complex signal on any real bus. When the

signal reaches the end of the line, it will all reflect back

unless it is absorbed by proper terminating resistors. If a

resistor is placed at the end of the line, with a value equal to

the line impedance, the signal wi 11 be absorbed without

reflection. For a bus these termination resistors have to be

located at each end of the line, and they determine how much

current flows to the driver after the reflections have died out.

Because real line impedances are never known precisely and depend

on which boards are connected where, the resistors never

perfectly match the line and some reflection always occurs.

Furthermore, the electric and magnetic fields produced by

signals changing on any one signal 1 ine create signals in

neighboring lines, causing crosstalk. These problems all become

more manageable if the bus is designed to have a low impedance

and to have a grounded conductive plane near all signal lines,

- 12 -

usually a buried layer inside the motherboard.

Because of imperfections in the lines, signal -edges change

shape as they propagate, which implies that pulses change shape

as well. Any bus has a minimum pulse width which can survive

propagation from end to end. This puts an ultimate limit on the

number of pulses per second, or bandwidth, which the bus can

support. Normally other factor5 limit the bus throughput before

the bandwidth limit is approached, but one possible exception

will be mentioned later.

Note that the driver in effect sees two lines at once, one

going in each direction, so it has to supply twice the current

needed by one line. The impedance seen by a driver on a

practical bus is often less than 20 ohms, which results in

currents of 150 milliamperes for 3-volt signals. This is well --
beyond the data sheet ratings for any bus driver generally

available today, though real devices happily exceed their rated

output if shorter lifetime, lower reliability, and degraded

signal levels can be tolerated.

Current does not flow only in the signal lines. Signal

currents complete their circuit through the ground pin of the

driver. When all the signal lines are active at once, this

ground current can be quite large. Worse yet, it is not

constant, but has very-high-frequency components as the drivers

turn on and off rapidly. The resistance and inductance of the

ground plane allows the ground pins of the circuits on the

daughter board to have different voltages from each other and

- 13 -

from those of other boards. This in turn may cause receivers to

evaluate signals incorrectly and can cause logic circuitry on the

boards to malfunction. This ground noise is mush -easier to avoid

by design than to fix later. The solution requires more than

just good ground planes on the daughter board and mother board.

There must also be many well-distributed good connections between

the mother board and daughter board ground systems.

For high-speed buses, there should be about one ground pin

per four signal pins. Furthermore, the daughter board should be

designed so that the ground current from a given driver flows to

a connector pin near the corresponding signal pins. The mother

board ground is usually a buried copper layer in a multi-layer

printed circuit; clearance holes around the connector signal pins

prevent short circuits to this ground. It is important to

control the sizes of those holes, so that the ground on one side -T

of the connector is connected to the ground on the other side in

many places along the length of the connector and not separated

by a row of merging holes. The connector should be wide enough

so there will be room on the daughter board to allow the

transceivers to be located near the connector, minimizing trace

lengths which disturb the bus.

Until recently, most bus designers have handled these

problems rather badly, aiming at high-impedance lines on the

motherboard because they seem easier to drive with available

circuits, ignoring the effects of connector pins and circuit

traces on connected daughter boards, neglecting ground planes,

and failing to provide the necessary distribution of ground pins

- 14 -

across the connector.

If buses have been so badly designed, how do they work so

well? Generally they are‘saved by slowing them down until they

work. If the signals could be made to change slowly from one

level to the other, the reflections would become small and the

crosstalk insignificant. Unfortunately, most drivers are too

fast for the buses they drive, so the signals look terrible.

These buses are usually saved by introducing delay in the system,

often referred to as the “bus settling time," so that the signals

become stable before they are used. Sometimes there is enough

delay inherent in the kind of circuitry used, but explicit delays

are often added for this purpose. Synchronous buses, which use a

central clock to time every transition on the bus, can add delay

easily by slowing the clock: al 1 signals can be made to change

at one clock edge and not be looked at until the other edge,

providing enough delay for propagation and settling.

Asynchronous buses must either solve these problems at their

source or add artificial delays to nullify their effect.

Slowing the receiver circuits is another help. Somet i mes

low-pass filters are introduced to make the receivers insensitive

to reflections and other high-frequency noise. The NITS Altair

bus, for example, used high-power drivers and low-power receivers

because the data sheet numbers implied an enormous fan-out, so

the bus should have allowed a large number of boards to be

plugged in. The signals looked terrible as a result of the fast

drivers and awful backplane design, but the low-power receivers

were slow enough to reject much of the junk so the bus usually

- 15 -

worked, especially in short-length versions. Unfortunately,

there was no complete specification for the bus (before IEEE 676

appeared), and many boards that were made for it wrked badly,

sometimes because they used receivers that were too fast.

As microprocessor speeds have increased, these slowed buses

have become less and less acceptable. As speeds increase, the

bus has to be more carefully designed in order to solve these

problems. Modern bus designs are pushing fundamental limits.

Fast buses have to limit the length of traces on daughter boards,

reduce the capacitance of transceivers, connectors, etc., as much

as possible, provide good ground planes with plenty of ground

pins, and specify transceivers which can handle the real problems

of imperfect transmission lines.

The TTL bus drivers and receivers which have been used to -T

date are not very satisfactory. Fastbus, a high-performance bus

recently developed under the auspices of the United States

Department of Energy, changed from TTL to ECL to solve this

problem, and IEEE P896 has specified a new transceiver which

reduces capacitance, reduces signal voltages and edge speeds, and

rejects noise in the receiver, while using TTL power supplies and

signals on the daughter board side. These transceivers and the

bus-driving problem are described in more detail in a companion

article by R. V. Balakrishnan.

- 16 -

BUS ARBITRATION

Now that we understand how signals-are sent, l-et us look

again at the arbitration problem. Somehow, any device which

wants to use the bus must get permission first, to avoid

conflicts between two or more devices trying to talk at once.

Perhaps the simplest method use5 special wiring on the

backplane to form a “star” connection, as shown in the lower part

of Figure 4. A bus request signal is connected from each device

to a central arbiter. A second star connection carries a bus

grant signal back to each device. Thus each device has a private

two-way connection with the arbiter. The arbiter may use any

method it likes to decide who gets the bus. This method is very

versatile, allows any conceivable allocation scheme to be

implemented, and is very fast and efficient, but it also has some Y
serious disadvantages. The special wiring on the backplane is

expensive. Information about the arbitration is not present on

the bus, so bus monitoring for diagnostic purposes is made more

difficult. Access to the arbiter for changing the algorithm or

initializing it via software can be difficult unless the arbiter

is accessible from the bus, requiring an expensive connection to

a daughter card.

The next method also uses special wiring, but a much cheaper

kind, called the "daisy chain," which is shown in the central

part of Figure 4. CI daisy chain is a pair of pins in each

connector, wired so that a signal enters the daughter board on

one and returns to the bus on the other. This allows a series

- 17 -

connection of logic from each daughter board along the backplane.

This connection is the basis for a very common kind of

arbitration. It is used in conjunction with a wire-OR line,

which is connected to one end of the daisy chain. When any

device wants to use the bus, it drives the wire-OR “bus request”

line, and looks for a signal on its daisy-in pin. Each device

passes the daisy-in signal to the daisy-out pin, unless it wishes

to use the bus. Thus the device nearest the end of the daisy

chain connected to the bus request line has the highest priority,

and always gets the daisy-in (bus grant) signal when it asserts

bus request. If it does not want the bus, it passes the grant

along, and so does each other device in turn, until a requestor

sees it and refuses to pass it further. Some further rules are

needed to prevent a high-priority device from taking the bus away

from a lower-priority device in mid-cycle. This can be achieved

by synchronizing request assertions with other bus activity. Y

The daisy chain is very economical, but has several

disadvantages. It may be slow, because signals have to travel

through logic on each daughter board. Every connector has to

have a daughter board or a dummy board plugged in to connect the

daisy chain pins, or the grant signal is blocked and the system

fails. FSnd, as for the star arbiter connection, there is very

little information about arbitration on the bus so diagnosis and

monitoring is difficult.

A new scheme which has gained much popularity in recent years

was invented by someone at Computing Devices of Canada (UK patent

specification 1,099,575, filed in 1966, inventor’s name not

- 18 -

listed) and rediscovered by Matthew Taub of IBM in 1975 (see

companion article in this issue). It was rediscovered again by

Leo Paffrath at SLAC for the Fastbus design project, moved from

there to IEEE 696 and IEEE P896, and now also appears in the TI

NuBus and Intel's Mu1 tibus-II. Taub has recently developed an

enhancement to this scheme for P896 which provides totally

distributed control (requires no central timer) and is

independent of the speeds of the competing daughter boards. The

other buses using this method all rely on timing generated by one

particular device on the bus.

Taub’s method uses only bussed signal lines, so all

information about arbitration is present everywhere on the bus;

it has no position dependence, requires no special backplane

wiring, and is relatively efficient. Depending on the goals of

the implementation, it uses two to four wire-OR signals for t-
timing and control and four to seven wire-OR lines for the actual

arbitration bus. The basic idea is that every device which wants

the bus tries to put its own priority number on the arbitration

bus, removing its less-significant bits if it sees a higher

number present; after some delay only the highest priority number

remains. The device which sees its own priority then controls

the bus. After it removes its number, the next-highest wins, and

so forth. Adding a simple rule (sometimes called "fairness")

which prevents new requests while other requestors are competing,

produces a system which guarantees every applicant a turn and

prevents the highest priority device from winning the bus all the

time.

- 19 -

A degree of fault detection can also be easily added in this

scheme, by making the priority number one bit wider and assigning

only odd-parity numbers, i.e., numbers- with an odd- number of bits

asserted. The winning priority will always appear with its own

parity bit and simple logic can then check for valid parity.

This improves the chance of detecting a failed driver or bad

connector before it causes too much chaos in the system.

The real purpose of "priority" in modern multiprocessor

backplane buses is to break ties between simultaneous requests

for use of the bus. In a system with the "fairness" scheme just

described, bus priority has little to do with which device gets

the most access to the bus, and nothing to do with job or task

priority. Confusion between bus priority, which is important for

nanoseconds or microseconds, and task priority, which is

important for milliseconds or seconds, has been common in bus -:

In single-processor buses, however, the processor may be design.

given the lowest priority so that it takes only the bus cycles

left over after the needs of disk transfers or other I/O have

been satisfied.

- 20 -

BUS SIGNAL ALLOCATION

Now that we have a way to determine which of several devices

may use the bus, we need to look more carefully at what happens

while the bus is being used.

- The first step the master takes is to assert an address on

the bus, which selects one of the slave devices and establishes a

connection between master and slave. The address usual 1 y

contains additional information which specifies a particular part

of the slave. For example, the more significant bits of the

address might determine which of several memory boards is to

respond, while the less significant bits determine which word in

that board’s memory is sought.

There may be more than one kind of address, with additional

control signals to specify the address type. Frequently there is

a memory address and an I/O port address,, similar to the scheme

used in Intel's SO86 family of microprocessors. Processors which

do not make such a distinction can still use such a bus by adding

hardware to translate a certain range of processor memory

addresses into bus I/O addresses. Some buses have other kinds of

addresses as well. Devices may have multiple address ranges as

well as multiple kinds of addresses. The primary requirement is

that addresses must be uniquely assigned, so that only one slave

device responds to a given address of any kind.

Some systems extend this to allow broadcast addresses, either

special address values or special address kinds, which select

- 21 -

I

multiple or all slave devices. Generally this kind of addressing

is used for broadcasting information from the master to all the

slaves, but a few systems permit the Gorresponding read operation

as well, sometimes called“'broadcal1." Broadcall results in the

bit-wise OR-ing of the information from all addressed slaves.

- The maximum size of the address is determined by the number

of signal lines allocated for the purpose and is one of the most

fundamental properties of any bus. The address size of ten limits

the amount of memory which can be installed in a system, because

each memory word usually requires a unique address in order to be

useful . The address size is usually given as the number of bits

or signal lines; these lines are often called the address bus.

The width of the data path, or data bus, is the next most

important parameter of the bus. Most buses now use some multiple -:

of eight lines (an integral number of bytes) for the data width.

A data item which uses the full bus width is usually called a

“word, ” but sometimes the architecture of a family of processors

defines the size of the word instead.

Most buses use addresses which specify a particular byte, so

a series of transfers on a bus with multi-byte width will have

successive addresses incremented by the number of bytes in each

transfer. Such buses usually provide a way to transfer

information on a subset of the full bus width. This is

especially useful for writes, where it may be convenient to

change a particular byte in memory without affecting its

neighbors.

- 22 -

Other buses address items of full bus width only, so each

transferable item has one address. Any transfers of less width
_.

are taken care of by the master, by first reading-the whole word

into the master, modifying the appropriate part, and then writing

the whole word back to the slave.

- When a bus transfers partial-width items, it may either leave

them on the same signal lines they would have occupied if they

were part of a full-width transfer ("unjustified") or it may move

them so that they occupy the least significant signal lines

("justified"). Justified buses make it less expensive to start

with a narrow subset of a wide bus, adding extra justification

hardware to the wide boards when they are added in the future.

The disadvantage is that future systems with no narrow subset

boards still need the justification hardware on every board,

though it no longer serves a useful purpose. A more serious

disadvantage is that a justified bus does not work well with all

computer architectures, reducing its usefulness as a

general-purpose interface. Compare the NuBus (unjustified) and

Multibus- (justified) specifications to understand this better.

Some buses include extra lines for error checking. One extra

line for each byte of data allows byte parity checking along with

simple partial-word transfers. A few more lines would permit

using an error detection and correction code, so that badly

received data could be repaired by the receiver. This

complicates partial-word transfers, however, because such a code

becomes more efficient as it applies to more bits and so it

usually would be applied to the full word rather than byte by

- 23 -

byte. Error checking also requires a mechanism for telling the

sender that the data arrived in bad condition, so it can be
_.

corrected by being sent again. Error -checking may also be

applied to addresses and other parts of the bus.

The address width and data width need not be related. Common

address-data combinations are 16-8, 16-16, 20-8, 20-16, 24-16,

24-32, and 32-32.

The bus may have separate signal lines for address and data,

or it may use the same lines at different times, which is called

multiplexing. Multiplexing slows a bus less than one might

expect because data is not useful until after addressing is

complete, especially in case of a read, which requires an

additional wait for the access time of the slave. Multiplexing

is especially attractive for wide buses because it saves so many -:

lines, drivers and receivers, which reduces system power

consumption and noise and frees circuit board space as well.

In addition, control signals are needed to specify whether a

read or a write is to occur, how wide the transfer is and which

bytes are valid, which type of address is being used, and perhaps

which protocol is to be used. Two to eight signals, sometimes

called the control bus, are usually used for these purposes.

From one to four lines are often used to allow the slave to

respond with error codes or status information, on a status bus.

The arbitration lines, described in the previous section, may

- 24 -

I

add three to 11 more signals. Some buses include another set of

lines for interrupts, which are signals from slave devices
. .

requesting service from a particular processor. Interrupts can

be handled similarly to arbitration, since the problem is

deciding which of several interrupters should receive service

first. Daisy chains and central arbitration circuits are common

solutions. Euses which are designed to handle multiple

processors, however, tend to eliminate special "single-processor"

interrupt mechanisms from the bus, and require any device which

requests service from another to write a request to it through

the normal bus protocols. This simplifies the bus, and

eliminates the need for dedicated mechanisms to specify which

pr.ocessor is to handle the interrupt service.

It is becoming common practice to include one to four lines

for connection to a serial local network. Beeaurje serial

communication is necessarily slower than parallel bus

communication, and networks can be implemented either way,

there has been disagreement about the usefulness of such a

serial link in a fast parallel backplane. Some think it should

serve as a full-function path providing redundancy in case of

failure of the parallel bus. Others would assign it special

functions such as interrupt handling or task priority sorting.

Still others consider it an independent resource which might

be used for communication with local-network peripheral

devices. Some implementations limit the serial connection

to the backplane, while others allow it to link multiple

backplanes or even extend over kilometers. Fastbus introduced

the concept because of a clear need for communication among

- 25 -

diagnostic devices on different backplane bus segments, so that

broken interconnect devices could be detected and diagnosed; once

implemented, however, nothing prevents. its use for- other

purposes.

Several buses now include four or five position-encoded pins

on- the connector, so each connector presents a unique code or

slot number to the daughter board. This code can be used for

initializing each board with unique addresses or priority codes

after a system power-on or reset.

The final group of lines is often the most important,

requiring the greatest care in bus design. These are the timing

lines: strobes, syncs, and clocks. This group usually accounts

for two to six lines, depending on the bus protocol.

When power supply pins and ground pins are added to the above

list, the need for big connectors is clear; it is barely possible

to fit a 32-bit bus on a 64-pin connector. Some buses use

connectors with hundreds of pins, including special-purpose

sub-buses, free lines for private communication among parts of

multi-board subsystems, many paralleled pins for passing heavy

power-supply current, etc. Table I summarizes the connector pin

allocation.

- 26 -

Line Names Typical Number of Pins
. . .

Address 1 A-32 > May be combined in

Data 8-32 1 multiplexed buses.

Arbitration 3-11

Control 2-8

Status l-4

Clocks, strobes 2-6

Serial Network l-4

Position code 4-5

Ground

P&er

2-20

2-20

Table I: Typical Allocations of Pins to Bus Functions

- 27 -

BUS PROTOCOL

We have talked about addressing and transferring data, but

have not really explained how those operations work. When a

master puts an address on the bus, it is likely that not all the

bits will arrive at the same time. Some may travel longer paths

on- the board; some may travel through mapping hardware which

translates processor addresses to bus addresses; some lines,

drivers, and receivers are faster than others, which causes some

bits to arrive before others, producing an effect called “skew.”

All slave devices need to know when the address becomes valid, so

-that they can check whether to respond to it.

The situation for data transfers is more complicated, because

data can flow in both directions in most buses. In the case of

reads, there is a delay while the slave searches for the -:

requested data, so the slave must be the one to signal when the

data is valid. The system must allow for bus skew in data

transfers as well.

The method the bus designer chooses for signaling the

validity of address, data, commands and status is called the “bus

protocol."

There are two major classes of protocols, synchronous

and asynchronous. Synchronous protocols time all signals

relative to a system clock, while asynchronous protocols provide

separate validity signals for each sub-bus. In actuality, every

protocol includes some synchronous aspects and some asynchronous

- 28 -

ones, but nevertheless the style of the two types is quite

different.
... .

--

Synchronous protocols'tend to use fewer bus lines, and are

simpler to understand, implement, and test. But they are not as

flexible: locked to a particular maximum clock rate, and thus

tied to a particular level of technology, they cannot take

advantage of advances in performance which occur after the design

is frozen. Now that buses are approaching their ultimate

physical speed limits, however, that disadvantage is less serious

than it used to be.

Asynchronous protocols are self-timing, so that a mixture of

fast and slow devices, using old and new technology, can share a

bus. BLIS speed adapts automatically to the requirements of the

particular devices which are communicating at the moment. Thus,

as technology improves, faster devices can be added to the system

and the user will benefit from the resulting performance

improvements as they occur. It is not necessary to replace all

the old devices to speed up the system, as it is with a

synchronous system. The price for this is some increase in

complexity.

Fashion has favored asynchronous buses in recent years, but

some of the latest high-performance designs are synchronous.

With present technology, synchronous designs run a bit faster

than asynchronous designs, and these buses are now so near their

ultimate speed limits that any future speed increase which

technology might give to asynchronous systems can make them only

- 29 -

slightly faster than present synchronous ones.

Synchronous buses have a central clock oscillator which

drives a bus signal line to distribute timing information

throughout the system. Figure 5 shows a read operation using a

simple protocol, essentially that of the TI NuEus. The rising

edge of the clock is the time when bus signals make their

changes, and signals are assumed to be valid, i.e., to have

successfully propagated throughout the system, just before the

next rising clock edge. NuBus uses an asymmetric clock, so that

the falling edge serves as the time reference for valid signals,

but that is a convenience rather than an essential feature.

Other systems use delay from a clock edge instead.

A start signal marks the presence of the address and control

information on the multiplexed bus lines. When the slave Y
recognizes its address and finds the requested data, it puts the

data and status on the bus and marks their presence with an

acknowledge signal.

A write operation would look similar, the only difference

being that the data would be supplied by the master, starting the

next clock cycle after the address, and would remain on the bus

until the acknowledge and status are sent by the slave.

In synchronous systems, the speed of travel of signals does

not appear explicitly in the protocol, but must be considered in

the bus design. The clock usually propagates along the bus at

normal signal speed, though it is possible with some cost and

- 30 -

effort to deliver simultaneous clock signals at every bus

connector. The clock frequency must be chosen so that there is

time for signals to flow from any starting point to every other

point well before the end’of the clock cycle, allowing for

differences in clock arrival time as well. Thus, shorter buses

can be designed to run faster, and simultaneous clock

distribution allows higher speed than a centrally located clock

source, which in turn is faster than a bus with a clock

propagating from one end.

Note that all operations have both read and write aspects,

and there is a signal of validity for each direction. Control

and address always flow from master to slave, and status flows

from slave to master. Data can flow either way.

In asynchronous protocols, every set of signals which is put

on the bus is accompanied by a corresponding timing signal,

called a strobe or sync signal. Timing signals generated by the

slave are often called handshakes or acknowledges.

Figure 6 shows an asynchronous read operation, using a

protocol similar to that of Faetbus or P896. First, the master

asserts the address and control information on the bus, waits for

a skew time and then asserts the address sync to signal validity.

The slaves look at the address and check whether to respond. The

one which was addressed then responds with status followed by an

address acknowledge. When the master sees the address

acknowledge, it knows that a connection has been established and

it can check the status. The address is no longer needed on the

- 31 -

bus, though the slave may have saved a copy of all or part of it.

The master then changes the control information, waits a skew

time, and asserts the data sync. If this were a write operation,

the master would assert the data at the same time as the new

control information. However, in the case shown, the control

information tells the slave that this is a read, and when the

slave finds the data it puts it on the bus with new status

information, and asserts the data acknowledge. When the master

sees the data acknowledge, it reads the data from the bus and

removes data sync to indicate that it is finished with the data.

In this simple example, it also removes address sync; however, in

more complex examples, address sync could remain in order to

maintain the connection across several data cycles. When the

slave sees data sync removed, it removes data and status

information and removes data acknowledge. Address acknowledge is Y

al so removed q in response to the removal of address sync,

restoring the bus to an idle condition.

The timing diagram of Figure 6 shows the effects of bus

signal speed and device response speed explicitly, since they are

fundamental parts of the operation of an asynchronous system.

As in the synchronous case, every operation has aspects of both

read and write. In effect, control is written and status is

read; data is timed and driven like control or status as

appropriate.

Part of the protocol has to inform the arbitration circuitry

when the bus is in use. In the synchronous example, the bus is

- 32 -

busy from start to ack, and no special busy signal is needed. In

the asynchronous example, assertion of either the address sync or
-. .

address acknowledge indicates that the- bus is busy.

Note that the asynchronous system is fully handshaken, i.e.

in every case both parties agree before any information is

removed from the bus. Thus, one of them might be built with very

fast circuitry and the other with very slow, yet they could

communicate successfully. This is one of the nice features of

asynchronous systems, because it allows gradual replacement of

parts of a system with newer and faster boards, with a resulting

gradual improvement in performance.

The synchronous system is partially handshaken, in that the

slave can take as many complete clock cycles as it needs to find

the requested data before it responds with ack. On the other
Y

hand, there is an implicit requirement that the slave either

finish with the address and control information in a fraction of

a clock cycle, or quickly copy it before it disappears.

Similarly, the master had better be able to accept the read data

within one clock, or it will be lost. This could be a problem if

the master used dynamic memory and happened to be refreshing it

when the data arrived. Extra buffer memories are normally used

to handle problems of this sort. Notice also that if a

synchronous slave is just a bit too slow to be able to respond in

one clock cycle, the operation is lengthened by a full clock

cycle. This can be a very significant disadvantage compared to

asynchronous systems, which use only as much time as they need.

- 33 -

In fact, asynchronous systems are not really completely

handshaken: in order to prevent the system from waiting forever
- .

for a response which will never come, due to programming error or

hardware failure, timeouts are always provided which cause the

operation to abort after a reasonable wait with no response.

This possibility introduces new problems--for example, what if

the master times out just as the slave sends the acknowledge?

Some circuit has to decide whether the acknowledge arrived in

time and, if not, how to get the bus cleaned up again. Data

cycle timeouts, which usually mean broken hardware, are rare, so

the timeout can be set ridiculously long without hurting the

system. Address timeouts are more frequent, however. They occur

wh’en a program is initializing the system and is searching to

find what devices are present, for example, and often when a

program error results in a bad address. Therefore, the bus

specification usually sets a fairly short timeout for addresses,

requiring all slave address decoding to be fast enough to meet

that fixed time. Thus, practical asynchronous systems have

certain synchronous aspects as well.

Bus skew, which is the worst-case difference in propagation

time between the fastest and the slowest signal line, has to be

provided for in both kinds of systems. It is included in the

determination of the fastest safe clock rate for synchronous

systems and can be ignored elsewhere in the design. Asynchronous

systems, however, must allow for skew in every handshake in every

device. When the master asserts a sync signal, it waits a skew

time after the data is on the bus, so that when the slave sees

the sync it can assume that the data is good. The slave may also

- 34 -

have internal data path skew; this can be compensated for by

adding additional delay before using the sync signal it __. . __
received. When the slave returns data to the master, it must

wait a skew delay after asserting the data before it asserts the

acknowledge.

- Actually, the skew delay can be accounted for by either

master or slave or a combination, as long as enough delay is

provided in total. The P896 bus provides for skew as described

above) but Fastbus puts all skew responsibility in the master;

the slave asserts the acknowledge at the same time as the

returned data, and the master waits a skew time before looking at

the data. Skew delay is system dependent, technology dependent,

and a property of the type and length of the physical bus

implementation. Fastbus expects to have various implementations,

including cable buses at least 10 meters long as well as short Y-

backplanes; since Fastbus emphasizes data acquisition, there

should be many more slaves than masters. By putting all skew

responsibility in the master, Fastbus reduces the number of

devices which have to be modified when the bus properties change.

Slaves are still responsible for taking care of their own

internal skew problems. P89&, however, is solely concerned with

a standard backplane bus with known properties and expects to

have mostly master devices in a multiple-processor system. Thus

P896 uses a symmetric approach in which each sender of

information accounts for the bus skew itself.

These simple protocol examples do not exhaust the

possibilities, especially for multiplexed buses, which pay a time

- 35 -

I

penalty for every address cycle. For example, it may be useful

to have a read-modify-write to the same address. The details of

these more complex operations follow the same principles we have

discussed above, but vary 'from bus to bus. One protocol deserves

special mention, however, because it has broad implications for

system design.

Block transfers are a single address followed by multiple

data cycles (either read or write, but normally not intermixed.)

Usually the address is presumed to start from the given initial

value and increment after each data cycle. Transfers to I/O

devices or FIFOs, however, may not have any increment implied.

The difference mainly affects slave internal design, but it also

has implications for the master if error recovery is needed--what

address does the master use if it wants to repeat the transfer of

the tenth word in a block because of a parity error? Both
Y

synchronous and asynchronous systems may implement block

transfers. Asynchronous systems can make yet another

improvement, however.

The data transfer of Figure 6 shows that the final edge of

the data sync and of the data acknowledge are not really

transferring data but provide time to turn off drivers and let

the signals disappear, cleaning up the bus. This is necessary if

the bus direction is to change from read to write, for example,

but not if a block of data is to be sent in the same direction.

Therefore, some protocols allow block transfers to go at twice

the rate of single transfers by using both the leading and the

trailing edges of the data sync and acknowledge for data

- 36 -

transfer. The bus still has to be cleaned up at the end of the

block, however, which may require an extra cycle. The handshake
._. ._

is still complete, as either party can. slow the. transfer whenever

necessary. Only the unneeded bus cleanups have been removed.

There is still another possibility which asynchronous systems

can use. Observe that the time it takes to transfer a word

includes the time it takes the word to travel from sender to

receiver, and then for the acknowledging handshake to return to

the sender. In addition, there are internal delays in both

master and slave, and there are extra handshake edges for bus

cleanup. During a block transfer, it may be possible to avoid

all these delays and run at the maximum throughput which the bus

transmission line bandwidth and skew can support, by allowing the

sender to proceed to the nex.t data cycle without waiting for the

handshake. Cycle-by-cycle error recovery is impossible and the .:

transfer rate has to be carefully tailored to the needs of the

particular transfer, but ultimate blinding speed is available.

The bus becomes a pipeline carrying data in one direction and

handshakes in the other. The only system we know of which

provides this mode is Fastbus; it is probably only worth the

trouble in a system which permits long cable buses.

There is one more problem which should be discussed hers,

which affects both kinds of buses and all interfaces to the real

world: the synchronization or metastable-state problem.

Consider a microprocessor which is interfaced to a keyboard.

From time to time, the micro reads a status register to see

whether a key has been struck. The status register has to

- 37 -

"decide" and return a one or a zero. What if the key is struck

just as the status register is being read? Did it happen in time

for this read, or not? It does not matter which way the decision

goes; if the key is not sensed this time it will be sensed a few

milliseconds later when the micro checks again. The decision is

usually made by a clocked register, a bistable flip-flop with a

data input, a clock input, and a data output. When the clock

occurs, the flip-flop decides whether the data input was a one or

a zero, and remembers it at the data output until the next clock.

This trivial problem turns out to be fundamentally difficult.

The specification for any real flip-flop gives a time interval

near the clock signal during which the input is not permitted to

change. But if the data is not already synchronized to the

clock, and comes from some independent source like a keyboard or

another microprocessor or other system, there is no way to

prevent it from changing during the forbidden interval. When

this happens, the flip-flop may go into a metastable state and

simply refuse to decide for a while. Its output may be an

ambiguous intermediate voltage level for an uncertain length of

time before some random noise pushes it one way or the other.

Meanwhile, other circuits (possibly internal to the package) have

proceeded to take action based on their interpretation of the

ambiguous output of the flip-flop. When the flip-flop finally

decides, the interpretation may prove wrong, but it is too late

to undo the action. The system may end up in a logically

inconsistent state, causing a serious error.

The problem is not just that the flip-flop is badly designed;

- 38 -

it is a fundamental property of nature like the uncertainty

principle of quantum physics: the nearer the criterion, the

slower the decision.

Although the problem cannot be solved in principle, careful

design can reduce the possibility of error during the lifetime of

the system. The method is to use proper components, because some

flip-flops do decide faster than others, and to allow more time

for the decision. Using a second flip-flop to decide about the

output of the first one, clocking it with a delayed clock, can

reduce the probability of error to insignificance.

Unfortunately, many designers have ignored the problem and it has

caused occasional errors.

Both asynchronous and synchronous systems will encounter this

problem when they interface with the external world, or even with

various subsystems. For example, a synchronous microprocessor

may interface to a bus which uses a clock rate different than its

own. Decision delays in such interfaces must be minimized to

maintain high system speed.

Asynchronous systems do have another option, however:

circuitry can be added to detect metastable states, and an

asynchronous system can simply wait until a decision is made

before proceeding.

- 39 -

EFFICIENCY

Any bus system has a limit on its capacity, .or- throughput,

which depends on the bus iidth, speed, and protocol. There may

also be overheads, such as arbitration unless it takes place

while the previous master is still making good use of the bus.

Even a single fast microprocessor may be able to use up the

entire capacity of a backplane bus, especially if it is fetching

instructions as well as data and not using block transfers.

For multiple-processor systems, therefore, it is a good idea

to think of the backplane bus as a communication path between the

various processors and a few I/O controllers, and provide each

processor with its own private memory for instructions and most

of its data. This greatly reduces the load on the backplane bus.

If the processors use the bus primarily for I/O and message

passing, most of the traffic can use block transfers, gaining

nearly a factor of two in throughput. However, depending on the

number of processors and the nature of the application, the bus

may still become a bottleneck. In fact, if the bus is not idle a

reasonable fraction of the time , processors will spend an

unacceptable amount of time just waiting for it. A

message-passing system begins to act more like a network than

like a simple I/O bus.

One solution to the throughput problem is to use more buses

with fewer processors on each. Fastbus uses this approach, using

a single address space shared by a number of separate buses,

called segments. These operate independently but link together

- 40 -

automatically as required whenever a master on one segment

addresses a slave on another. This automatic linking results in
--- .

interference with traffic on all intermediate segments, however,

so it must be used sparingly or bottlenecks will occur. If

high-traffic paths are provided with their own shortcut cable

segments this problem can be controlled. Judicious use of

store-and-forward nodes along with a network message protocol can

further reduce congestion by smoothing the load and allowing as.

few as two segments to be linked at a time.

- 41 -

, ’ RELIABILITY AND FAULT TOLERANCE
.z. ,’

_ _ . _
Fault tolerance is a popular topic-in bus design discussions.

The hope is to use error-correcting codes on the bus 50 that any

single component failure or temporary noise burst can be detected

and the problem automatically corrected --a common practice in

large memory systems.

Unfortunately, this is not as simple as it seems. There are

several sets of signals which would need protection

independently, such as control, data, status, and arbitration.

Error-correcting codes tend to be inefficient for small numbers

of signals, so a heavy burden of extra correcting signals is

required. Furthermore, it takes time to compute the checks and

corrections and this slows the bus. Complexity may also reduce

reliability, so the gain may be less than desired, and external
Y

interference may cause errors in more than a few signals at once.

It is not clear how to protect timing signals with such schemes.

The resulting cost in complexity, performance, and additional

hardware makes other solutions more attractive for most purposes.

Higher-level solutions, which check and correct whole blocks

of data or whole actions of programs rather than individual

cycles on the bus, are more practical. Redundant processors and

buses can check one another; software can make intelligent

changes to the system configuration when problems are detected

and notify the operator when units need replacing. Even if the

bus itself implemented error correction, some level of higher

intelligence would still be needed for these functions to prevent

- 42 -

a system from gradually deteriorating until the correction

mechanisms could no longer compensate.
__ _ . _ _

-

There are certain common hardware implementations which

should be avoided in systems which are concerned with fault

tolerance. If an error is detected, it should be possible to

retransmit the data in order to correct it. This implies that

the original transmission can have no irreversible side effects.

For example, if reading data from a peripheral device erases the

original data or clears status flags as a side effect, the read

cannot be repeated successful 1 y. FIFO5 have similar problems,

since bad data stored inside cannot be retrieved and corrected.

Rueues and buffers should be in addressible memory instead, and

clears or resets should be explicit commands rather than side

effects. FIFOs can be made to work if extra addressible buffers

are added to hold data until successful transmission is complete.

- 43 -

SOFTWARE ASPECTS

__ . . _

Bus and bus interface design has significant software

implications. We will raise some of the relevant topics but not

attempt to analyze the wide variety of solutions possible for the

software problems. These topics should be kept in mind when

evaluating any bus system to ensure that it handles the problems

adequately. Several questions arise: How is a system to be

initialized? How are addresses and arbitration priorities

allocated to the various devices? Does the bus provide enough

start-up support and programmable flexibility to allow automatic

reconfiguration when new devices are added? If the bus supports

live insertion or removal, how does the system reconfigure while

running?

Present processors do not automatically support the kind of r

block transfers modern buses offer. How can the software

interface cause block transfers to occur? How do processors

interface to the bus interrupt mechanism, and how do devices find

out where to address their interrupts? If the bus address types

do not correspond directly with the processor address types, how

does the software access them?

Software often needs to arrange for exclusive access to

certain system tables. In a multiple-processor system, the bus

often provides a locking mechanism to prevent access by other

processors until the table is available again. If the system has

multiple-port memories, the lock mechanism on one bus port may

need to affect access from the other port as well. Processors

- 44 -

with multiple bus interfaces have similar problems.

__ . _
How do processors of various kinds communicate on the bus?

There may be a need for a‘mailbox facility at a well-known

address on the bus with some agreed-on format for messages. The

two common byte-addressing schemes (left to right versus right to

left within a word) often have problems in this area.

It is becoming common to define certain special addresses as

part of a bus specification, so that registers needed for system

initialization or housekeeping functions can be easily found.

The registers which set the arbitration priority or logical

address of a device, contain its model and serial number, or

contain control bits which reset or restart it are all more

useful if easily found by general system support software. The

special address space or section of regular address space which

contains these registers is often called Control and Status

Register space, or CSR space.

CSR space is usually accessible via special addresses which

depend only on a device's physical position on the bus, using the

position-encoding pins in the connector. This makes it possible

to address devices by their position in order to initialize them,

to assign logical addresses in the normal address space, and to

assign priority codes. If sufficient information and control is

provided, automatic configuration of systems becomes possible,

eliminating troublesome mechanical switches.

- 45 -

SUMMARY

We have looked briefly at all the main aspects- of buses. The

many choices which must be made in any bus design are the reason

why there are so many different buses.

- Modern designs are approaching physical limits, which makes

successful design more difficult. The resulting high cost of a

proven design may reduce the rate of creation of new buses.

- 46 -

ACKNOWLEDGEMENTS, AND A BIT OF HISTORY

__ . . _
The problems of the MITS Altair bus got me interested in this

subject. I bought serial ‘number nine of that first S-100

machine, and got actual blueprints in late 1974, so that I could

start building interface boards and a useful memory in advance of

hardware delivery in February 1975. The computer came with a

256-byte memory board, expandable to 1024 bytes! Still, it was a

bargain at $495, assembled and tested, at a time when the 8080

CPU chip was selling for 8350 by itself. Len Shustek, who was

then a graduate student at Stanford, and is now vice president of

Nestar Systems, was helping me design a similar system when we

learned about the Altair and abandoned our own design. He had

built an earlier machine using the Intel 8008, with graphics

display, three-voice music generator, and a lot of nice software.

We noticed from the blueprints that there was no way to turn the r

CPU’s bus drivers off, so it would be impossible to have multiple

bus controllers for DMA or multiprocessor systems. MITS

responded to my anguished call by adding driver-disabling signals

on the bus, further delaying hardware shipment. Unfortunately,

none of us recognized the problems which would be caused by the

inverted write signal --when bus masters were changing and no one

was driving it, it caused writes to memory--and we did not

understand the need for better grounding.

Bob Stewart, now vice president of the Computer Society, was

annoyed by these problems in his Altair, and had the audacity to

suggest that the situation could be improved if the IEEE would

get involved in standardizing the Altair bus, then called the

- 47 -

S-100 because of its 100 pin connector. MITS got a good deal on

those connectors, so used them even though they couldn't think _-.. . _ __
what to do with all the pins. Every other manufac4urer thought

of lots of different things to do with them, though, and

incompatibility and chaos reigned.

- Bob's incredible energy and perseverence got the project

rolling, and I joined up partly because I felt guilty for missing

those bus problems which could have been fixed so easily in 1974.

George Morrow (Thinker Toys), Howard Fullmer (Parasitic

Engineering), Kells Elmquist (InterSystems), Tim Paterson

!Seattle Computer, now of MS-DOS fame), Mark Garetz (CompuPro) ,

Gary Feierbach (Inner Access), and numerous others made real

contributions to that project, called IEEE-P696. One off shoot

from this project was P896, an effort to start fresh and do it

right for 32-bit buses, in the hope of heading off another round r

of chaos in the industry. Now addicted to this punishment, I

joined that project too and both the technical and sociological

parts of the project were a real education for me. I benefited

from the efforts of many contributors to that project, but I am

particularly grateful to Paul Borrill, whose understanding of

buses and many other things is both broad and deep, and to

Matthew Taub, for his analysis of the performance of his

arbitration scheme.

During the P696 work, I was invited to join the Fastbus

design team, fan effort sponsored by the Department of Energy.

Fastbus was to deliver the maximum performance possible, while

still being simple and inexpensive, to help handle the enormous

- 48 -

data acquisition and computing needs of high-energy physics

experiments. It had to be very flexible and general, because no ---- . ._

one knew what future requirements might be. Though reality

always requires compromises, Fastbus did a good job of meeting

those goals, and I gained a lot from that design effort. My

simultaneous work on 696 and 896 proved to be synergistic, as I

se-rved as a conduit for ideas and experiences among the projects.

I am particularly glad that the Department of Energy enabled

Bob Downing, of the University of Illinois at Urbana/Champaign,

to spend a year at SLAC working on the system design.

Discussions with Bob and with Leo Paffrath at SLAC were very

stimulating and productive, and I think that year had a lot to do

with the coherence of Fastbus. I do not mean to minimize the

important contributions made by many other members of the design

team, but good design requires more su5tained interaction than is r

possible in committee. Ray Larson of SLAC was responsible for

the design project, and was very helpful and generous in his

support. I recall with special pleasure many discussions with Ed

Barsotti of Fermilab, John Biggerstaff of Oak Ridge, Ken Dawson

(Fastbus editor) of TRIUMF, and Don Machen of Los Alamo5 (now

with Scientific Systems International).

Special mention is al50 due Louis Costrell of the National

Bureau of Standards, chairman of the NIM committee. The NIM

committee brought us the NIM module standard, which had no

databus at all but is still widely used, and collaborated with

the European ESONE committee to bring us CAMAC (IEEE 5831, which

has a 24-bit data bus. The NIM committee then sponsored Fastbus

- 49 -

(IEEE P960) with support from the Department of Energy,

responding to pressure from the user community. Lou got things _ _ . _
started and kept them moving, finding trouble spot-s; and

maneuvering around them, handling the sociological problems as

well as participating in the mechanical and thermal design, and

handling the distribution of information in this multilaboratory,

multinational project.

The list of references and suggestions for further reading

was greatly enhanced by Bob Dobinson of CERN (Geneva,

Switzerland), presently at the University of Illinois at

Urbana/Champaign, who recently taught a course on buses and who

is a collaborator in the Fastbus project. Many useful comments

were also provided by the Computer Society reviewers, and by Bill

Ash of SLAC.

- 50 -

FOR FURTHER READING

_ . _ _
There is a great deal of useful in-formation. and many helpful

references in the other articles in this special issue. Of

particular relevance to specific topics mentioned in this paper

are:

R. V. Balakrishnan, “The P896 Future Bus Solves the

Bus Driving Problem." Also see the references there to

related articles covering noise, crosstalk, and

ret: lections.

{Editor please supply title) by Matthew Taub, describing

the arbitration mechanism for P896 in detail.

See also Taub’s early paper on the arbitration scheme,

"Contention-resolving Circuits for Computer Interrupt Systems,"

D. M. Taub, Proc. IEE, Vol. 123, No. 9, September 1976.

There is an excellent discussion of the synchronization

problem in: Introduction to VLSI Systems, by Carver Mead and

Lynn Conway, Addison Wesley, 1980. See especially p 220 and pps

236-242. References to early work on the problem are also given.

The problems and features of the wire-OR bus connection are

discussed more fully in: "Wire-OR

by D. B. Gustavson and John Theus,

1983.

Logic on Transmission Lines,"

IEEE MICRO Vol. 3 No. 3, June

- 51 -

The IEEE bus standards are especially relevant to this

subject. They are available from: IEEE Service Center, 445 Hoes

Lane, Piscataway, New Jersey 08854, USA. See especially:

IEEE Standard 696-1983, Interface Devices. This is the

S-100 bus, wi dened and improved. It is presently

- finding wide use as a 16-bit bus, but will probably not

be stretched to 32 bits.

IEEE Standard 796-1983, Microcomputer System Bus. This

is essentially the Multibus, improved.

IEEE Standard 488-1978, General Purpose Interface Bus.

IEEE Standard 728-1982, Code and Format Conventions for

Use with ANSI/IEEE Std 488-1978. This makes 488 more

useful by defining the format of information to be

transmitted.

Frederick A. Kirsten, “A Standard Data Busing System

for Use with NIM Modules," IEEE Transactions on Nuclear

Science, Vol NS-31, No. 1, February 1984, pps 175-177.

This paper describes the incorporation of 488 into an

existing class of standard modules, the NIM standard,

which dates back to 1964 but is still widely used.

Tutorial Description of the Hewlett-Packard Interface

Bus, Hewlett-Packard 1980, revised January 1983.

- 52 -

CAMAC Instrumentation and Interface Standards, SHQ8482,

IEEE 1982, The IEEE, Inc., 345 East 47th Street, New
-- - .

York, NY 10017. This volume includes IEEE 583 and

several related standards which form a family of

standards called CAMAC (Computer Automated Measurement

And Control). Additional standards relate to software

and other aspects of CAMAC. CAMAC is a 24-bit data bus,

optimized for use in a single-processor data acquisition

system. It is the predecessor of Fastbus, a faster and

more symmetric 32-bit system. Though the CAMAC early

1970's bus technology is pretty old, the system is still

very cost-effective, with many manufacturers supplying

catalogs full of useful modules containing the latest

technology.

A CAMAC Primer, by P. Clout, Los Al amos Report

LA-UR-82-2718. This is a good introduction to CAMAC.

FASTBUS, Modular High Speed Data Acquisition and Control

System for High Energy Physics and Other Applications,

u. s. NIM Committee. DOE/ER-0189, available from the

National Technical Information Service, U. S.

Department of Commerce, Springfield, Virginia 22161.

Fastbus is currently just beginning to appear in

manufacturers’ catalogs. Prototype systems are

operating now, and large systems are being built.

Though it was designed for the needs of high-energy

physics, it should be of use in many applications once

it becomes widely available. It should become IEEE

- 53 -

Standard 960 within a year. It is of some theoretical

interest as well, because of its support for independent
-- - .- ._

bus segments which dynamically link together as needed,

automatic message routing mechanisms, ideal solution to

the wire-OR cable driving problem, and extensible

architecture. It has significantly influenced the

development of other modern buses. Further information

about the current status and latest developments of

Fastbus (and also CAMACI is available from Louis

Costrell, Chairman, NIM Committee, National Bureau of

Standards, Washington, DC 20234.

IEEE P896/D6.2, Backplane Bus. Draft available

from Paul Borrill, Chairman, P896 Working Group,

University College London, Mullard Space Science Lab,

Ho1 mbury St. Mary, Dorking, Surrey RH5 6NT, England.

IEEE P961/D2, Proposed Standard for a Microprocessor

System Bus Based on the STD bus. Copies are available

from Matt Biewer, Chairman, IEEE P961 Working Group,

Pro-Log Corporation, 2411 Garden Road, Monterey, CA

93940.

STD Bus Technical Manual and Product Catalog, Pro-Log

Corp., August 1982

- 54 -

IEEE PlOOO, STE Bus, draft standard available from the

chairman, Mr. W. Shields, 1161 Cushman Ave, San Diego,
_ . _ _

CA 92110. This bus is similar to_ the STD bus, but uses

Eurocard packaging and has some other differences.

_ IEEE P970, Advanced Backplane Bus (Versabus), draft

standard available from the chairman, John Black, Jr.,

Motorola Inc., 3407 E. Hubbel, Phoenix, AZ 85003.

is a very wide bus, with large daughter boards.

This

IEEE P1014, Versatile Backplane Bus (VME), draft

standard available from the chairman, Wayne Fischer, 82

Shereen Place, Campbell, CA 95008. See article in this

issue.

Digital Equipment Corporation (DEC) has developed a variety

of buses which are widely used de facto standards. The following

references may be of interest:

C. Gordon Eel 1, J. Craig Mudge, John A. McNamara;

Computer Engineering: A DEC View of Hardware Systems

Design, Digital Press 1978. Chapter 11, by John Levy,

describes the general properties of DEC buses, Unibus,

Q-bus, Massbuss, SBI.

The PDP-11 Bus Handbook, Digital Press 1979. Full

- 55 -

Unibus description, some information on LSI-11 bus

(R-bus), Massbuss, PCL-11 bus (an interesting
-- - .- ._

network-like time-slotted bus) -

The PDP-11 Architecture Handbook, Digital Press 1983-84.

Short description of Unibus, detailed up-to-date

- reference to LSI-11 Q-bus, technical specification in

Appendix E.

The VAX Hardware Handbook, Digital Press 1983. This

describes the VAX SE1 bus, a high-speed synchronous

design.

Other manufacturers have also specified their own buses,

often offering them to the public for standardization through the

IEEE. Documents should be available from their local

representatives. Also, every microprocessor defines its own

local bus. Some buses of particular interest:

Multibus- Bus Architecture Specification Handbook,

Intel #146077-B. Multibus- is a 32-bit justified

synchronous bus.

Intel Multichannel Bus Specification, #142804-rev C.

Intel ILBX Bus Specification, #145695-rev A.

NuBus Specification, Texas Instruments TI-2242825-0001

NuBus is a 32-bit unjustif ied synchronous bus.

- 56 -

There are a number of bus-specific books available now. Two

useful example5 are:
- - _ _

Interfacing to S-IO/IEEE 696, Sol Libes and Mark

Garetz, Osborne/McGraw Hill.

- Interfacing to the IBM Personal Computer, Lewis C.

Eggebrecht, SAMS. This is highly recommended.

General References:

K. J. Thurber et al., “A Systematic Approach to the

Design of Digital Busing Structures,” AFIPS, Proceedings

of the 1972 Fall Joint Computer Conference, Vol 41, part

II, pp 719-740. Classic article, not current

nomenclature.

Paul Borrill, "Backplane Bus Standards, Why We Need

Them, What We Have Got, Who Makes Them.” Introductory

article to a special issue of Microprocessors and

Microsystems, Volume 6, Number 9, 1982, pp 450-454.

Issue includes useful articles on STD, S100, Versabus,

VME, Multibus, Eurobus, P896.

Paul Borrill, "Microprocessor Bus Structures and

Standards,” IEEE Micro, Vol. 1, No. 1, pp 84-95,

February 1981.

Approach to Unified Bus Architecture Sidesteps Inherent

- 57 -

Drawbacks, John W. Conway, Computer Design, Vol. 16

No. 1, January 1977, pp 71-76. This is a description
-_ - ._ __

of the Honeywell split-cycle bus, -a nice example of a

write-only system.

Harold S. Stone; Microcomputer Interfacing, Addison

- Wesley, 1982. Chapter three has a useful discussion of

bus protocols and arbitration. Other chapters cover

transmission lines, shielding, and use of specific

integrated circuits in interfacing.

- 58 -

FIGURE CAPTIONS

- - _ _

1.

2. A Typical Backplane and Daughter Card. Springy connector

Several Master and Slave Devices Attached to a- Bus.

contacts connect printed circuit traces on the daughter cards to

the bus lines, connecting drivers and receivers to the bus and

also providing power and ground connections.

3. Transmission Lines. Part fi shows an ideal shielded uniform

line, a section of coaxial cable. Part B shows a typical real

bus line, with branches, neighbors, loads, and antennae.

4. Typical Eu5 Features. The upper part shows simple bussed

signal lines. The center part shows a daisy chain tied to a

bussed grant line, for arbitration purposes. The lower part

shows un-bussed connections to a central arbiter.

5. Synchronous Bus Read Protocol. The clock marks off time for

the whole system. The start signal shows when to look for an

address and the ack signal marks the end of the transfer.

6. Asynchronous Bus Read Protocol. Each direction of signal

flow has its own timing signal: sync and acknowledge. Both

edges of such signals are used. The actual duration of each

signal depends on the distance between master and slave as well

as the observation point along the bus. These signals are shown

at the master.

- 59 -

Biographical Sketch and photo:
_ . _ _ _

-

Please use the one which appears in: "Wire-OR Logic on

Transmission Lines," by D. B. Gustavson and John Theus, IEEE

MICRO Vol. 3 No. 3, June 1983.

I

DEVICES
I

4-84 Bus 4782A2

FIGURE 1

Daughter Card

,

Bus Signal
Lines

Motherboard or Backplane y 4-84
4782A3

FIGURE 2

Ideal Transmission Line

4 - a4 Typical Bus S ignal Line
4782A4

FIGURE 3

2 3 5
n n ”

h n ” ” n n n ” ” ”
c\ ” n h ” n ” h ” n ”
e h ” ” n h ” n ” ”

I
h ” u n * ” w n ”

Bus Request
Bus Grant I Pins

Bussed
Signal
Lines

Bus Request
Line
Daisy Chain,
Bus Grant

4-84

Arbiter
4782Al

FIGURE 4

4-84 SYNCHRONOUS BUS READ 4782A6

FIGURE 5

M

S

M

S

M

\

ADDRESS SYNC

ADDRESS ACKNOWLEDGE

DATA SYNC

DATA
'\ ACKNOWLEDGE /-

CONTROL yj(fj(j(fj()}

M~---~({ADDREss~M~))) DATA(S)

s -(((STATUS f(f}) , I

4-84 ASYNCHRONOUS BUS READ 4782A5

FIGURE 6

