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INTRODUCTION 

Computer buses are the communication paths between the 

various parts of a computer system. Most computers, even small 

ones, contain several different buses, each optimized for a 

particular kind of communication. Most buses are private, hidden 

within an integrated circuit or confined to a single circuit 

board. Some buses appear in accessible places and are described 

in the computer’s documentation so that optional equipment or 

features can be easily added to the system. Some buses are not 

only easily accessible but follow public standards; this allows 

easy communication among a variety of devices made by different 

manuf acturerr;. 



Though there are many different buses in common use, they 

just represent different choices in the solution of a few basic 

design problems. We will not present any one bus design 

("architecture") in detail but rather will describe the general 

problems which each bus must solve, mentioning a few common 

solutions for each. This should provide the reader with the 

necessary perspective for making sense out of the detailed 

documentation for any particular bus of interest. Because many 

readers have entered the computer field without training in 

electrical engineering, we will review the elementary principles 

as needed. 

The term “bus” generally implies at least the possibility of 

communication among more than two devices. Connections limited 

to two devices are usually just called wires or traces or 

signals. Furthermore, “bus” usually implies parallel related 

connections, so that several related signals travel together 

along approximately the same route and at about the same time. 

Such parallel structures can be simulated by a sequence of 

signals on a single connection, which is then called a serial 

bus. This tutorial will emphasize parallel buses. 

Today's buses are made of electrical conductors, usually 

copper line patterns etched on printed circuit boards, copper 

wires, or fine aluminum line patterns on integrated circuits. 

Optical communication is not yet economical for bus structures; 

optical signals are difficult to distribute to multiple 

destinations and converting between electrical and optical 

signals is expensive. 
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HOW BUSES WORK 

When one device on a bus (say M3 in figure 1) wishes to 

communicate with another (say S5), M3 sends signals on the bus 

which cause S5 to respond. The particular signals which select 

S5 rather than some other device, say S7, are called the 

“address. I’ If M3 then sends data to S5, we say M3 "writes to" S5. 

On the other hand, if S5 sends data to M3 we say M3 “reads from” 

s5. M3 tells S5 whether this is a read or a write by sending a 

control signal in addition to the address. 

The device which initiates and controls the communication is 

called the “master” (hence the label Ml, and the responding 

device is called the "slave" (label S). Some devices (such as 

M4/S2) can act as either masters or slaves, but usually not at 

the same time. 

What if there is another device (say Mb) which wishes to use 

the bus? If Mb starts to put signals on the bus while M3 is 

using it, everyone will get confused because bus lines can only 

carry one signal at a time. So any device which wants to use the 

bus must make certain that the bus is free before putting any 

signals on it. 

What if M3 and MCI both decide at the same time that they want 

to use the bus? They would each think the bus was free and would 

try to send their signals, interfering with each other. Any bus 

which can be used by more than one device has to have some 

mechanism which prevents more than one master from using it at a 
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time. This mechanism is called "arbitration." There are several 

good ways to handle arbitration; the choice is one of the reasons 

buses differ. 

We have skipped over some other major problems, too. How are 

signals sent and received electrically? How does the receiver 

know when there is data to be received? How did S5 know to look 

for its address? How did S5 know what its address was? How are 

connections to the bus made? 

Let us back up a bit and start at the beginning. 
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BUS MECHANICS 

Figure 2 shows a typical arrangement for a publicly 

accessible bus. The “motherboard,” or backplane, has copper 

printed circuit traces in more or less parallel lines, with 

connectors located at convenient intervals. The bus devices are 

printed circuit cards, sometimes called modules or daughter 

boards, which plug into the connectors in order to make contact 

with the backplane. In addition to signal lines, the 

backplane usually has heavy conductors providing the electrical 

power needed by the daughter boards. Several connector pin5 are 

also connected to an electrical common point, or ground, which is 

sometimes a broad inner copper layer (ground plane) in the 

motherboard, and sometimes a broad trace on the back side of the 

motherboard. 

The connector shown is a card-edge connector made by plating 

gold on a finger pattern on the edge of the daughter board, so 

that contact springs on the motherboard make a sliding contact as 

the daughter board is inserted. The contact springs usually make 

separate connections to signal traces on both sides of the 

daughter board, and they are protected by a plastic housing (not 

shown) which guides the daughter board into proper alignment. 

Two-piece connectors are becoming more popular nowg in these 

a plastic shell holding machined contact pins is attached to the 

daughter board instead of relying on plated printed traces for 

contact. A corresponding plastic shell with machined sockets is 

mounted at each access point on the motherboard. Many variations 
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of this configuration are used, with different contact sizes and 

connector sizes and with sockets and pins reversed. 

The primary problem of connector design is providing good 

reliable contact even after hundreds of uses or after sitting in 

a dirty and mildly corrosive environment for years, without 

requiring large insertion and removal forces, even if the mating 

pieces are not perfectly aligned or the circuit boards are not 

perfectly flat. 

Usually the system requires the electrical power to be turned 

off before inserting or removing daughter boards. In multiple- 

processor systems, this may result in significant delay due to 

the need to reload and reinitialize every processor. Some 

systems are therefore designed to tolerate power-on insertion and 

removal, which is generally called "live insertion" capability. 7 

This saves the state and contents of other boards, but usually 

still requires the bus activity to be stopped temporarily, 

because it is difficult to design boards which never cause 

interference as they power on or off. A board which has been 

removed and replaced is no longer in its original state, of 

course, so it must be initialized and programs communicating with 

it may need to be restarted. In some cases this is so complex 

that live insertion provides no advantage. 

Bus specifications normally include details of the mechanical 

aspects, such as board sizes, card guide size and location, 

permitted cable connector locations, and maxi mum component height 

on the boards. A few also specify maximum power dissipation and 
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provide for cooling air flow. 
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BUS SIGNAL TRANSMISSION 

Signal transmission is very simple, All the devices using 

the bus are electrically connected to each signal line, and the 

signal lines are electrical conductors; when the master puts a 

voltage on a signal line, the same voltage appears everywhere 

along the bus and can be sensed by all receivers. The master 

just changes the voltage from time to time in order to send 

signa15. 

Well, that’s almost correct. There are many buses which 

assume it is correct. But, this really isn't adequate any more, 

so we'll come back to it later, after discussing drivers and 

receivers a bit. 

The circuit that changes the voltage on the signal line is -: 

called a bus driver. Any ordinary digital integrated circuit 

would almost do, since a digital output is always at one of two 

possible voltage levels. But since bus signal lines have to be 

shared, driven by different devices at various times, there has 

to be some way of disconnecting an ordinary digital output when 

it is not using the bus. 

One way of doing that is to use a three-state driver, which 

has output states "high", "low", and “off”. A special input to 

the driver is used to turn it off except when it is using the 

bus. The “off ” state lets the output go to whatever voltage 

another driver determines without interference. This must be 

done with care, so that two devices never try to drive the line 
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at the same time; otherwise they will fight each other, resulting 

in high-current spikes and indeterminate voltage levels on the 

bus, electrical noise, and possibly premature component failures. 

Another way is to tie the signal line to a voltage source 

through a resistor and use drivers which either let the line 

float or force it to a particular voltage level. If no driver is 

turned on, the line will float to the signal level set by the 

voltage source. If two drivers turn on at once, they both force 

the line to the same level so they share the load and there is no 

conflict. Drivers like this are called “open collector" drivers 

in the TTL families of integrated circuits, or “open drain" 

drivers in MOS -circuits. All ECL circuits have this kind of 

output, called “open emitter. ” 

This scheme not only eliminates the possibility of electrical -: 
conflict on the bus, but makes possible a very useful kind of 

logic, called "wire-OR" (or "wire-AND", depending on the 

assignment of voltage levels to logic values). If any driver or 

combination of drivers turns on, a signal appears which is the 

logical OR of all the driving signals. This is useful in solving 

the arbitration problem, as we shall see later. Most buses use 

wire-OR for at least a few lines; some allow its use on all 

signal lines. 

Receivers are circuits which compare the signal voltage at 

their input with a standard value, which is usually set by 

internal circuitry, and then generate a logic level output 

suitable for use on the rest of the daughter board. Transceivers 
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contain a receiver and a driver internally connected to a common 

pin. 

Now let us return to the description of signal propagation 

given in the first paragraph of this section. The fundamental 

problem with this description is that it takes no account of the 

time it takes for a signal to travel. No signal can travel 

faster than the speed of light in empty space, about 300 

millimeters per nanosecond; on a typical bus made of practical 

materials the signal speed will be a fraction of this. 

A more realistic description would start with the bus line 

held at one signal voltage level by a resistor tied to a voltage 

source at the end of the line. When a driver turns on somewhere 

along the line, it pulls the line to the other signal level at 

the point where the driver is attached. The resulting voltage -: 

change travels in both directions away from the driver, moving a 

bit slower than the speed of light, until the whole line is at 

the new signal level. 

But this is still not quite realistic enough to explain what 

happens in real buses. Electrical charges are distributed along 

the signal line in proportion to the voltage. They repel one 

another, but are attracted to charges of opposite polarity which 

may be nearby. More voltage helps them crowd together, but the 

precise number and distribution depends on the detailed shape of 

the line and on the distribution of electrical charges in the 

neighborhood of the line (i.e., the dielectric constant of the 

circuit board, and the configuration of neighboring conductors). 
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The charge present per voltage applied is the capacitance of the 

line, and the capacitance per unit length varies from point to 

point depending on the local shape and-environment of the line. 

When a driver turns on and changes the voltage, the charges 

move, making a current. The moving charges create a magnetic 

field which affects the motion of nearby charges. The net 

effect, called inductance, tries to keep the current from 

changing. The inductance depends on the precise shape of the 

signal line and nearby materials, and the inductance per unit 

length varies from point to point in a different way than the 

capacitance does. 

The ratio of the signal voltage to the resulting signal 

current, called the characteristic impedance (201, depends 

on the inductance per unit length (LO) and the capacitance 

per unit length (CO): 

20 = J Lo / CO (1) 

How much current flows when the driver turns on? This 

depends on the characteristic impedance and varies from point to 

point. The speed of the signal travelling along the bus depends 

mainly on the effective dielectric constant of the bus; the 

propagation delay per unit length is: 

T Pd - J LO * co (2) 

Both answers are simple for an ideal signal line 
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(transmission line) like the coaxial cable shown in Figure 3A. A 

real line, however, looks more like Figure 3l3, with strange 

projections here and there due to connectors, circuit traces, and 

components on connected daughter boards. 

As the signal travels along a real line, it encounters 

regions with different propagation velocities and impedance. 

Wherever the impedance changes, the signal cannot proceed 

unchanged because the relationship of current and voltage 

required by the line no longer matches the signal. Part of the 

signal continues onward, but the rest is reflected back the way 

it came; part of that may be subsequently ra-ref lected and so on, .~ 

leading to a very complex signal on any real bus. When the 

signal reaches the end of the line, it will all reflect back 

unless it is absorbed by proper terminating resistors. If a 

resistor is placed at the end of the line, with a value equal to 

the line impedance, the signal wi 11 be absorbed without 

reflection. For a bus these termination resistors have to be 

located at each end of the line, and they determine how much 

current flows to the driver after the reflections have died out. 

Because real line impedances are never known precisely and depend 

on which boards are connected where, the resistors never 

perfectly match the line and some reflection always occurs. 

Furthermore, the electric and magnetic fields produced by 

signals changing on any one signal 1 ine create signals in 

neighboring lines, causing crosstalk. These problems all become 

more manageable if the bus is designed to have a low impedance 

and to have a grounded conductive plane near all signal lines, 
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usually a buried layer inside the motherboard. 

Because of imperfections in the lines, signal -edges change 

shape as they propagate, which implies that pulses change shape 

as well. Any bus has a minimum pulse width which can survive 

propagation from end to end. This puts an ultimate limit on the 

number of pulses per second, or bandwidth, which the bus can 

support. Normally other factor5 limit the bus throughput before 

the bandwidth limit is approached, but one possible exception 

will be mentioned later. 

Note that the driver in effect sees two lines at once, one 

going in each direction, so it has to supply twice the current 

needed by one line. The impedance seen by a driver on a 

practical bus is often less than 20 ohms, which results in 

currents of 150 milliamperes for 3-volt signals. This is well -- 
beyond the data sheet ratings for any bus driver generally 

available today, though real devices happily exceed their rated 

output if shorter lifetime, lower reliability, and degraded 

signal levels can be tolerated. 

Current does not flow only in the signal lines. Signal 

currents complete their circuit through the ground pin of the 

driver. When all the signal lines are active at once, this 

ground current can be quite large. Worse yet, it is not 

constant, but has very-high-frequency components as the drivers 

turn on and off rapidly. The resistance and inductance of the 

ground plane allows the ground pins of the circuits on the 

daughter board to have different voltages from each other and 
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from those of other boards. This in turn may cause receivers to 

evaluate signals incorrectly and can cause logic circuitry on the 

boards to malfunction. This ground noise is mush -easier to avoid 

by design than to fix later. The solution requires more than 

just good ground planes on the daughter board and mother board. 

There must also be many well-distributed good connections between 

the mother board and daughter board ground systems. 

For high-speed buses, there should be about one ground pin 

per four signal pins. Furthermore, the daughter board should be 

designed so that the ground current from a given driver flows to 

a connector pin near the corresponding signal pins. The mother 

board ground is usually a buried copper layer in a multi-layer 

printed circuit; clearance holes around the connector signal pins 

prevent short circuits to this ground. It is important to 

control the sizes of those holes, so that the ground on one side -T 

of the connector is connected to the ground on the other side in 

many places along the length of the connector and not separated 

by a row of merging holes. The connector should be wide enough 

so there will be room on the daughter board to allow the 

transceivers to be located near the connector, minimizing trace 

lengths which disturb the bus. 

Until recently, most bus designers have handled these 

problems rather badly, aiming at high-impedance lines on the 

motherboard because they seem easier to drive with available 

circuits, ignoring the effects of connector pins and circuit 

traces on connected daughter boards, neglecting ground planes, 

and failing to provide the necessary distribution of ground pins 
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across the connector. 

If buses have been so badly designed, how do they work so 

well? Generally they are‘saved by slowing them down until they 

work. If the signals could be made to change slowly from one 

level to the other, the reflections would become small and the 

crosstalk insignificant. Unfortunately, most drivers are too 

fast for the buses they drive, so the signals look terrible. 

These buses are usually saved by introducing delay in the system, 

often referred to as the “bus settling time," so that the signals 

become stable before they are used. Sometimes there is enough 

delay inherent in the kind of circuitry used, but explicit delays 

are often added for this purpose. Synchronous buses, which use a 

central clock to time every transition on the bus, can add delay 

easily by slowing the clock: al 1 signals can be made to change 

at one clock edge and not be looked at until the other edge, 

providing enough delay for propagation and settling. 

Asynchronous buses must either solve these problems at their 

source or add artificial delays to nullify their effect. 

Slowing the receiver circuits is another help. Somet i mes 

low-pass filters are introduced to make the receivers insensitive 

to reflections and other high-frequency noise. The NITS Altair 

bus, for example, used high-power drivers and low-power receivers 

because the data sheet numbers implied an enormous fan-out, so 

the bus should have allowed a large number of boards to be 

plugged in. The signals looked terrible as a result of the fast 

drivers and awful backplane design, but the low-power receivers 

were slow enough to reject much of the junk so the bus usually 
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worked, especially in short-length versions. Unfortunately, 

there was no complete specification for the bus (before IEEE 676 

appeared), and many boards that were made for it wrked badly, 

sometimes because they used receivers that were too fast. 

As microprocessor speeds have increased, these slowed buses 

have become less and less acceptable. As speeds increase, the 

bus has to be more carefully designed in order to solve these 

problems. Modern bus designs are pushing fundamental limits. 

Fast buses have to limit the length of traces on daughter boards, 

reduce the capacitance of transceivers, connectors, etc., as much 

as possible, provide good ground planes with plenty of ground 

pins, and specify transceivers which can handle the real problems 

of imperfect transmission lines. 

The TTL bus drivers and receivers which have been used to -T 

date are not very satisfactory. Fastbus, a high-performance bus 

recently developed under the auspices of the United States 

Department of Energy, changed from TTL to ECL to solve this 

problem, and IEEE P896 has specified a new transceiver which 

reduces capacitance, reduces signal voltages and edge speeds, and 

rejects noise in the receiver, while using TTL power supplies and 

signals on the daughter board side. These transceivers and the 

bus-driving problem are described in more detail in a companion 

article by R. V. Balakrishnan. 
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BUS ARBITRATION 

Now that we understand how signals-are sent, l-et us look 

again at the arbitration problem. Somehow, any device which 

wants to use the bus must get permission first, to avoid 

conflicts between two or more devices trying to talk at once. 

Perhaps the simplest method use5 special wiring on the 

backplane to form a “star” connection, as shown in the lower part 

of Figure 4. A bus request signal is connected from each device 

to a central arbiter. A second star connection carries a bus 

grant signal back to each device. Thus each device has a private 

two-way connection with the arbiter. The arbiter may use any 

method it likes to decide who gets the bus. This method is very 

versatile, allows any conceivable allocation scheme to be 

implemented, and is very fast and efficient, but it also has some Y 
serious disadvantages. The special wiring on the backplane is 

expensive. Information about the arbitration is not present on 

the bus, so bus monitoring for diagnostic purposes is made more 

difficult. Access to the arbiter for changing the algorithm or 

initializing it via software can be difficult unless the arbiter 

is accessible from the bus, requiring an expensive connection to 

a daughter card. 

The next method also uses special wiring, but a much cheaper 

kind, called the "daisy chain," which is shown in the central 

part of Figure 4. CI daisy chain is a pair of pins in each 

connector, wired so that a signal enters the daughter board on 

one and returns to the bus on the other. This allows a series 
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connection of logic from each daughter board along the backplane. 

This connection is the basis for a very common kind of 

arbitration. It is used in conjunction with a wire-OR line, 

which is connected to one end of the daisy chain. When any 

device wants to use the bus, it drives the wire-OR “bus request” 

line, and looks for a signal on its daisy-in pin. Each device 

passes the daisy-in signal to the daisy-out pin, unless it wishes 

to use the bus. Thus the device nearest the end of the daisy 

chain connected to the bus request line has the highest priority, 

and always gets the daisy-in (bus grant) signal when it asserts 

bus request. If it does not want the bus, it passes the grant 

along, and so does each other device in turn, until a requestor 

sees it and refuses to pass it further. Some further rules are 

needed to prevent a high-priority device from taking the bus away 

from a lower-priority device in mid-cycle. This can be achieved 

by synchronizing request assertions with other bus activity. Y 

The daisy chain is very economical, but has several 

disadvantages. It may be slow, because signals have to travel 

through logic on each daughter board. Every connector has to 

have a daughter board or a dummy board plugged in to connect the 

daisy chain pins, or the grant signal is blocked and the system 

fails. FSnd, as for the star arbiter connection, there is very 

little information about arbitration on the bus so diagnosis and 

monitoring is difficult. 

A new scheme which has gained much popularity in recent years 

was invented by someone at Computing Devices of Canada (UK patent 

specification 1,099,575, filed in 1966, inventor’s name not 
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listed) and rediscovered by Matthew Taub of IBM in 1975 (see 

companion article in this issue). It was rediscovered again by 

Leo Paffrath at SLAC for the Fastbus design project, moved from 

there to IEEE 696 and IEEE P896, and now also appears in the TI 

NuBus and Intel's Mu1 tibus-II. Taub has recently developed an 

enhancement to this scheme for P896 which provides totally 

distributed control (requires no central timer) and is 

independent of the speeds of the competing daughter boards. The 

other buses using this method all rely on timing generated by one 

particular device on the bus. 

Taub’s method uses only bussed signal lines, so all 

information about arbitration is present everywhere on the bus; 

it has no position dependence, requires no special backplane 

wiring, and is relatively efficient. Depending on the goals of 

the implementation, it uses two to four wire-OR signals for t- 
timing and control and four to seven wire-OR lines for the actual 

arbitration bus. The basic idea is that every device which wants 

the bus tries to put its own priority number on the arbitration 

bus, removing its less-significant bits if it sees a higher 

number present; after some delay only the highest priority number 

remains. The device which sees its own priority then controls 

the bus. After it removes its number, the next-highest wins, and 

so forth. Adding a simple rule (sometimes called "fairness") 

which prevents new requests while other requestors are competing, 

produces a system which guarantees every applicant a turn and 

prevents the highest priority device from winning the bus all the 

time. 
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A degree of fault detection can also be easily added in this 

scheme, by making the priority number one bit wider and assigning 

only odd-parity numbers, i.e., numbers- with an odd- number of bits 

asserted. The winning priority will always appear with its own 

parity bit and simple logic can then check for valid parity. 

This improves the chance of detecting a failed driver or bad 

connector before it causes too much chaos in the system. 

The real purpose of "priority" in modern multiprocessor 

backplane buses is to break ties between simultaneous requests 

for use of the bus. In a system with the "fairness" scheme just 

described, bus priority has little to do with which device gets 

the most access to the bus, and nothing to do with job or task 

priority. Confusion between bus priority, which is important for 

nanoseconds or microseconds, and task priority, which is 

important for milliseconds or seconds, has been common in bus -: 

In single-processor buses, however, the processor may be design. 

given the lowest priority so that it takes only the bus cycles 

left over after the needs of disk transfers or other I/O have 

been satisfied. 
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BUS SIGNAL ALLOCATION 

Now that we have a way to determine which of several devices 

may use the bus, we need to look more carefully at what happens 

while the bus is being used. 

- The first step the master takes is to assert an address on 

the bus, which selects one of the slave devices and establishes a 

connection between master and slave. The address usual 1 y 

contains additional information which specifies a particular part 

of the slave. For example, the more significant bits of the 

address might determine which of several memory boards is to 

respond, while the less significant bits determine which word in 

that board’s memory is sought. 

There may be more than one kind of address, with additional 

control signals to specify the address type. Frequently there is 

a memory address and an I/O port address,, similar to the scheme 

used in Intel's SO86 family of microprocessors. Processors which 

do not make such a distinction can still use such a bus by adding 

hardware to translate a certain range of processor memory 

addresses into bus I/O addresses. Some buses have other kinds of 

addresses as well. Devices may have multiple address ranges as 

well as multiple kinds of addresses. The primary requirement is 

that addresses must be uniquely assigned, so that only one slave 

device responds to a given address of any kind. 

Some systems extend this to allow broadcast addresses, either 

special address values or special address kinds, which select 
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multiple or all slave devices. Generally this kind of addressing 

is used for broadcasting information from the master to all the 

slaves, but a few systems permit the Gorresponding read operation 

as well, sometimes called“'broadcal1." Broadcall results in the 

bit-wise OR-ing of the information from all addressed slaves. 

- The maximum size of the address is determined by the number 

of signal lines allocated for the purpose and is one of the most 

fundamental properties of any bus. The address size of ten limits 

the amount of memory which can be installed in a system, because 

each memory word usually requires a unique address in order to be 

useful . The address size is usually given as the number of bits 

or signal lines; these lines are often called the address bus. 

The width of the data path, or data bus, is the next most 

important parameter of the bus. Most buses now use some multiple -: 

of eight lines (an integral number of bytes) for the data width. 

A data item which uses the full bus width is usually called a 

“word, ” but sometimes the architecture of a family of processors 

defines the size of the word instead. 

Most buses use addresses which specify a particular byte, so 

a series of transfers on a bus with multi-byte width will have 

successive addresses incremented by the number of bytes in each 

transfer. Such buses usually provide a way to transfer 

information on a subset of the full bus width. This is 

especially useful for writes, where it may be convenient to 

change a particular byte in memory without affecting its 

neighbors. 
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Other buses address items of full bus width only, so each 

transferable item has one address. Any transfers of less width 
_. 

are taken care of by the master, by first reading-the whole word 

into the master, modifying the appropriate part, and then writing 

the whole word back to the slave. 

- When a bus transfers partial-width items, it may either leave 

them on the same signal lines they would have occupied if they 

were part of a full-width transfer ("unjustified") or it may move 

them so that they occupy the least significant signal lines 

("justified"). Justified buses make it less expensive to start 

with a narrow subset of a wide bus, adding extra justification 

hardware to the wide boards when they are added in the future. 

The disadvantage is that future systems with no narrow subset 

boards still need the justification hardware on every board, 

though it no longer serves a useful purpose. A more serious 

disadvantage is that a justified bus does not work well with all 

computer architectures, reducing its usefulness as a 

general-purpose interface. Compare the NuBus (unjustified) and 

Multibus- (justified) specifications to understand this better. 

Some buses include extra lines for error checking. One extra 

line for each byte of data allows byte parity checking along with 

simple partial-word transfers. A few more lines would permit 

using an error detection and correction code, so that badly 

received data could be repaired by the receiver. This 

complicates partial-word transfers, however, because such a code 

becomes more efficient as it applies to more bits and so it 

usually would be applied to the full word rather than byte by 
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byte. Error checking also requires a mechanism for telling the 

sender that the data arrived in bad condition, so it can be 
_. 

corrected by being sent again. Error -checking may also be 

applied to addresses and other parts of the bus. 

The address width and data width need not be related. Common 

address-data combinations are 16-8, 16-16, 20-8, 20-16, 24-16, 

24-32, and 32-32. 

The bus may have separate signal lines for address and data, 

or it may use the same lines at different times, which is called 

multiplexing. Multiplexing slows a bus less than one might 

expect because data is not useful until after addressing is 

complete, especially in case of a read, which requires an 

additional wait for the access time of the slave. Multiplexing 

is especially attractive for wide buses because it saves so many -: 

lines, drivers and receivers, which reduces system power 

consumption and noise and frees circuit board space as well. 

In addition, control signals are needed to specify whether a 

read or a write is to occur, how wide the transfer is and which 

bytes are valid, which type of address is being used, and perhaps 

which protocol is to be used. Two to eight signals, sometimes 

called the control bus, are usually used for these purposes. 

From one to four lines are often used to allow the slave to 

respond with error codes or status information, on a status bus. 

The arbitration lines, described in the previous section, may 
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add three to 11 more signals. Some buses include another set of 

lines for interrupts, which are signals from slave devices 
_. ._ 

requesting service from a particular processor. Interrupts can 

be handled similarly to arbitration, since the problem is 

deciding which of several interrupters should receive service 

first. Daisy chains and central arbitration circuits are common 

solutions. Euses which are designed to handle multiple 

processors, however, tend to eliminate special "single-processor" 

interrupt mechanisms from the bus, and require any device which 

requests service from another to write a request to it through 

the normal bus protocols. This simplifies the bus, and 

eliminates the need for dedicated mechanisms to specify which 

pr.ocessor is to handle the interrupt service. 

It is becoming common practice to include one to four lines 

for connection to a serial local network. Beeaurje serial 

communication is necessarily slower than parallel bus 

communication, and networks can be implemented either way, 

there has been disagreement about the usefulness of such a 

serial link in a fast parallel backplane. Some think it should 

serve as a full-function path providing redundancy in case of 

failure of the parallel bus. Others would assign it special 

functions such as interrupt handling or task priority sorting. 

Still others consider it an independent resource which might 

be used for communication with local-network peripheral 

devices. Some implementations limit the serial connection 

to the backplane, while others allow it to link multiple 

backplanes or even extend over kilometers. Fastbus introduced 

the concept because of a clear need for communication among 
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diagnostic devices on different backplane bus segments, so that 

broken interconnect devices could be detected and diagnosed; once 

implemented, however, nothing prevents. its use for- other 

purposes. 

Several buses now include four or five position-encoded pins 

on- the connector, so each connector presents a unique code or 

slot number to the daughter board. This code can be used for 

initializing each board with unique addresses or priority codes 

after a system power-on or reset. 

The final group of lines is often the most important, 

requiring the greatest care in bus design. These are the timing 

lines: strobes, syncs, and clocks. This group usually accounts 

for two to six lines, depending on the bus protocol. 

When power supply pins and ground pins are added to the above 

list, the need for big connectors is clear; it is barely possible 

to fit a 32-bit bus on a 64-pin connector. Some buses use 

connectors with hundreds of pins, including special-purpose 

sub-buses, free lines for private communication among parts of 

multi-board subsystems, many paralleled pins for passing heavy 

power-supply current, etc. Table I summarizes the connector pin 

allocation. 
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Line Names Typical Number of Pins 
_. . ._ 

Address 1 A-32 > May be combined in 

Data 8-32 1 multiplexed buses. 

Arbitration 3-11 

Control 2-8 

Status l-4 

Clocks, strobes 2-6 

Serial Network l-4 

Position code 4-5 

Ground 

P&er 

2-20 

2-20 

Table I: Typical Allocations of Pins to Bus Functions 
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BUS PROTOCOL 

We have talked about addressing and transferring data, but 

have not really explained how those operations work. When a 

master puts an address on the bus, it is likely that not all the 

bits will arrive at the same time. Some may travel longer paths 

on- the board; some may travel through mapping hardware which 

translates processor addresses to bus addresses; some lines, 

drivers, and receivers are faster than others, which causes some 

bits to arrive before others, producing an effect called “skew.” 

All slave devices need to know when the address becomes valid, so 

-that they can check whether to respond to it. 

The situation for data transfers is more complicated, because 

data can flow in both directions in most buses. In the case of 

reads, there is a delay while the slave searches for the -: 

requested data, so the slave must be the one to signal when the 

data is valid. The system must allow for bus skew in data 

transfers as well. 

The method the bus designer chooses for signaling the 

validity of address, data, commands and status is called the “bus 

protocol." 

There are two major classes of protocols, synchronous 

and asynchronous. Synchronous protocols time all signals 

relative to a system clock, while asynchronous protocols provide 

separate validity signals for each sub-bus. In actuality, every 

protocol includes some synchronous aspects and some asynchronous 
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ones, but nevertheless the style of the two types is quite 

different. 
_... ._ 

-- 

Synchronous protocols'tend to use fewer bus lines, and are 

simpler to understand, implement, and test. But they are not as 

flexible: locked to a particular maximum clock rate, and thus 

tied to a particular level of technology, they cannot take 

advantage of advances in performance which occur after the design 

is frozen. Now that buses are approaching their ultimate 

physical speed limits, however, that disadvantage is less serious 

than it used to be. 

Asynchronous protocols are self-timing, so that a mixture of 

fast and slow devices, using old and new technology, can share a 

bus. BLIS speed adapts automatically to the requirements of the 

particular devices which are communicating at the moment. Thus, 

as technology improves, faster devices can be added to the system 

and the user will benefit from the resulting performance 

improvements as they occur. It is not necessary to replace all 

the old devices to speed up the system, as it is with a 

synchronous system. The price for this is some increase in 

complexity. 

Fashion has favored asynchronous buses in recent years, but 

some of the latest high-performance designs are synchronous. 

With present technology, synchronous designs run a bit faster 

than asynchronous designs, and these buses are now so near their 

ultimate speed limits that any future speed increase which 

technology might give to asynchronous systems can make them only 
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slightly faster than present synchronous ones. 

Synchronous buses have a central clock oscillator which 

drives a bus signal line to distribute timing information 

throughout the system. Figure 5 shows a read operation using a 

simple protocol, essentially that of the TI NuEus. The rising 

edge of the clock is the time when bus signals make their 

changes, and signals are assumed to be valid, i.e., to have 

successfully propagated throughout the system, just before the 

next rising clock edge. NuBus uses an asymmetric clock, so that 

the falling edge serves as the time reference for valid signals, 

but that is a convenience rather than an essential feature. 

Other systems use delay from a clock edge instead. 

A start signal marks the presence of the address and control 

information on the multiplexed bus lines. When the slave Y 
recognizes its address and finds the requested data, it puts the 

data and status on the bus and marks their presence with an 

acknowledge signal. 

A write operation would look similar, the only difference 

being that the data would be supplied by the master, starting the 

next clock cycle after the address, and would remain on the bus 

until the acknowledge and status are sent by the slave. 

In synchronous systems, the speed of travel of signals does 

not appear explicitly in the protocol, but must be considered in 

the bus design. The clock usually propagates along the bus at 

normal signal speed, though it is possible with some cost and 
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effort to deliver simultaneous clock signals at every bus 

connector. The clock frequency must be chosen so that there is 

time for signals to flow from any starting point to every other 

point well before the end’of the clock cycle, allowing for 

differences in clock arrival time as well. Thus, shorter buses 

can be designed to run faster, and simultaneous clock 

distribution allows higher speed than a centrally located clock 

source, which in turn is faster than a bus with a clock 

propagating from one end. 

Note that all operations have both read and write aspects, 

and there is a signal of validity for each direction. Control 

and address always flow from master to slave, and status flows 

from slave to master. Data can flow either way. 

In asynchronous protocols, every set of signals which is put 

on the bus is accompanied by a corresponding timing signal, 

called a strobe or sync signal. Timing signals generated by the 

slave are often called handshakes or acknowledges. 

Figure 6 shows an asynchronous read operation, using a 

protocol similar to that of Faetbus or P896. First, the master 

asserts the address and control information on the bus, waits for 

a skew time and then asserts the address sync to signal validity. 

The slaves look at the address and check whether to respond. The 

one which was addressed then responds with status followed by an 

address acknowledge. When the master sees the address 

acknowledge, it knows that a connection has been established and 

it can check the status. The address is no longer needed on the 

- 31 - 



bus, though the slave may have saved a copy of all or part of it. 

The master then changes the control information, waits a skew 

time, and asserts the data sync. If this were a write operation, 

the master would assert the data at the same time as the new 

control information. However, in the case shown, the control 

information tells the slave that this is a read, and when the 

slave finds the data it puts it on the bus with new status 

information, and asserts the data acknowledge. When the master 

sees the data acknowledge, it reads the data from the bus and 

removes data sync to indicate that it is finished with the data. 

In this simple example, it also removes address sync; however, in 

more complex examples, address sync could remain in order to 

maintain the connection across several data cycles. When the 

slave sees data sync removed, it removes data and status 

information and removes data acknowledge. Address acknowledge is Y 

al so removed q in response to the removal of address sync, 

restoring the bus to an idle condition. 

The timing diagram of Figure 6 shows the effects of bus 

signal speed and device response speed explicitly, since they are 

fundamental parts of the operation of an asynchronous system. 

As in the synchronous case, every operation has aspects of both 

read and write. In effect, control is written and status is 

read; data is timed and driven like control or status as 

appropriate. 

Part of the protocol has to inform the arbitration circuitry 

when the bus is in use. In the synchronous example, the bus is 
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busy from start to ack, and no special busy signal is needed. In 

the asynchronous example, assertion of either the address sync or 
_-. ._ 

address acknowledge indicates that the- bus is busy. 

Note that the asynchronous system is fully handshaken, i.e. 

in every case both parties agree before any information is 

removed from the bus. Thus, one of them might be built with very 

fast circuitry and the other with very slow, yet they could 

communicate successfully. This is one of the nice features of 

asynchronous systems, because it allows gradual replacement of 

parts of a system with newer and faster boards, with a resulting 

gradual improvement in performance. 

The synchronous system is partially handshaken, in that the 

slave can take as many complete clock cycles as it needs to find 

the requested data before it responds with ack. On the other 
Y 

hand, there is an implicit requirement that the slave either 

finish with the address and control information in a fraction of 

a clock cycle, or quickly copy it before it disappears. 

Similarly, the master had better be able to accept the read data 

within one clock, or it will be lost. This could be a problem if 

the master used dynamic memory and happened to be refreshing it 

when the data arrived. Extra buffer memories are normally used 

to handle problems of this sort. Notice also that if a 

synchronous slave is just a bit too slow to be able to respond in 

one clock cycle, the operation is lengthened by a full clock 

cycle. This can be a very significant disadvantage compared to 

asynchronous systems, which use only as much time as they need. 
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In fact, asynchronous systems are not really completely 

handshaken: in order to prevent the system from waiting forever 
_- ._ 

for a response which will never come, due to programming error or 

hardware failure, timeouts are always provided which cause the 

operation to abort after a reasonable wait with no response. 

This possibility introduces new problems--for example, what if 

the master times out just as the slave sends the acknowledge? 

Some circuit has to decide whether the acknowledge arrived in 

time and, if not, how to get the bus cleaned up again. Data 

cycle timeouts, which usually mean broken hardware, are rare, so 

the timeout can be set ridiculously long without hurting the 

system. Address timeouts are more frequent, however. They occur 

wh’en a program is initializing the system and is searching to 

find what devices are present, for example, and often when a 

program error results in a bad address. Therefore, the bus 

specification usually sets a fairly short timeout for addresses, 

requiring all slave address decoding to be fast enough to meet 

that fixed time. Thus, practical asynchronous systems have 

certain synchronous aspects as well. 

Bus skew, which is the worst-case difference in propagation 

time between the fastest and the slowest signal line, has to be 

provided for in both kinds of systems. It is included in the 

determination of the fastest safe clock rate for synchronous 

systems and can be ignored elsewhere in the design. Asynchronous 

systems, however, must allow for skew in every handshake in every 

device. When the master asserts a sync signal, it waits a skew 

time after the data is on the bus, so that when the slave sees 

the sync it can assume that the data is good. The slave may also 
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have internal data path skew; this can be compensated for by 

adding additional delay before using the sync signal it __. . __ 
received. When the slave returns data to the master, it must 

wait a skew delay after asserting the data before it asserts the 

acknowledge. 

- Actually, the skew delay can be accounted for by either 

master or slave or a combination, as long as enough delay is 

provided in total. The P896 bus provides for skew as described 

above) but Fastbus puts all skew responsibility in the master; 

the slave asserts the acknowledge at the same time as the 

returned data, and the master waits a skew time before looking at 

the data. Skew delay is system dependent, technology dependent, 

and a property of the type and length of the physical bus 

implementation. Fastbus expects to have various implementations, 

including cable buses at least 10 meters long as well as short Y- 

backplanes; since Fastbus emphasizes data acquisition, there 

should be many more slaves than masters. By putting all skew 

responsibility in the master, Fastbus reduces the number of 

devices which have to be modified when the bus properties change. 

Slaves are still responsible for taking care of their own 

internal skew problems. P89&, however, is solely concerned with 

a standard backplane bus with known properties and expects to 

have mostly master devices in a multiple-processor system. Thus 

P896 uses a symmetric approach in which each sender of 

information accounts for the bus skew itself. 

These simple protocol examples do not exhaust the 

possibilities, especially for multiplexed buses, which pay a time 
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I 

penalty for every address cycle. For example, it may be useful 

to have a read-modify-write to the same address. The details of 

these more complex operations follow the same principles we have 

discussed above, but vary 'from bus to bus. One protocol deserves 

special mention, however, because it has broad implications for 

system design. 

Block transfers are a single address followed by multiple 

data cycles (either read or write, but normally not intermixed.) 

Usually the address is presumed to start from the given initial 

value and increment after each data cycle. Transfers to I/O 

devices or FIFOs, however, may not have any increment implied. 

The difference mainly affects slave internal design, but it also 

has implications for the master if error recovery is needed--what 

address does the master use if it wants to repeat the transfer of 

the tenth word in a block because of a parity error? Both 
Y 

synchronous and asynchronous systems may implement block 

transfers. Asynchronous systems can make yet another 

improvement, however. 

The data transfer of Figure 6 shows that the final edge of 

the data sync and of the data acknowledge are not really 

transferring data but provide time to turn off drivers and let 

the signals disappear, cleaning up the bus. This is necessary if 

the bus direction is to change from read to write, for example, 

but not if a block of data is to be sent in the same direction. 

Therefore, some protocols allow block transfers to go at twice 

the rate of single transfers by using both the leading and the 

trailing edges of the data sync and acknowledge for data 
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transfer. The bus still has to be cleaned up at the end of the 

block, however, which may require an extra cycle. The handshake 
._. ._ 

is still complete, as either party can. slow the. transfer whenever 

necessary. Only the unneeded bus cleanups have been removed. 

There is still another possibility which asynchronous systems 

can use. Observe that the time it takes to transfer a word 

includes the time it takes the word to travel from sender to 

receiver, and then for the acknowledging handshake to return to 

the sender. In addition, there are internal delays in both 

master and slave, and there are extra handshake edges for bus 

cleanup. During a block transfer, it may be possible to avoid 

all these delays and run at the maximum throughput which the bus 

transmission line bandwidth and skew can support, by allowing the 

sender to proceed to the nex.t data cycle without waiting for the 

handshake. Cycle-by-cycle error recovery is impossible and the .: 

transfer rate has to be carefully tailored to the needs of the 

particular transfer, but ultimate blinding speed is available. 

The bus becomes a pipeline carrying data in one direction and 

handshakes in the other. The only system we know of which 

provides this mode is Fastbus; it is probably only worth the 

trouble in a system which permits long cable buses. 

There is one more problem which should be discussed hers, 

which affects both kinds of buses and all interfaces to the real 

world: the synchronization or metastable-state problem. 

Consider a microprocessor which is interfaced to a keyboard. 

From time to time, the micro reads a status register to see 

whether a key has been struck. The status register has to 
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"decide" and return a one or a zero. What if the key is struck 

just as the status register is being read? Did it happen in time 

for this read, or not? It does not matter which way the decision 

goes; if the key is not sensed this time it will be sensed a few 

milliseconds later when the micro checks again. The decision is 

usually made by a clocked register, a bistable flip-flop with a 

data input, a clock input, and a data output. When the clock 

occurs, the flip-flop decides whether the data input was a one or 

a zero, and remembers it at the data output until the next clock. 

This trivial problem turns out to be fundamentally difficult. 

The specification for any real flip-flop gives a time interval 

near the clock signal during which the input is not permitted to 

change. But if the data is not already synchronized to the 

clock, and comes from some independent source like a keyboard or 

another microprocessor or other system, there is no way to 

prevent it from changing during the forbidden interval. When 

this happens, the flip-flop may go into a metastable state and 

simply refuse to decide for a while. Its output may be an 

ambiguous intermediate voltage level for an uncertain length of 

time before some random noise pushes it one way or the other. 

Meanwhile, other circuits (possibly internal to the package) have 

proceeded to take action based on their interpretation of the 

ambiguous output of the flip-flop. When the flip-flop finally 

decides, the interpretation may prove wrong, but it is too late 

to undo the action. The system may end up in a logically 

inconsistent state, causing a serious error. 

The problem is not just that the flip-flop is badly designed; 
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it is a fundamental property of nature like the uncertainty 

principle of quantum physics: the nearer the criterion, the 

slower the decision. 

Although the problem cannot be solved in principle, careful 

design can reduce the possibility of error during the lifetime of 

the system. The method is to use proper components, because some 

flip-flops do decide faster than others, and to allow more time 

for the decision. Using a second flip-flop to decide about the 

output of the first one, clocking it with a delayed clock, can 

reduce the probability of error to insignificance. 

Unfortunately, many designers have ignored the problem and it has 

caused occasional errors. 

Both asynchronous and synchronous systems will encounter this 

problem when they interface with the external world, or even with 

various subsystems. For example, a synchronous microprocessor 

may interface to a bus which uses a clock rate different than its 

own. Decision delays in such interfaces must be minimized to 

maintain high system speed. 

Asynchronous systems do have another option, however: 

circuitry can be added to detect metastable states, and an 

asynchronous system can simply wait until a decision is made 

before proceeding. 
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EFFICIENCY 

Any bus system has a limit on its capacity, .or- throughput, 

which depends on the bus iidth, speed, and protocol. There may 

also be overheads, such as arbitration unless it takes place 

while the previous master is still making good use of the bus. 

Even a single fast microprocessor may be able to use up the 

entire capacity of a backplane bus, especially if it is fetching 

instructions as well as data and not using block transfers. 

For multiple-processor systems, therefore, it is a good idea 

to think of the backplane bus as a communication path between the 

various processors and a few I/O controllers, and provide each 

processor with its own private memory for instructions and most 

of its data. This greatly reduces the load on the backplane bus. 

If the processors use the bus primarily for I/O and message 

passing, most of the traffic can use block transfers, gaining 

nearly a factor of two in throughput. However, depending on the 

number of processors and the nature of the application, the bus 

may still become a bottleneck. In fact, if the bus is not idle a 

reasonable fraction of the time , processors will spend an 

unacceptable amount of time just waiting for it. A 

message-passing system begins to act more like a network than 

like a simple I/O bus. 

One solution to the throughput problem is to use more buses 

with fewer processors on each. Fastbus uses this approach, using 

a single address space shared by a number of separate buses, 

called segments. These operate independently but link together 
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automatically as required whenever a master on one segment 

addresses a slave on another. This automatic linking results in 
_--- ._ 

interference with traffic on all intermediate segments, however, 

so it must be used sparingly or bottlenecks will occur. If 

high-traffic paths are provided with their own shortcut cable 

segments this problem can be controlled. Judicious use of 

store-and-forward nodes along with a network message protocol can 

further reduce congestion by smoothing the load and allowing as. 

few as two segments to be linked at a time. 
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, ’ RELIABILITY AND FAULT TOLERANCE 
.z. ,’ 

_ _ . _ 
Fault tolerance is a popular topic-in bus design discussions. 

The hope is to use error-correcting codes on the bus 50 that any 

single component failure or temporary noise burst can be detected 

and the problem automatically corrected --a common practice in 

large memory systems. 

Unfortunately, this is not as simple as it seems. There are 

several sets of signals which would need protection 

independently, such as control, data, status, and arbitration. 

Error-correcting codes tend to be inefficient for small numbers 

of signals, so a heavy burden of extra correcting signals is 

required. Furthermore, it takes time to compute the checks and 

corrections and this slows the bus. Complexity may also reduce 

reliability, so the gain may be less than desired, and external 
Y 

interference may cause errors in more than a few signals at once. 

It is not clear how to protect timing signals with such schemes. 

The resulting cost in complexity, performance, and additional 

hardware makes other solutions more attractive for most purposes. 

Higher-level solutions, which check and correct whole blocks 

of data or whole actions of programs rather than individual 

cycles on the bus, are more practical. Redundant processors and 

buses can check one another; software can make intelligent 

changes to the system configuration when problems are detected 

and notify the operator when units need replacing. Even if the 

bus itself implemented error correction, some level of higher 

intelligence would still be needed for these functions to prevent 
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a system from gradually deteriorating until the correction 

mechanisms could no longer compensate. 
__ _ . _ _ 

- 

There are certain common hardware implementations which 

should be avoided in systems which are concerned with fault 

tolerance. If an error is detected, it should be possible to 

retransmit the data in order to correct it. This implies that 

the original transmission can have no irreversible side effects. 

For example, if reading data from a peripheral device erases the 

original data or clears status flags as a side effect, the read 

cannot be repeated successful 1 y. FIFO5 have similar problems, 

since bad data stored inside cannot be retrieved and corrected. 

Rueues and buffers should be in addressible memory instead, and 

clears or resets should be explicit commands rather than side 

effects. FIFOs can be made to work if extra addressible buffers 

are added to hold data until successful transmission is complete. 
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SOFTWARE ASPECTS 

__ . . _ 

Bus and bus interface design has significant software 

implications. We will raise some of the relevant topics but not 

attempt to analyze the wide variety of solutions possible for the 

software problems. These topics should be kept in mind when 

evaluating any bus system to ensure that it handles the problems 

adequately. Several questions arise: How is a system to be 

initialized? How are addresses and arbitration priorities 

allocated to the various devices? Does the bus provide enough 

start-up support and programmable flexibility to allow automatic 

reconfiguration when new devices are added? If the bus supports 

live insertion or removal, how does the system reconfigure while 

running? 

Present processors do not automatically support the kind of r 

block transfers modern buses offer. How can the software 

interface cause block transfers to occur? How do processors 

interface to the bus interrupt mechanism, and how do devices find 

out where to address their interrupts? If the bus address types 

do not correspond directly with the processor address types, how 

does the software access them? 

Software often needs to arrange for exclusive access to 

certain system tables. In a multiple-processor system, the bus 

often provides a locking mechanism to prevent access by other 

processors until the table is available again. If the system has 

multiple-port memories, the lock mechanism on one bus port may 

need to affect access from the other port as well. Processors 
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with multiple bus interfaces have similar problems. 

__ . _ 
How do processors of various kinds communicate on the bus? 

There may be a need for a‘mailbox facility at a well-known 

address on the bus with some agreed-on format for messages. The 

two common byte-addressing schemes (left to right versus right to 

left within a word) often have problems in this area. 

It is becoming common to define certain special addresses as 

part of a bus specification, so that registers needed for system 

initialization or housekeeping functions can be easily found. 

The registers which set the arbitration priority or logical 

address of a device, contain its model and serial number, or 

contain control bits which reset or restart it are all more 

useful if easily found by general system support software. The 

special address space or section of regular address space which 

contains these registers is often called Control and Status 

Register space, or CSR space. 

CSR space is usually accessible via special addresses which 

depend only on a device's physical position on the bus, using the 

position-encoding pins in the connector. This makes it possible 

to address devices by their position in order to initialize them, 

to assign logical addresses in the normal address space, and to 

assign priority codes. If sufficient information and control is 

provided, automatic configuration of systems becomes possible, 

eliminating troublesome mechanical switches. 
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SUMMARY 

We have looked briefly at all the main aspects- of buses. The 

many choices which must be made in any bus design are the reason 

why there are so many different buses. 

- Modern designs are approaching physical limits, which makes 

successful design more difficult. The resulting high cost of a 

proven design may reduce the rate of creation of new buses. 
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one knew what future requirements might be. Though reality 

always requires compromises, Fastbus did a good job of meeting 

those goals, and I gained a lot from that design effort. My 

simultaneous work on 696 and 896 proved to be synergistic, as I 

se-rved as a conduit for ideas and experiences among the projects. 

I am particularly glad that the Department of Energy enabled 

Bob Downing, of the University of Illinois at Urbana/Champaign, 

to spend a year at SLAC working on the system design. 

Discussions with Bob and with Leo Paffrath at SLAC were very 

stimulating and productive, and I think that year had a lot to do 

with the coherence of Fastbus. I do not mean to minimize the 

important contributions made by many other members of the design 

team, but good design requires more su5tained interaction than is r 

possible in committee. Ray Larson of SLAC was responsible for 

the design project, and was very helpful and generous in his 

support. I recall with special pleasure many discussions with Ed 

Barsotti of Fermilab, John Biggerstaff of Oak Ridge, Ken Dawson 

(Fastbus editor) of TRIUMF, and Don Machen of Los Alamo5 (now 

with Scientific Systems International). 

Special mention is al50 due Louis Costrell of the National 

Bureau of Standards, chairman of the NIM committee. The NIM 

committee brought us the NIM module standard, which had no 

databus at all but is still widely used, and collaborated with 

the European ESONE committee to bring us CAMAC (IEEE 5831, which 

has a 24-bit data bus. The NIM committee then sponsored Fastbus 
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(IEEE P960) with support from the Department of Energy, 

responding to pressure from the user community. Lou got things _ _ . _ 
started and kept them moving, finding trouble spot-s; and 

maneuvering around them, handling the sociological problems as 

well as participating in the mechanical and thermal design, and 

handling the distribution of information in this multilaboratory, 

multinational project. 

The list of references and suggestions for further reading 

was greatly enhanced by Bob Dobinson of CERN (Geneva, 

Switzerland), presently at the University of Illinois at 

Urbana/Champaign, who recently taught a course on buses and who 

is a collaborator in the Fastbus project. Many useful comments 

were also provided by the Computer Society reviewers, and by Bill 

Ash of SLAC. 
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FOR FURTHER READING 

_ . _ _ 
There is a great deal of useful in-formation. and many helpful 

references in the other articles in this special issue. Of 

particular relevance to specific topics mentioned in this paper 

are: 

R. V. Balakrishnan, “The P896 Future Bus Solves the 

Bus Driving Problem." Also see the references there to 

related articles covering noise, crosstalk, and 

ret: lections. 

{Editor please supply title) by Matthew Taub, describing 

the arbitration mechanism for P896 in detail. 

See also Taub’s early paper on the arbitration scheme, 

"Contention-resolving Circuits for Computer Interrupt Systems," 

D. M. Taub, Proc. IEE, Vol. 123, No. 9, September 1976. 

There is an excellent discussion of the synchronization 

problem in: Introduction to VLSI Systems, by Carver Mead and 

Lynn Conway, Addison Wesley, 1980. See especially p 220 and pps 

236-242. References to early work on the problem are also given. 

The problems and features of the wire-OR bus connection are 

discussed more fully in: "Wire-OR 

by D. B. Gustavson and John Theus, 

1983. 

Logic on Transmission Lines," 

IEEE MICRO Vol. 3 No. 3, June 
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The IEEE bus standards are especially relevant to this 

subject. They are available from: IEEE Service Center, 445 Hoes 

Lane, Piscataway, New Jersey 08854, USA. See especially: 

IEEE Standard 696-1983, Interface Devices. This is the 

S-100 bus, wi dened and improved. It is presently 

- finding wide use as a 16-bit bus, but will probably not 

be stretched to 32 bits. 

IEEE Standard 796-1983, Microcomputer System Bus. This 

is essentially the Multibus, improved. 

IEEE Standard 488-1978, General Purpose Interface Bus. 

IEEE Standard 728-1982, Code and Format Conventions for 

Use with ANSI/IEEE Std 488-1978. This makes 488 more 

useful by defining the format of information to be 

transmitted. 

Frederick A. Kirsten, “A Standard Data Busing System 

for Use with NIM Modules," IEEE Transactions on Nuclear 

Science, Vol NS-31, No. 1, February 1984, pps 175-177. 

This paper describes the incorporation of 488 into an 

existing class of standard modules, the NIM standard, 

which dates back to 1964 but is still widely used. 

Tutorial Description of the Hewlett-Packard Interface 

Bus, Hewlett-Packard 1980, revised January 1983. 
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CAMAC Instrumentation and Interface Standards, SHQ8482, 

IEEE 1982, The IEEE, Inc., 345 East 47th Street, New 
_-- - ._ 

York, NY 10017. This volume includes IEEE 583 and 

several related standards which form a family of 

standards called CAMAC (Computer Automated Measurement 

And Control). Additional standards relate to software 

and other aspects of CAMAC. CAMAC is a 24-bit data bus, 

optimized for use in a single-processor data acquisition 

system. It is the predecessor of Fastbus, a faster and 

more symmetric 32-bit system. Though the CAMAC early 

1970's bus technology is pretty old, the system is still 

very cost-effective, with many manufacturers supplying 

catalogs full of useful modules containing the latest 

technology. 

A CAMAC Primer, by P. Clout, Los Al amos Report 

LA-UR-82-2718. This is a good introduction to CAMAC. 

FASTBUS, Modular High Speed Data Acquisition and Control 

System for High Energy Physics and Other Applications, 

u. s. NIM Committee. DOE/ER-0189, available from the 

National Technical Information Service, U. S. 

Department of Commerce, Springfield, Virginia 22161. 

Fastbus is currently just beginning to appear in 

manufacturers’ catalogs. Prototype systems are 

operating now, and large systems are being built. 

Though it was designed for the needs of high-energy 

physics, it should be of use in many applications once 

it becomes widely available. It should become IEEE 
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Standard 960 within a year. It is of some theoretical 

interest as well, because of its support for independent 
-- - .- ._ 

bus segments which dynamically link together as needed, 

automatic message routing mechanisms, ideal solution to 

the wire-OR cable driving problem, and extensible 

architecture. It has significantly influenced the 

development of other modern buses. Further information 

about the current status and latest developments of 

Fastbus (and also CAMACI is available from Louis 

Costrell, Chairman, NIM Committee, National Bureau of 

Standards, Washington, DC 20234. 

IEEE P896/D6.2, Backplane Bus. Draft available 

from Paul Borrill, Chairman, P896 Working Group, 

University College London, Mullard Space Science Lab, 

Ho1 mbury St. Mary, Dorking, Surrey RH5 6NT, England. 

IEEE P961/D2, Proposed Standard for a Microprocessor 

System Bus Based on the STD bus. Copies are available 

from Matt Biewer, Chairman, IEEE P961 Working Group, 

Pro-Log Corporation, 2411 Garden Road, Monterey, CA 

93940. 

STD Bus Technical Manual and Product Catalog, Pro-Log 

Corp., August 1982 
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IEEE PlOOO, STE Bus, draft standard available from the 

chairman, Mr. W. Shields, 1161 Cushman Ave, San Diego, 
_ . _ _ 

CA 92110. This bus is similar to_ the STD bus, but uses 

Eurocard packaging and has some other differences. 

_ IEEE P970, Advanced Backplane Bus (Versabus), draft 

standard available from the chairman, John Black, Jr., 

Motorola Inc., 3407 E. Hubbel, Phoenix, AZ 85003. 

is a very wide bus, with large daughter boards. 

This 

IEEE P1014, Versatile Backplane Bus (VME), draft 

standard available from the chairman, Wayne Fischer, 82 

Shereen Place, Campbell, CA 95008. See article in this 

issue. 

Digital Equipment Corporation (DEC) has developed a variety 

of buses which are widely used de facto standards. The following 

references may be of interest: 

C. Gordon Eel 1, J. Craig Mudge, John A. McNamara; 

Computer Engineering: A DEC View of Hardware Systems 

Design, Digital Press 1978. Chapter 11, by John Levy, 

describes the general properties of DEC buses, Unibus, 

Q-bus, Massbuss, SBI. 

The PDP-11 Bus Handbook, Digital Press 1979. Full 
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Unibus description, some information on LSI-11 bus 

(R-bus), Massbuss, PCL-11 bus (an interesting 
-- - .- ._ 

network-like time-slotted bus) - 

The PDP-11 Architecture Handbook, Digital Press 1983-84. 

Short description of Unibus, detailed up-to-date 

- reference to LSI-11 Q-bus, technical specification in 

Appendix E. 

The VAX Hardware Handbook, Digital Press 1983. This 

describes the VAX SE1 bus, a high-speed synchronous 

design. 

Other manufacturers have also specified their own buses, 

often offering them to the public for standardization through the 

IEEE. Documents should be available from their local 

representatives. Also, every microprocessor defines its own 

local bus. Some buses of particular interest: 

Multibus- Bus Architecture Specification Handbook, 

Intel #146077-B. Multibus- is a 32-bit justified 

synchronous bus. 

Intel Multichannel Bus Specification, #142804-rev C. 

Intel ILBX Bus Specification, #145695-rev A. 

NuBus Specification, Texas Instruments TI-2242825-0001 

NuBus is a 32-bit unjustif ied synchronous bus. 
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There are a number of bus-specific books available now. Two 

useful example5 are: 
- - _ _ 

Interfacing to S-IO/IEEE 696, Sol Libes and Mark 

Garetz, Osborne/McGraw Hill. 

- Interfacing to the IBM Personal Computer, Lewis C. 

Eggebrecht, SAMS. This is highly recommended. 

General References: 

K. J. Thurber et al., “A Systematic Approach to the 

Design of Digital Busing Structures,” AFIPS, Proceedings 

of the 1972 Fall Joint Computer Conference, Vol 41, part 

II, pp 719-740. Classic article, not current 

nomenclature. 

Paul Borrill, "Backplane Bus Standards, Why We Need 

Them, What We Have Got, Who Makes Them.” Introductory 

article to a special issue of Microprocessors and 

Microsystems, Volume 6, Number 9, 1982, pp 450-454. 

Issue includes useful articles on STD, S100, Versabus, 

VME, Multibus, Eurobus, P896. 

Paul Borrill, "Microprocessor Bus Structures and 

Standards,” IEEE Micro, Vol. 1, No. 1, pp 84-95, 

February 1981. 

Approach to Unified Bus Architecture Sidesteps Inherent 
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Drawbacks, John W. Conway, Computer Design, Vol. 16 

No. 1, January 1977, pp 71-76. This is a description 
-_ - ._ __ 

of the Honeywell split-cycle bus, -a nice example of a 

write-only system. 

Harold S. Stone; Microcomputer Interfacing, Addison 

- Wesley, 1982. Chapter three has a useful discussion of 

bus protocols and arbitration. Other chapters cover 

transmission lines, shielding, and use of specific 

integrated circuits in interfacing. 
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FIGURE CAPTIONS 

- - _ _ 

1. 

2. A Typical Backplane and Daughter Card. Springy connector 

Several Master and Slave Devices Attached to a- Bus. 

contacts connect printed circuit traces on the daughter cards to 

the bus lines, connecting drivers and receivers to the bus and 

also providing power and ground connections. 

3. Transmission Lines. Part fi shows an ideal shielded uniform 

line, a section of coaxial cable. Part B shows a typical real 

bus line, with branches, neighbors, loads, and antennae. 

4. Typical Eu5 Features. The upper part shows simple bussed 

signal lines. The center part shows a daisy chain tied to a 

bussed grant line, for arbitration purposes. The lower part 

shows un-bussed connections to a central arbiter. 

5. Synchronous Bus Read Protocol. The clock marks off time for 

the whole system. The start signal shows when to look for an 

address and the ack signal marks the end of the transfer. 

6. Asynchronous Bus Read Protocol. Each direction of signal 

flow has its own timing signal: sync and acknowledge. Both 

edges of such signals are used. The actual duration of each 

signal depends on the distance between master and slave as well 

as the observation point along the bus. These signals are shown 

at the master. 
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Biographical Sketch and photo: 
_ . _ _ _ 

- 

Please use the one which appears in: "Wire-OR Logic on 

Transmission Lines," by D. B. Gustavson and John Theus, IEEE 

MICRO Vol. 3 No. 3, June 1983. 
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