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1. INTRODUCTION 
-- - 

The method depicted below has been much in use lately at SLAG for measur- 
ing emittances in the linac and the SLC damping ring. To carry out the measurement, 
the strength of the lens is varied and the width and height of the beam profile on 
the screen is observed. The input beam is kept unaltered in all aspects during the 
measurement. When the square of the width or height of the profile is plotted against 
the lens strength k, a quadratic (parabolic) curve results. The three coefficients of 
the quadratic are sufficient to determine the state of the input beam, including its 
emittance. 
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Figure 1 

The basis of this method is readily derived using one two-by-two matrix to 
specify the state of the input beam (a-matrix) and another to describe the lens-drift 
transport system (R-matrix). The process can be applied to both of the usual degrees 
of freedom, (2, z!) and (y, #), and in each case, three a-matrix elements are deter- 
mined. These three elements, in turn, fix the the corresponding emittances, i.e., the 
determinant of the corresponding a-matrix. 

The formalism can be dealt with quite compactly in a four-by-four matrix 
notation in which the a-matrix is 
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(1) 

It is always symmetric. 

This matrix describes what we usually call an “uncoupled” beam-a distri- 
bution in which there are no correlations between horizontal and vertical motions. 

In general, such correlations may exist and are prescribed by the missing 
elements of the matrix above. The general a-matrix-still symmetric-is 

u = 

011 a12 013 (714 

012 022 023 024 

(‘13 023 f-%3 a34 

014 024 034 044 

(2) 

In the present note, we shall show that the method described above always 
measures the matrix elements all, ~12,022 when carried out with the horizontal pro 
file and u33,u34, ~44 when carried out with the vertical profile, and that it does so 
independent of the “coupling elements” ~13, a23,u14, ~24. Having proven the foregoing 
assertion, we shall describe a new method for determining the four coupling elements 
using a skewed quadrupole and a drift. These four elements, together with the six ele- 
ments obtained by the original method comprise all ten of the independent elements 
of the u-matrix and therefore suffice to determine the four-dimensional emittance of 
the beam-despite correlations. 

2. THE NORMAL (UPRIGHT) QUADRUPOLE CASE 

The evolution of the beam ellipsoid (u-matrix) through the measuring system 
can be described by the following matrix equation 

us = Rufi (3) 

whFre us is the beam matrix at the screen, R represents the transfer matrix of the 
measuring system (quad and drift) and fi is the transpose of R. We are using here the 
formalism developed for the program TRANSPORT. 
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The transfer matrix describing the normal quadrupole of strength k in the 
----thin lens approximation is 

-_ -- 

and the drift of length 1 is represented by 

i 
1100 

0 1 0 0 

L= 

0011 

0 0 0 1 1 
The transfer matrix R is then just the product 

R=LQ (4 

and the two elements of the beam matrix that are measured on the screen are 

of1 = (I+ k1)2ull + 2Z( 1+ kf)u12 + Z2u22 

u3s3 = (1 - kl)2u33 + 21( 1 - kl)uN + 12u44 

For this simple measuring setup, the square of the beam width is in fact a quadratic 
function in the variable (1 + kl) and the square of the beam height is quadratic in 
(1 - kl). For reference all ten independent elements of the beam matrix at the screen 
as a function-of the lens strength k are presented in the Appendix A. 

For the more general case of the measuring setup, where the transport line 
between the quadrupole lens and the screen can be represented by the following Rt, 
matrix 

‘Rt, = 
r21 m 0 0 

which itself creates no z-y coupling, the answer is 

& = (rll + kwd2w + ‘hdw + h2h + r&n 



- 
~7;~ = (t-33 + kr34)2uB + 2r34( rs + kr&34 + r&u44 

The horizontal and vertical sizes of the beam on the measuring screen ( r us1 and 

r ui3) do not depend on the “coupling elements” of the u-matrix, ~13, u~,u14, ~24. 

This demonstrates the first assertion above. 

To this proof, we wish to add the following comment. Let us rewrite the 
general coupled four-by-four beam matrix, Eq.(2), in terms of two-by-two submatrices 
in the following way: 

u c 
U 

=ev ( 1 
Measurements with the normal quadrupole completely determine the submatrices U 
and V. If we start with the uncoupled beam, i.e., all the elements of the C submatrix 
are zero, the product of the determinants of U and V gives us the four-dimensional 
transverse emittance of the beam. 

detU.detV=detu=ci 

In the case of a coupled beam, the product of the determinants does not equal to the 
full determinant of the u-matrix and the following inequality is probably true 

detU.detV > detu = ci 

3. THE SKEWED QUADRUPOLE CASE 

Let us see now what happens if we replace the normal quadrupole by a skewed 
quadrupole. The transformation matrix for the skewed quadrupole of strength k in 
the thin lens approximation is 

s45 = 

Now we replace Q in Eq.(4) with S45 so that 

R = LS45 



For this simple setup of the lens and a drift 1 

41 = k212uB + 2kl(luB + 013) + 12u22 + 21~~2 + all _ _ ~-- 

u& = k212ull + 2kl(lq4 + u13) + 12u44 + 21~~ + u33 

u1s3 = k212u13 + kl(lua + la12 + ~33 + ~11) + 12u24 + l(~23 + ~14) + ~13 

and for the more general “uncoupled” transport line 

$1 = k2&m + ‘Jkrdmul3 + wm3) + rfpll+ 2mwm + r&m 
u3s3 = k2r&q1 + 2kr34(r~u14 + rwq3) + r&o44 + 2r34rBu34 + r&p33 

uf3 = k2r34r12U13 + k[‘-ll’%Ull + ‘=12”34@34 + U12) + ‘-12r33U331 

+ rll(r34n4 + wu13) + ri2bv24 + r33023) 

Now the measuring setup mixes the elements of the original beam matrix, 
and the width, the height and the tilt of the beam on the screen provide us with some 
information about the elements of the C submatrix. 

4. THE PROPOSED METHOD 

In order to determine all ten independent elements of the general beam matrix 
Eq.(2) we propose to use both normal and skewed quadrupoles. In addition to the 
width and the height of the beam on the screen, the tilt angle of the beam spot (which 
is simply related to the a13 element of the beam matrix) would be measured too, and 
a parabola fitted to the squares of the measured quantities. 

Using the normal quadrupole we can determine the following beam matrix 
elements and combinations 

Ull, U127 u22 See (Al) 

u33, u34, u44 See (A8) 

U13, U14 - T23, 12u24 + h3 + U14) + U13 See (A3) 

and using the skewed quadrupole we can determine 

Q3, k?3 + u13, 12u22 + 2lu12 + 611 See (Bl) 

Ull? lu14 + U13, 12u44 + z/U34 + U33 See (B8) 

U139 la3 + la12 + aa + all, 12u24 + l(ui3 + 014 1 + U13 See (B3) 



These eighteen equations overdetermine the ten independent elements of the 
-- -u-matrix. Although there is not enough information to determine the full matrix using 

either the. normal quad or the skewed quad by itself, using-both -quads, we determine 
some of the elements more than once. This provides not only the matrix elements, but 
a measure of goodness of fit. 

An alternative setup can include one skewed quadrupole and two screens, 
separated by a drift. Measurements of the height, the width and the tilt of the beam 
on both screens will again provide eighteen equations for the determination of ten 
independent elements of the u-matrix. 



APPENDIX A. THE NORMAL QUADRUPOLE CASE 

Starting with the most general four-by-four symmetric u-matrix in front of 
the quadrupole, the ten independent elements of the beam matrix at -thescreen us, as 
a function of the quadrupole strength are: 

ufI = (1 + k1)2ull + 21(1+ kl)q2 + 12u22 

uf2 = k(1 + kl)ull + (1 + 2kl)q2 + la= 

($3 = -k212cq3 + k12(u14 - 023) + 12u24 + lU23 + lU14 + a13 

uf4 = -k2h3 + kl(ul4 - 023) - kuls + 1024 + 614 

ui2 = k2uII + 2ku12 + u22 

ui3 = -k21u13 + k(lu14 - luf$j + U13) + lU24 + Um 

u:4 = -k2u13 + k(u14 - ~23) + ~24 

u3s3 = (1 - k1)2uB + 21( 1 - kl)us4 + 12u44 

u3s4 = k( 1 - kl)u33 + (1 - 2kl)u34 + lu44 

4 = k2u33 - 2ku34 i- u44 

(Al) 
W) 
(A3) 
(A4) 
W) 
(A61 
(A7) 
W) 
(AQ) 

Pw 

APPENDIX B. THE SKEWED QUADRUPOLE CASE 

The elements of the us matrix are modified in the following way if we replace 
the normal quadrupole with a skewed one 

ufI = k212uB + 2kl(lu23 + u13) + 12un + 21q2 + all w 

usz = k21u33 + k(21uD + u13) + lu22 + al2 (B2) 

us3 =-k212u13 + kl(lu34 + 1~12 + ~33 + ~11) + 12u24 + 1~23 + 1~14 + ~13 (B3) 

USq = k2h + kl(u34 + ~12) + 1~24 + U14 ( w 

ui2 = k2u33 + 2ku23 + an VW 

u& = k21u13 + k(lu34 + 10 12 + U33) -I- lU24 -I- U23 VW 

($4 = k2m + k(m + u12) + u24 (m 

43 = k212u11 + 2kl(lu14 + u13) + f2u44 + 21034 + a33 (W - 

a& = k21uIl + k(21u14 + u13) + lu44 + aa (W 
44s4 = k2ql + 2kq4 + 644 VW 


