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1. Introduction 

The quantizat,ion of gravity remains one of the uutstandmg problems of 

theoretical physics despit,e more than 30 years of research. There are indeed 

ma,ny aspects we need to understand: questions of covariant regularization a,nd 

renormalization: measurement: quantum coherence: gravitational colla.pse and 

singularities: and the potential for change of topologyf-6 to name but a few. 

These problems are sufficiently formidable in 2 and 3 spacetime dimensions, let 

alone 10 or 11, to wa.rrant a probe of simple soluble systems in order to pro- 

vide a sound basis for the investigation of more realistic theories. The work 

reported here is an attempt to quantize gravitation in l+l and 2+1 dimensions 

using canonica.1 path integral methods; we will find that the only gauge inva.riant 

degrees of freedom are a finite number of global variables. In l+l dimensions, 

only the volume of space cannot be gauged away; in 2+1 dimensions, only the 

volume and a, set global metric parameters remain?j5 In section 2, we review 

Hamiltonian methods for gravity and path integrals of constrained systems. We 

proceed in section 3 to apply this formalism to the quantization of l+l gravity 

in a pa.rticular gauge. 

In section 4 we add scalar matter to l+l gravity and discuss some implica- 

tions for the theory of quantized strings, and conclude our discussion in section 

5 with quantization of 2+1 gravity. The appendix contains a mathematical ex- 

ercise needed to construct the 2+1 wavefunction. 
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2. Path Integrals, Constraints, and Gravity 

in the Hamiltonian Formalisms.. - - 

A direct route to the path integral expression for the transition amplitude 

in quant,um mechanics is to partition the evolution time T into N steps and 
1 

approximat,e ,iircl(;rt$) TIN; one finds* 

(2.1) 

If the action is invariant under some continuous symmetry, then the paths in the 

functional integral will be highly degenerate. The symmetry is characteristically 

generated by some constraint varia.ble x, for example in a ga,uge theory 

x=V.E --+ cd= t{V.E,;i}=% (2.2) 

Iti this case, the degeneracy of paths may be factored out using the Faddeev- 

Popov methodg; with gauge-fixing condition F[r, $1 = 0 the amplitude becomes 

2 - (,iffT ,=/ DriD$iDX, det{x’, Fb} 6(Fb) 

T (2.3) 

X expi (*J-H-X,x’) 
s 
0 

In our gauge theory example, H = E2 + B2, x = V. E, and X = A”. 

Integration over X enforces the constraint x = 0; the determinant 

det{x, F} = det (2.4 



is precisely the Fa,ddeev-Popov determinant - the Jacobian that allows the elim- 

ina,tion of S(x) and S(F), 1 eaving only the “physical” d.egrees of-freedom orthog- 

onal to the gauge direction generated by x and the gauge constraint F. 

In gravity, the symmetries are local space and time translations generated 

by the local momentum (z’ = 1, . . . , d where d is the spatia,l dimension) and 

the loca.1 Hamiltonian #e(z), respectively. Being symmetry generators, they a.re 

constrained to vanish: 

up = 0 p=O,...,d 

If we write the spacetime metric as 

(2.5) 

(2.6) 

then the Einstein - Hilbert action s dmR(n+l) may be cast in the formlo 

s = 
s 

(7riJ&j - ?f M/J (2.7) 

where 

MO =-+ (ajlr;.--&r2)+~&jR + X,/j 

(2.8) 

M(; = - Vj ~~ 

Here R and V are the curvature and covariant derivative intrinsic to the spacelike 

’ hypersurface defined by the g;j, and 4 is related to the extrinsic curvature of 

that> hypersurface in spacetime (also ?r = $). The Lagrange multipliers qp are 

Xmple functions of the gap and play the same role as A0 in gauge theories (note 

also the similarity of the momentum constraint to V. E = 0). 



- The Hami1tonia.n path integral for gra,vity may now be written a.s 

Z= 
s 

D17/1DKi'Dgij6[F"(7;,g)] deto(,, F"} eis (2.9) 

In I.+1 dimensions, the Einstein action is a topological invariant, so the spat*ial 

metric has no conjuga.te momentum and the canonical formalism breaks down. 

There are, however, quantum effects which give rise to a non-trivial effective 

action. Polyakov has shown that in the gauge gcLV = e2dSI-lv, the functional 

measure has an anomaly l1 leading to an effective action 

Sejf = 26 p/&q2 + x e2q 
48n2 

(2.10) 

The Hamiltonian generators which reproduce this result in the conformal gauge 

are12 

(2.11) 

Ml = - vlr = mp - Jr’ 

where grr = e2d and K = & in the conformal gauge. Simailar results are also 

found in the gauge specified by Fp = (VP - ~6~~)~~ 

Classically, these genera,tors form a closed algebra 

{UO(~),MO(Y)} = e-24[h(4 + W41 6'b-d 

{h(4, h(Y)> = [W4 + W)l e, ?I) 

{Ml(X), &l(y)} = [MO@) + MO(Y)] S’(? $4 - Id fi”‘k Y) 

(2.12) 

-up to the anomalous term proportional to K. Apart from this term, this algebra 

is identical to the algebra of the Einstein generators (2.8). This implies that the 
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classical evolution of spacelike hypersurfaces is invariant under local space and 

time translationsf2 Indeed, the classical equations of m.otion- - 

(2.13) 

are equiva,lcnt to 

Rt2) = -2X (2.14) 

We would now like to quantize the system (2.11) by choosing a. ga.uge and 

evaluating the path integral (2.9). I n order to consistently implement the con- 

straints X, = 0, we must quantize in such a way that there is no central cha.rge 

the algebra (2.12). Al so, we must find a regularization which preserves the co- 

ordinat,e invariance of the theory. Finding such regularization is not trivial - 

in the conforma. gauge, the regulator must preserve conformal invaria,nce. In 

fact, the central charge is related to the regularization; the renormaliza.tion of 

the functional determinants associated with gauge fixing and matter fields pro- 

ducei.contributions to the central charge, and quantization of T a,nd 4 will yield 

additional contributions. 

Our a.ssumption is supported by the fa.ct tha,t there does exist a, t,heory of 

l+l gravity with no central charge which is found by taking the formal limit 

K + 0 in (2.12), so that 

X0 = tne+n-Xe4 . 
2K 

(2.15) 



The constraint algebra becomes 
--~- 

We(x), Uo(Y)> = 0 -. - - 

{J+), h(Y)> = [W:) + W~l w? 51) (2.16) 

WM ~OMI = [X0(4 + ~o(Y)I fi’(? Y) 

which may be consistently quantized. This theory, which has been studied by 

Banks a.nd Susskind,‘* is just the strong coupling limit of l+l gravity!5 When 

matter fields are added, K can be nonzero such that the gravitational central 

charge is cancelled by the charge of the quantized ma,tt,er fields. 

3. l+l Dimensional Gravity 

In what follows, we will consider space to be a circle. In order t,o fix the 

freedom of spatia.1 repa,rametriza,tion, let us choose the ga.uge 

d’=O (34 

The momentum constraint N1 = 0 then implies 

-. 
7r’=o (3.2) 

a.nd we have eliminat,ed all the canonical variable (except for globa. degrees of 

freedom; these cannot be fixed because V = J e4dx is a geometric invariant’). 

There now remain no canonical variables to be fixed by No. This curious situation 

arises because there are two constraints but only one pair of canonical variables - 

I+1 gravity has -1 degrees of freedom in the sense that upon adding one matter 

field, all local degrees of freedom are eliminated in a canonical gauge (see Section 



4). Thus, in order to fix local time translations, we must choose a non-canonical --~ 
ga.tige such a.s _ - 

17’ = const (3.3) 

With the ga.uge choices (3.1) and (3.3) the Faddeev-Popov determinant is 

det 
i 

6~” 
G(gauge transf) 

] = det [r ~~~~~~~] 

(3.4 

= det(&) x det ({#I, #}) 

i\s before, t,he determinant of canonical variables just serves as the Ja.cobian 

needed to eliminake the constraints. The determinant det (80) yields forma.lly 

just the determinant of A0 which may be shown to give simply a renorma.lization 

of the Hamiltonian density (2.11)?3 

All tha.t remains in the t>heory are the global varia.bles II and + defined by 

n(t) = 
s 

dx r(x, t) , e@ct) = 
J 

dx ed’(“jt) (3.5) 

Note thst in the elimination of q”, we must separately integra.te out. the pa.rt) 

of q%.which is a constant in both space and time since this mode of q” can be 

absorbed into the definition of T: 

The transition amplitude reduces to 

z= 
s 

dTDIID@ le-@I12-Xe’ 
2k (3.7) 

0 
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i.e., quantum mechanics with the Hamiltonian - 
- 

H=&IIe-@II - he’ P-8) 

where we have taken the simplest hermitian ordering for the kinetic term. 

Additional justification for this ordering is provided by an analysis of the 

strong-coupling (K --t 0) limitf4 in which this is the only ordering for which the 

wavefunction $[$I] 1 so ves the local Schroedinger equation 

wit3houtJ a.mbiguous terms proportional to 6(O). 

The integrat)ion over T enforces the constraint H = 0: 

.I dT ,&T = S(iq 

so t,hat the wa,vefunct,ion $ solves 

1 
1 6 -- 

2K sa 
em’ & + Xe’] $[a’] = 0 

or, cha.nging variables to V = e@ = s dx e4, 

The solution $[V] is 

- 
$[V] = aeiJ2uxv + 

- 
0 e-iJ2ux v 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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Expectation values of quantum operators CJ are calculated using the integra- 

tion measure d@ = q 

(3.14) 

It seems meaningful in our gauge to talk of the expansion rate of the “world”, 

even though this is not a coordinate invariant object; the two branches a = 0 

and 6 = 0 are eigenstates of the operator 

with eigenvalues ~J~KA, corresponding to uniformly expanding or contracting 

universes. From the equations of motion (2.13) we find 

=c R=fI=-T+h , [ 1 (3.16) 

which yields the expectation values 

(3.17) 

Thus-the expectation values of covariant quantities, with the except,ion of the 

volume, have no dispersion. The volume, however, fluctua.tes wildly since all 

volume have unit, probability for X > 0 (the situation for X < 0 is somewhst 

bet,ter behaved - large volumes are exponentially damped). In ca.lcula,ting (3.14) 

we must impose an ultraviolet cutoff to control the logarithmic integral s y; 

when the cutoff is removed the result is finite so long as we factor out the volume 

dependence of any quantity of interest. 
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4. Adding Matter Fields 

When a scalar field is coupled to the geometry, we-find iha% the constra,ints 

are sufficient to eliminate all canonical variables using the methods of Section 

2, save for the global degrees of freedom. The Hamiltonian and momentum 

densities are 

1 
NO =G7re +7r + Ke+(f#12/2 - 4”) - Ae+ + $f(P2 + X’2) + e$U(X) 

(44 

u1 =7rqv - 7r’ + PX’ 

where X and P are the field and its conjugate momentum. A convenient gauge 

is 

f+x’=o (4.2) 

Proceeding as before, we arrive at a quantum mechanics problem for the wave- 

function; the Hamiltonian is 

H=$I; -XV+~P~+V.U(X) (4.3) 

12. the special case where U = 0, we find that the solution to H$ = 0 is a 

Bessel funct,ion 

?)(V, P) = (32KXV)‘/2 J,(d2KXV) (4.4 

wit’h N = (tcP2 + l/4) ‘i2 The asymptotic forms . 

J,(z) - ($4” 
r(a + 1) 0 (4.5) 

boo (4.6) 
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show that the solution behaves likes the sum of the solutions for an expanding 

a,nd a contra,cting universe for large volumes, and that the small-volume behavior 

will be regular, the probability for finding the universe at small volumes no longer 

diverges logarithmically. 

In order to interpret the result (4.4), it is helpful to explore the classical 

physics of the Hamiltonian (4.3). The classical equation of motion 

v Kti2 
( > 

P2 
“r/-=2 v 

+x+- 2v2 

and Hamiltonian constraint 

;HE;(;)~ P2 -x+w=o 

together yield the solution 

P 

v = zcosh 0 
2Xt 
Ic 

(4.7) 

(4.8) 

(4.9) 

describing a universe which contracts from large volumes down to a minimum 

Thai,- p E and then “bounces” back into an expansion phase. In deriving (4.4), 

though, we ha.ve integrated away all references to an external time parameter. 

How then, can we compare the two? In the classical system, the proba.bility of 

finding the universe in the range (V, V + AV) is proportional t#o the time spent 

in that interval 

V+AV 

/- dt= 1 9$.?)24]-1’2 dV’ (4.10) 
V 
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--.- which is asymptotically proportional to 7r Av for V > P/&‘iI and falls to zero 

sharply at Vmin = P/&K. For the quantum system, the probability is 

V+AV 

Prob(V, V + dV) = 
s 
V (4.11) 

and decays like a power law (c.f. eq. (4.5)) for volumes less than about l&in. Thus 

the cla.ssica.1 regime is the region of large volumes, and quantum mechanics causes 

a. smea.ring of the wavefunction into the classically forbidden region V < Vmin. 

For a plot of the classical and quantum probability amplitudes for tcP2 = 2 as a 

function of volume, see Fig. 1. 

Our approach runs into trouble if we consider l+l gravity coupled to more 

than one scalar field, since in this case it is no longer possible to find an explicit 

solution to the constraints. Unfortunately, this is one of the most interesting 

ca.ses, because l+l gravity coupled to D+l massless free scalar fields is precisely 

the theory of vibrating strings in D+l dimensions. We can use the methods 

developed here to shed some light on the difficulties of quantized strings. We 

have-. 

1 
NO =-7re -4 

2/c: 
r + ffe-4 i(jf2 - q$,,> 

( 
- he4 + Ae+(P2 + X’2) 

2 a a 
(4.12) 

Xp==nqs’-x’ + P”.XL , a = 0,. . . ,D 

In the conformed gauge gCl,, = e2$ Spv, we have precisely Polyakov’s result in 

Ha,miltonian form?2 Another popular gauge is the light-cone gauge 

x+a:t ) P+ = const. (4.13) 
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where X* = X0 f X D. Because of the Minkowski signature of the embedding 

space-, the constraint No = 0 can be solved to give - - ~.. 

p- = I*e-+r + ffe-8 C!$12 - 4” 
2/c ( > - Aed + ie+ (P,” + Xi’) (4.14) 

where i = 1,. . . , D - 1. Substituting this solution into the a.etion we find 

S = / (mj + P,X,)dxdt 

= SC 7rJ + P& - i! e-d pi2 +Xi’2) - 
2 ( (4.15) 

- Li e+7r2 + K: e- 
2K 

$(d2/2 - $“) - XeQ]}dx dt 

Thus the gravitational field 4 acts as a sort of longitudinal oscilla.tion of the 

string, exponentia.lly coupled to the transverse fields Xi. Even though the con- 

straint,s have been solved, the effective theory appears quite formidable. 

Finally, a third gauge choice is also interesting to consider. We ma.y, a.s in 

the soluble exa.mples previously considered, eliminate the gravita.tiona,l field wit)h 

the gauge 

-. g=T’=o (4.16) 

Here the Faddeev-Popov determinant is not quite a Jacobian, because we are 

fixing both elements of a conjugate pair; rather, we find 

det [ ]:I: i:L )I:: i:] = det[ { Nirav(x) , N~‘“‘(y)}]xconst. 

= II X$““(x) x const. 
X 

(4.17) 
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where the superscript grav indicates the purely gravitational part of the full -~. - 
Ha.miltonian density. Thus, the path integral measure depends-on the energy in 

t,he volume fluctuations. The Hamiltonian becomes 

H+I$-AV+ 
J 

$-(PZ + x;2) dx 

subject, to t,he qua.ntum mechanical constraints 

O=XofU1= ( 
$-VI-$-xv)+ ;v(pa*xJ2 

(4.18) 

(4.19) 

But, t,hese constra.ints, apart from the single additional degree of freedom, a.re 

just those of the covariantly quantized string’“; they are notoriously difficult 

to satisfy without destroying either unitarity or Lorent,z inva,ria,nce. It would 

a.ppear that fundamental progress in quantizing strings is still lacking, and will 

require a better understanding of the quantized vacuum since the difficulties with 

centra,l charges, unitarity, etc., can be traced directly to the divergent zero-point 

fluct,ua.tions of the fields. 
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5. 2+1 Dimensional Gravity 

In 2+1 dimensions, the Einstein action (217) exists, al<hoGgh the cla,ssical 

equations of motion allow only flat spacetime as a solution5 (there is no gravit,a- 

tional radiation in 2+1 dimensions). 

There are only a finite number of physical degrees of freedom, even though 

the theory is perturbatively nonrenormalizable. Again, if we assume the existence 

of a. coordina.te invaria.nt regulator, we may apply the canonical forma,lism. If 

we choose a gauge where the constraints can be solved explicitly, we won’t have 

to confront the difficult question of regularization. In what follows, we consider 

space to be closed with a toroidal topology. A convenient gauge is specified by 

choosing the metric to be spatially constant 

sij = gij (t) (54 

(For other spatial topologies it is possible to choose a metric wit*h constant cur- 

vature described by a finite number of parameters known as moduli?y5 ) The 

constraints HP = 0 imply that 7rrij is spatially consta.nt 

The Hamiltonia,n densitSy (2.8) may be rewritten 

-‘T&T) + K&R + X,/T 
2 dg 

where 
srij = g-1’2 gij , 

(5.2) 

(5.3) 

(5.4 
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are the degrees of freedom orthogonal to the local volume ,,/j and its conjugate 

~ir!~ We again choose t,he ordering such that #a -is hermitian in the measurer8 

d/i(g) = n Dg;j . S-V (5.5) 
i<j 

In the gauge (5.1), and using the formalism of Section 2, we see that the wa,ve- 

function of the world satisfies 

1 l- - -.-. 
Hi = [ rc (v gij~ke~tk~ge - ~ VH~ 1 1 + xv ?)[V, ij] = 0 (5.6) 

with 

(5.7) 

Since the iiij are the generators of symmetric, traceless deformations of the 

metric, it is natural that those deformations are elements of symmetric space 

SL(2, R)/SO(2) and that 

A E +?j (5.8) 

is the covariant Iaplace operator on that space? The eigenfunctions Qp [S] of A 

are “pla.ne waves” on SL( 2, R)/SO( 2) satisfying 
-. 

A4p = (P2 + l/8) eb,p (5.9) 

where p is a “wave number” and b is its “direction vector” (see the appendix). 

Inserting (5.9) into (5.6), this equation takes just the form of (4.3), and so the 

solution to the Schroedinger problem for the volume may be read off from (4.4). 

We find the wavefunction of 2+1 gravity in the gauge (5.1) to be 

(5.10) 
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It is again instructive to contrast this result with the set of classical solutions. 

The most. general classical solution in the gauge (5.1) is. - - 

g;j = Afj ed’ + B:j e-d’ + (AB + BA).;j (5.11) 

where A a.nd B are symmetric matrices satisfying the constraint 

tr{A-‘B} =0 , for A nondegenerate 

tr{B-‘A} =0 , 
(5.12) 

for B nondegenera,te 

The formula. (5.11) is easily verified in the vierbein formalism. The constraint, 

implies tha,t the volume of space shrinks to zero at a finite time. Physica.lly, 

this is c1ea.r beca.use the HamiltJonian is just like the l+l gra.vity theory wit,h a 

scalar field except that the conforms1 degrees of freedom S;j contribut)e wit,11 the 

opposite sign compared to the sca1a.r field. Thus the volume feels an at,tra,ct,ive 

l/V” potential rather than repulsive - the world is drawn towards zero volume, 

which is reached at finite time. The wave function (5.lO)reflects this feature 

in tha,t the proba.bility amplitude $J*$ does not approach zero a.s 1,’ approaches 

zero (cf. the asymptotic form Eq. (4.6)). The classical and quantum probabilities 

are shown in Fig. 2. Note that the quantum amplitude follows the cla,ssica.lly 
-. 

expected value even more closely than in l+l dimensions, and a.lso ha.s no zeroes 

as may be seen from the asymptotic form (4.5). 

Finally let us examine qualitatively how these results are modified when we 

consider different spatial topologies. When space is topologically a sphere, we 

can fix a gauge where the metric has constant positive curvature and the volume 

is the only dynamical variable - the conformal metric Sij has no dynamics. The 

-&jR term in the Hamiltonian contributes a repulsive l/V potential, and the 

universe will have a smooth classical bounce solution that does not reach zero 
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volume -. much like the l+l case with scalar field. When space is a closed -~ - 
surfa,ce with 71 2 2 handles, we may choose a metric which has constant negative 

curvat,ure. In addition to t.he volume, there will be 6n-6 real para.meters (known 

to ma.thematicia.ns as the moduli of the space) describing the global geometry? 

In fact, the two degrees of freedom in Sij in our torus example are an example 

of these moduli. The parameters will all enter into the Hamiltonian (5.3) with a 

kinetic energy opposite in the sign to the volume kinetic energy; t#hese energies 

and the &R potent,ial energy will push the volume towards zero. Thus the 

more involved t,he topology is, the more singular t*he dynamics becomes at small 

volumes. 

6. Discussion 

We have considered quantized gravity in l+l and 2+1 dimensions, as well as 

mat,ter fields coupled to gravit,y in l+l dimensions. The Ha.milt,onian version of 

t.he path int,egral has proved useful in isolating the physical degrees of freedom in 

those cases where the gauge const,raints allow an explicit solution. Such inst.ances 

typica.lly reduce the problem to a finite number of degrees of freedom, quite sim- 
-. 

i1a.r to the minisuperspace models of Dewitt* and others but less suspect in t,ha.t 

no a.pproximations are involved beyond the (admit#tedly delica.te) assumpt,ion of 

a regula,tor which preserves the algebra of No and Ni. There a.re no grea.t sur- 

prises - the wavefunctions correspond quite closely to what one would expect 

from an ana,lysis of the classical equations of motion, together with the smearing 

of probabilities mandated by the uncertainty principle. There is no need for a 

modification of the framework of quantum theory in order to fit geometrodynam- 

its into it, at least at this level. In addition, we now have a stepping stone from 
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which we may proceed to consider, e.g., a non-trivial matter field (i.e. massive 

or self-interacting) in l+l dimensions, or explore the-.possibility of topological 

metamorphosis. A parallel analysis should be possible for low-dimensional su- 

pergravity. 

Of course, it may be that qualitatively different effects occur when there are 

an infinity of physical modes in the system. Then an explicit regularization is 

necessary, a question we have carefully avoided here. It seems that herein lies 

the major difficulty of quantum gravity. 
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APPENDIX SL(2,R)/S0(2) 

We describe here 

M = SL(2, R) /SO(2 

some of the elegant mathematics a&o&ted with space 

j of the 2%. j The exposition is a direct transcription of the 

beautiful exposition of Ref. 15 to 2+1 dimensions. Any element &M may be 

written 

ij=NAAtNt (64 

where the matrices A and N are of the form 

A= (6.2) 

the natura.1 metric on M is 

G(dij, dij) = tr {ij-’ dij 3-l dij} 

(6.3) 
= dr2 + e-d5’ dn2 

The Laplace operator on M is 

-. with Gijkt = i $k Gjf? + gie yjk _ y’jjkt] 

In terms of the line element (6.3) this operator becomes 

(6.5) 

TO find the eigenfuncCons of A, let us first solve for those that are indepen- 

-dent, of ?a: 

ep (r) = etip ’ $I’ ; Ae, g -(p2 + !l)ep (6.6) 
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-~.- Then, just as we can generate all two-dimensional plane waves by rotating a plane 

wave travelling along the x-axis (the y-independent solution), we can generate 

all the “plane waves” on M through the action of SO(2) on the n-independent 

solution ep( T) 

ep,b (id = ep (Bt i=) (6.7) 

where B E SO(2) and T is determined from Bt 3 B through the decomposition 

B%jB = NAAtNt (6.8) 

The integration measure for inner products is deduced from (6.3) 

dg = emr/d’ drdn. (6.9) 
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