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ABSTRACT

The geometric structure of a material manifold with 'dislocations and disclina-
tions is briefly introduced using vielbein and gauge field theory. Combining this
theory with Noether’s theorem we present a unified equation of variational invari-
ance and obtain different type of conservation laws for dislocation and disclination
continuum under the assumption that the variations of entropy and temperature
inside body can be ignored. In particular, this procedure yields a new conserva-
tion relation by means of a small gauge transformation which is called the gauge
conservation law. The duality principle of conservation laws which are present in
material and spatial spaces is clearly demonstrated by the variational invariance

equations.

1. Introduction

Defect continuum mechanics is an important developing branch of modern
continuum mechanics, which aims at establishing a sound theoretical basis for
exploring the elastic and nonelastic behaviors of material with imperfections of
various kinds, such as voids, inclusions, inhomogeneities, microcracks, disloca-
tions as well as disclinations on the microscopic and macroscopic levels. Since
1952 when Kondo,!2 initially studied the theory of dislocation continua, followed
by Kréner,%4 Bilby,%9 et al., a great deal of progress has been made in this field
(for instance, see Refs. 7-8). The most significant contribution originally due
to Kondo in the development of dislocation continuum theory was that the ge-

“ometrical properties of plastic imperfection can be closely related to that of a



nonriemannian space. In other words, nonriemannian geometry provides a math-

ematical basis to describe the motion and défo;mation of such a continuum.

For a practical application of the theory we need to deal not only with the
geometrical properties of plastic imperfections but also with the dynamic gov-
erning equations. Especially, strong interest arose in the study of conservation
laws for elastic continuum since Esheblyl? introduced the concept of the force on
an elastic singularity using an energy-momentum tensor. A. G. Herrman!! gave
a brief account of the history of development in the study of conservation laws
for an elastic continuum. These studies1?~14 were generally done on the basis
of Noether’s theorem. This theorem is stated as follows: If an action integral of
a certain field continuum based on a Lagrangian function satisfying with Euler
equations of motion keeps infinitesimally invariant under some small trénsforma—
tions of independent or field variables, there must exist some conservation laws
for the field corresponding to the transformations and the number of conserva-
tion laws are just equal to that of the transformations proposed. Furthermore,
éince the action integral can be represented in both Lagrangian description and
Eulerian description, the duality principle of conservation laws for the both de-
scriptions can be established also based on Noether’s theorem.!1:14 This principle
says that the conservation laws established by simultaneously applying a small
transformations of the same kind to the Lagrangian and Eulerian action integrals
are dual to each other since they have a different mathematical form but contain

the same physical information.

On the other hand, interest arose in recent years in attempting to relate
dislocation and disclination theory to gauge theory. Since 1955 when Yang-

" Mills field theory15 was explored, one recognized that riemannian geometry itself



belongs to a kind of gauge field theory. In quite recent years,1® it was learned
from the study of supergravity theory that"no_nriemannianvgegmetry with non-
vanishing torsion also belongs to a kind of nonAbéﬁan gauge group theory.
From this point of view we are convinced that Abelian and nonAbelian gauge
field theory could be employed in a very natural way for the study of dislocation
and disclination continuum theory. In fact, some work has been done in this
regard. A. G. Herrmann!? first used Abelian gauge theory to deal with the
gauge invariances in a linear elastic dislocation continuum and to compare the
similarities of the governing equations of such a continuum with electromagnetic
field theory. Edelen,!® Kadic and Edelen!? studied the Yang-Mills type minimal
coupling theory for dislocation and disclination continuum. A unified approach
to deal with a defect continuum with dislocations and disclinations was suggested

using vielbein and gauge field theory.20

The purpose of the present paper is to derive and discuss the conservation
relations within the framework of nonlinear elastic dislocation and disclination
continuum theory by combining gauge field theory with Noether’s theorem. In
section 2, we shall briefly recall some basic formulation for describing the motion
and deformation of material continuum with dislocations and disclinations in
usir:g gauge field theory. In section 3, we employ Noether's theorem to disloca-
tion and disclination continua and derive the equations of variational invariance.
Based on these equations, in section 4 the conservation laws are obtained by
means of small transformations of various kinds which remain the action integrals
infinitesimally invariant. We have proved that in addition to the conventional
conservation laws such as the energy conservation law, material and physical

~ momentum conservation laws and material and physical momentum moment



conservation laws for isotropic materials, an additional conservation law called
the gauge moment conservation law can be constructed using a small rotation
of local anholonomic coordinate frame introduced forrvihe dislocated and discli-
nated body in the natural state, which is called the small gauge transformation

in nonAbelian gauge group theory. This conservation law appears to be new.

2. General Description of Motion and Deformation

By Vielbein and Gauge Field Theory

2.1 GENERAL DESCRIPTION

The motion and deformation of a material body with dislocations and discli-
nations can be described through three different states, namely the reference, the
deformed and the natural states. Hereafter, we always refer them to the r-, the
d- and the n-state respectively, and assume that in the reference (or undeformed)

state, the material body does not contain dislocations or disclinations.

Let z# (u = 1, 2,3) be the coordinate system with the basis vectors 22 and
metric tensor e?w = E?,-é‘?, for describing the position of a material point P in the
r—state. When the material body is loaded by external forces from outside, it will
move-continuously from the r- state to the d-state. Based on the two-point tensor

method as widely used by Eringen?1:22

we introduce a new coordinate system y°
with the basis vectors €0 and metric tensor egb = 3222 to describe the position of
the material point P at time {. During the motion, plastic imperfections could be
possibly created inside the body. For simplicity, we assume that both the basis

vectors 2?, and €0 are holonomic but not necessarily rectilinear.ll The motion

mLater we will ease this restriction.



of the material point P is assumed to be given by a relation
y* = y'(t, t) - T (2.1)

or its inverse
gt = zh(y%, 1) (2.2)

On the other hand, the n-state of the material body can be carried out by
cutting a very small volume element off from its surroundings and releasing it
from the constraints of the surroundings. The volume element is usually taken
from the d-state as spanned either by three basis vectors & (a = 1,2,3) or by
the corresponding comoving basis vectors &, = y @ where yp = 0y*/oz".
The process of cutting can be considered as an affine transformation ¢ of the

torn small material elements from the d-state to the n-state.

If we introduce a local rectangular coordinate system 24 with the local basis
vector é4, each small line element § R linking the two neighboring points P and

Q in the n-state can be expressed by
5ﬁ = 62.4 3A (2.3)

where z4 is the anholonomic coordinates of the material point P. Therefore,
there is no one-to-one correspondence between y® and z4 or z# and z4. To
describe the motion and deformation of the dislocated and disclinated body by

vielbein and gauge field theory, we present two description methods below.
2.2 LAGRANGIAN DESCRIPTION

In the Lagrangian description, z# and ¢ are taken as independent variables,

“meanwhile the motion y?, vielbeins ¢, 4 (in some references, called distortion)



and gauge potentials w, 4p are dependent variables considered as three kinds of
determining parameters for the dislocation and disclination continuum. In the

following, we shall recall some useful formulae in the Lagrangian description.

First, the transformation to map the line element d 7y linking the point P
and Q in the r-state to the line element § R given in (2.3) by a relation

bz4 = PuA dz# (2.4)

Since the coordinates z4 are anholonomic, the above equations (2.4) are not

integrable, therefore the quantities

Juv = ¢yA PuA (2.5)

can be considered as a metric tensor for a nonriemannian space M, where ¢, 4

are called vielbeins in particle physics.

To fully describe the geometric structure of the material manifold with dis-
locations and disclination, a gauge potential (also called gauge connections) is

introduced by gauge covariant derivatives of the vielbein?? as follows

Dy ¢4 = 0y dpaA — WyaB B (2.6)

where 8, = 0/0z#. We notice that the vielbeins ¢,4 and gauge potential
wyuAB possess two different indices u and A, B which do not belong to a same
space. We call the indices u4 and A the nonriemannian index and the gauge index
respectively. Thus, in dealing with the index p in ¢, 4 and wy4p, the vielbein

#,4 and gauge connection w, 4p are treated as vectors so that the metric tensor

~ guv can be used for lowering or raising the indicgs BV, ..., ete.



If we keep the index A unchanged, the conventional covariant derivatives of

vielbein ¢, 4 are defined by an affine connection I‘,);,, in the way

Vu bva =20y 6,4—T), bra (2.7)

or expressed in the contravariant form

Vi ¢4 =04 ¢4 +T & (2.8)

where the affine connection I‘,)}l, possesses only three nonriemannian indices.

Using two connections w, 4p and I‘z‘w, the total covariant derivative of any
physical quantity T which possesses the nonriemannian indices g, v, ..., and the
gauge indices A, B, ..., is defined by

D\ uu AB =0y T;w AB.. r)\p T'w AB..

o P (2.9)
e e e +F)\,7 T[IV..AB..+' .. —WXAD T U DB

From this definition, it is easily proved?? that the gauge connection wuAB has to

be antisymmetric in the indices A and B, that is,
WyAB = —WuBA (2.10)

Within the framework of the current dislocation and disclination continuum
theory, it is assumed that the total covariant derivatives of ¢,4 are identically

zero

Dy dpa =203y du4 _F;)lu #)A—wpaB ¢y =0 (2.11)

From (2.8), (2.7) and (2.11), we obtain two important basic equations

b=04Dudba , wuaB=905 b4 (2.12)



which represent the connections among ¢, 4, I‘,);,, and wy4B.

It is known in nonriemannian geometry that torsion and-gauge curvature
tensors play a central role in determining the geometric structure of the non-
riemannian space M, which are defined through the affine connection I‘}‘w and

gauge connection w, 4p by

A A A
T[lV = F[ﬂ”l == ¢A D[” ¢V]A (213)
FﬂVAB =2 3[” leAB - [Wu,(dv]AB (2.14)
respectively, where
[wp, wv]AB = wyAB WyEB — WyAE WuEB (2.15)

Substituting (2.12)2 into (2.14) and through some straightforward algebra,

we obtain
F;wAB = _Rp;(;')‘ PoA ¢i‘; (2.16)
where
_ R} =20, Ty, - oI5, +T5, 10, (2.17)

represents the conventional Riemann-Christoffel curvature tensor based on the

affine connection F‘); v

Since torsion tensor Tu,)) is antisymmetric in the nonriemannian indices g and

v, and the gauge curvature tensor F,, 4p is antisymmetric both in the nonrieman-
nian indices u,v and in the gauge indices A, B, there are only nine independent

“components left for torsion and curvature tensor. In addition, it is known from



the dislocation and disclination continuum theory® that the torsion and curvature
tensors are responsible for dislocations and disclinations respectively, therefore,

we niay define two following second order tensors
A
ot =t T,Y (2.18)
and

0PV = M PT Ry, (2.19)

to represent the dislocation density tensor and disclination density tensor respec-

tively, where €#27 is the permutation symbol divided by /9 and g = det(gyy).

Substitution of (2.13) into (2.18) leads to the decomposition of dislocation

density tensor into the following form

ot =N $4(B)\ Boj4 — “Ip4B| FolB) (2.20)
=Bt + Q¥

where

BMY = "7 ¢4 ) 6,14
(2.21)
OF = ¥ ¢4 w|B4 $)B

are called the pure vielbein part and the gauge connection part of dislocation
density, and the pure vielbein part B*Y is responsible only for the Burgers vector
density. When the space M is flat, that is, the gauge connection w, 4p vanishes,

the Burgers vector density is identically the dislocation density tensor.
2.3 EULERIAN DESCRIPTION

In the Eulerian description, instead of z* and ¢, the coordinates y® and ¢ are

“considered as independent variables. We use the inverse motion z#(y, t), vielbein

10



¢,4 and gauge connection wy4p to describe the motion and deformation of the

material body. The vielbein ¢, 4, gauge connection wy4p are related to ¢, 4 and

wuAB bY
bea =725 buay  Ppa=1Yp bas (2.22)
and
WeAB = T WuAB,  WpAB = Yy WeAB (2.23)
where
Yu = Zﬁ:, T = % (2.24)

Following the same rule as given in the previous derivation, we list below

some important formulae in the Eulerian description.

Metric tensor:
9ab = Paabra = 25 2} guv (2.25)
or
—- Juv = yz yzb/ Jab (2.25)2
Gauge Connections:
WaAB = —WaBA
Gauge covariant derivatives of ¢, 4 :

Dgops = Oadpa — WoaBEB , (2.26);

11



Dadd, = 846% + woanoh (2.26),

Affine covariant derivatives of daA:

Va¢ba = aa¢bA - rfmb‘ﬁcA (2-27)1

Vadh = 8ad, + T80 (2.27),

where I', are the conventional affine connections, which satisfies
A
Tey=yu5 zh 2y Ty, + v zhy (2-28)1

and

T, =yl b 22 TSy + 8, z) (2.28),

Total covariant derivatives of any quantity T,{"%5
DeTyi%in. = OeTis i — T T,

y (2.29)
- ... +P§fT,;',,f._,',}‘;,_+ .. —weanTit%p.,

~ Specially

Dodpa = Vadps — waapdeB

s o (2.30)
= LUaPpA ab¥cB

Using (2.22), (2.23) and (2.28), we may prove from the basic assumption (2.11)

Dagpa =0 | (2:31)

12



Therefore, we have

weaB = 8pVabsa, T = 04Dabsa (2:32)
Torsion tensor:
T, = I‘[cab] = z8 2} y§ T,},, (2.33)1
or
Ty, =yp v =t Tgp (233)¢

Gauge curvature tensor and Riemann—Christoffel curvature
FapaB = 20(awyjaB — [wa, wblaB
= —Rg.° 64 baB (2:34)
=zh 2} FuaB
where the Riemann-Christoffel curvature tensor Rabcd is expressed by

d AL d
Ry = :L‘g .’L'Z Te Yo Rpu)\ 7

(2.35)
= —$ca 8§ Fabap
" Dislocation density tensor in the Eulerian description
a® = 204 TS, — Bt 4 w* (2.36)
and
B = ¢* ¢ 8|, dq4 (2.37);
- 0% = ¢* 6%y wiqp4| Pom) 7 (2.37)2

13



Disclination density tensor in the Eulerian description

g0 — ¢ocd bef Reger =y, yb o#Y - (2.38)

From the above listed formulae, we may see that ¢,4, z# and wyap are
three kinds of basic determining parameters, based on which all other physical

quantities can be evaluated.

3. Noether’s Theorem and Variational Equations

3.1 NOETHER'S THEOREM

Let us take into account the following action integral
I(W4) = / L (2 W4, Wil W) gt (3.1)
Eq4

where L represents a Lagrangian density depending on the field variables ¥4i and
their first and second derivatives \I!;:" and \Il‘,?(" with respect to zj, in 4-dimensional
Euclidean space with rectangular coordinates z; (k= 1,2,3)and zg = ¢, tis
time. The integral (3.1) is taken over a bounded or unbounded region E4 in the
space. We should notice that the dependent variables WAi (4; = A;, Ao, ...) with

the generalized indices Ay, Ag, ... , might be scalar, vector or tensor—valued fields.

As we know, the variational Euler equations of motion following from 6 = 0

in (3.1) for the problem with fixed boundaries are

AL 8 [ 6L 9?2 oL
E(L) = oA o (aw f‘) + 52,97 (aw ;:;) =0 (k¢=0,1,2,3) (3.2)

In the action integral (3.1), we introduce the small transformations of depen-

dent and indepent variables as

Zr=2z+6x (k=0,1,23) , (3.3)

14



and

VA (2) = WAi(z) + 694 T (3.4)

where 8z; and 5WAi represent the variations of independent and dependent vari-
ables respectively. With these transformations (3.3) and (3.4), the action integral

(3.1) changes into

1(¥4) = / Lz, W%, W Wii)dt s (3.5)
E,
From (3.3) and (3.4), we calculate

V4 (2) = WAi(2) + 6,04 + ¥ioz, + O(827)
V& (2) = WH(2) + 6,9 + W62+ 0(62%)  (k=0,1,2,3)  (36)

V& (2) = Vi(2) + 8, W05 + Vi, b2m + O(627)
where 8, means a variational operator only due to the transformation of field

variables W4, thus
s = T () — wAi(2)
B = Wi (2) - ¥i(2) (3.7)
5V = Vi (2) - Vii(2)

In addition, the new volume element d* 2 will change into

dtz = [1 + (6z)x)d*2 (3.8)

Substituting (3.6) and (3.8) into (3.5) and making use of Taylor series expansion

technique, we obtain

T(¥4) = 194) + | (E(L)&..'I!A" + v,,F,,)d4z +0(622) (3.9)
E4

15



where the operator E on L is given in (3.2), V; means a 4-D divergence operator

and Fy, is expressed by

(3.10)
a’j‘. L oL L Vni(6xm)y
ya
kt
and
oL _ 4, oL 4; OL A.
By =Lby———r Wi 4+ ¥ 7 2 3.11
R A T K AR

From (3.9), we come to the conclusion that if the fields VA (A; = Ay, Ay, ...)

satisfy the corresponding Euler equations (3.2), that is,
E(L)=0 (3.12)

then the functional (3.1) is infinitesimally invariant at W¥4i under the small trans-
formations {3.3) and (3.4) of both independent and dependent variables if and
only if ¥4i also satisfies

—. ViFp =20 (3.13)

where F} is given in (3.10). The equation (3.13) which we call the equation
of variational invariance is the mathematic version of the celebrated Noether’s
theorem. In what follows, we shall apply this basic formalism (3.13) to derive
the conservation laws for the elastic dislocation and disclination continuum by

means of both Lagrangian and Eulerian representations, and discuss the duality

“principle of these two sets of conservation laws.

16



3.2 VARIATIONAL FORMULATION FOR DISLOCATION
AND DISCLINATION CONTINUUM

Cenerally speaking, a material body containing ;large number of moving
dislocations and disclinations could not possibly be considered as a conservative
system because during the motion of dislocations and disclinations, the macro-
scopic plastic deformation takes place as a irreversible thermo-mechanical process
and the plastic work done by stresses is irreversibly converted to the thermal en-
ergy leading to the evident increase of temperature inside the body. Meanwhile,
other irreversible effects, due to heat conduction and viscous dissipation are, in
general, involved. In this sense, the conservation laws which are valid for the
perfect elastic medium do not exist for the medium considered here. Sedov, et
al.” gave a rather detailed description based on a general variational principle
in constructing a mathematical model for dislocation continua by taking into

account all the irreversible phenomena mentioned above.

However, if the deformation which occurs in the material is not large, all the
irreversible effects can be ignored. In other words, the variations of entropy and
temperature inside body are not significant, therefore the conservation relations
can also be worked out within the framework of elastic dislocation and disclina-

tion ¢ontinuum theory as was done for perfect elastic medium.

For simplicity, in the following derivation, the coordinates z# and y® are
always assumed to be rectilinear so that the difference between the lower and

upper indexed vector- or tensor-valued quantitites disappears.

In Lagrangian representation, we assume in (3.1) that

2=t =z (k=p=123) 7 (3.14)

17



and the fields W4i take
(¥ Ai=Ay=a
vAi = 4,4 A; = Ay = pA (3.15)
wuaAB ~ Aj=A3=pAB

and the Lagrangian function has the form

L=L(-'tp, t; Ya, .i/a) Yau, ¢pAy ¢pA7 ¢uAU) ¢pAV7
(3.16)

WuAB, WuAB, WuABy, WyABy)
which does not depend on the second position derivatives of ys,¢,4 and w,4p,

that is,

oL oL 4L
3!/;‘}1; aﬂpr)‘u aquB)\u

=0 (3.17)

The Euler equations of motion corresponding to (3.2) are

oL [6L'_g'_(_9£]
aya aI” aya”‘ —at .aga
aL_a[aLl_a'aL_a oL (3.18)
a¢pA azy a¢uAVd 3t _aéﬂA a.'l:,, aéﬂAU )
8L 3 [ aL 1_a[ oL a8 ( oL
OwuaB O0zy|0wyapy]  0t|@wuap 0z, \Ow,aB

For the following small transformations of z,, ¢, ya, ¢4 and wysp
Iy = x4 + 0z,
t=t+ 6t
Yo =Ya+6ya (3.19)1
Sua=dua+6d,4

@uAB = WuAB +8wyaB

18



the equation (3.14) is specified to the form

9 , . )
a—t{e& + bybz, + Pybys + SuA5¢pA + SpABawﬁ}iB

oL
0 ¢uAU

+ waBu(5Ix)u}

14

3L
Prav(0T)\)u + LT
(3.19)9

d
+ 3z, {eu& + bubzy + Popbya + Syaudéua + SyaBubvaB

oL

0 WyABy

19



where the following abbreviations were introduced

N N 2 I
AW &

ol o) oL} .a AL -4

I Y
oV,

A
v, v,
o [ oL oL . 8L .
bu = 6:1:( 'Ai)— 'A.'] Wﬁ'— i Ay ‘I’{}“‘
[CTv\aW¥,'] 8V, oV,
al oL oL | .4, 9L A
bquLéuV*'[—( ; .)— ] ‘I'}l i .‘I’
Mgy owl gyt
oL B[BL]
P, = — -
0Ys 0zu|0Yay (3.20)
P = oL _g[ aL]
% = Oyay  Ot|0 sy

S . = _ oL
Ak = 0bvau Ot{o (i’uAu

¢ = OL _ 9 oL
#AB = 50,4 07,\0WuaBy

oL a oL
RSN

OwyABy N WyABy

in (3.20);_4, we have made use of the notations introduced in (3.15). Similarily,

~in Eulerian representation, we assume in (3.1) that

20



o=t zx=y, (k=a=1,23) (3.21)

and
Ty Ai=A1=p
o4 ={¢.4 A;=Ay;=2aA (3.22)
weAB ~ A;=A3 =aAB
here we use ®4 to replace ¥4 in (3.1) to distinguish Eulerian description from

Lagrangian description and the Lagrangian density takes the form

L =L(ya, L Zyu, fi?p, Tua, PaA> ¢aA’ ¢aAb: d’aAba
(3.23)1

WeAB) WeAB > WaABby WoABb)

or simply
L= Liys & o5, 0, 629 (3.23),

The Euler equations of motion corresponding to (3.2) are expressed by

oL 8 [ oL ol oL 8 [ AL
894 By, (a éf‘) = a_‘[a o 2 2ve (a d»f‘)] (3.24)

With the small transformations of yq, ¢, T4, d,4 and wy4p, as given by

Yo = Ya+ 6ya
t=1t+4 6t
2” = zp + 61“ (3.25)1

aaA = ¢aA + 6¢aA

@WgAB = WgAB + 6waaB

21



the equation (3.14) is also specified to the form

9 , ] .
5 {E&t + pabys + Bubzy + Sca8004 + SeaBbwiAB

oL
Bear(0uc)a+ 5 weani(Byc)a)
aAb aADBb
(3.25)¢

+

0
+ %{Ea& + pabdup + Buabzyu + StAabPsa + SbABaOVbAB

oL .
+— O Ppa+ o=
0 dbAa 0 WpABa

5&)@43} =0

22



where we introduced the following abbreviations

el L) 2] oo o
Ya

ad%) oo™ Py
o[ oL oL | .4 oL 4
Es =\ — || ® ——x ?
’ ?t(aéi;") a@t;"] 9 &,
p_'a/aL\ L]@ L oA
a = : e’ ——=. P
_3%\6@‘;") 23] ad
oL oLl .a oL a4
Pb—L5b+[ ( ) : .]‘I”"—."‘.‘I’
R (73 VY7 BEPY Yl BT S

p 0L _ oJaL
""a:t,, 8Ya10 Tpa

b
he Odsa OW\0dyas

g __f?__é___( oL )
A= Bbaar  OI\D P s

g oL 0 ( oL )
B “AB = B3 Gaan 095 \D Oanms
g _ oL _ 0 ( oL )
0ABb = 30aABb  OUs\O WuaBS

(3.26)

in (3.26);—4, we have also made use of the notations given in (3.22). In comparison

of (3.19) and (3.25), we may find out that these two equations (3.19) and (3.25)

of variational invariance are dual in form, where the role of z, and y, is merely

interchanged. Using these two basic equations, the conservation laws of various

“kinds and their duality principles can be worked out quite simply as discussed
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below.

4. Cénservation Laws and Their Principle on Duality

A. G. Herrmann!17 and Duan and G. Herrmann!? discussed in some de-
tail the conservation laws and their principle of duality in elastic continua in
terms of an alternate and simpler procedure. The results have been extended
to dislocation continuum by Duan and Duan,!® who indicated that if the same
kind of transformation of either independent or dependent variables which keeps
the action integral infinitesimally invariant is applied simultaneously to the La-
grangian and Eulerian conservation equations, for instance, (3.19)2 and (3.25)q,
we can obtain the dual conservation laws, which are expressed in different math-
ematical forms but contain the same physical information. Now, we intend to
extend the result further to dislocation and disclination continuum by using viel-
bein and gauge field theory. In dealing with the conservation laws, we have to
keep in mind that the small transformations of independent or dependent vari-
;a.bles should be chosen in such a way that the corresponding action integral must
remain infinitesimally invariant. Following this rule, except for the conventional
laws such as energy conservation law, material and physical momentum conser-
vation laws, material and physical angular momentum conservation laws, a new
conservation law called gauge moment conservation law is derived using a small

gauge transformtion.

Translation of Time and Energy Conservation Law

Let

ot = ¢, 5:tur= 0, Sya = 6¢!‘A = bwyaB = 0 (4.1)

24



in (3.19)2 and
St=e, Oya=0, bz =10p,4="bwap=0 (42)

in (3.25)9, where ¢; is a small time parameter, we obtain

Oe | deu

a ax“ = 0 (43)a
and

OF OF,

ﬁ-*. e 0 (4.3)

respectively. These two equations, which hold true if the Lagrangians do not
depend on ¢ explicitly, represent the energy conservation law and correspond to

each other.

Translation of the Material Coordinate Frame and Material Momentum

Conservation Law

Let

6t =0, 6ry =€, (#=1,2,3) (4.4)

in (3.19) and (3.25), where €, (p = 1,2, 3) is three small parameters of same order.
Since the translation of coordinate z, does not make any change in yq, ¢,4 and

wuAB, We have

6Ya = bppyp = bwyap =0 (4.5)

in (3.19)2 and

8Ys = 6¢a4 = &’-?aAB =0 ) (4'6)
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in (3.25)9. Substituting (4.4) and (4.5) into (3.19), we obtain

abu 3b,w . ) . - ‘_

Bt + 9z, 0 (4.7)a
Similarily

0B, 0Bus

These two equations represent material momentum conservation laws and are
dual to each other. As shown for elastic materials, these conservation laws hold

if and only if the Lagrangians do not depend on z# explicitly.

Translation of the Spatial Coordinates Frame and Physical Momentum

Conservation Law

In the classical physics, it is known that the translation of space coordinates
Ya leads to the linear momentum conservation laws. This also holds true in

dislocation and disclination continuum mechanics. To show this, let us suppose
ot =0, 8ys =¢€q (4.8)

in (3.19) and (3.25), where ¢, is three small parameters. By the same reason
as p;ésented above, translation of spatial coordinate frame does not make any

change in z,, #,4 and wysp OF ¢,4 and wy4p, thus we have

bzy =0, 6pya = bwyap =10 (4.9)
and

6¢QA =0, &‘)GAB = 0 7 (4.10)
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Substitution of (4.8) and (4.9) into (3.19) leads to the following physical momen-

tum conservation law in Lagrangian representation:

0Py  OPuy _

at * oz, 0 (4.11),
Similarily we obtain

8pa | Opab

5t + 30, (4.11),

which represents the physical momentum conservation law in Eulerian represen-
tation. In fact, the equations (4.11), and (4.11), correspond to each other and
hold true if and only if the Lagrangians L and L do not depend on y, explicitly.

If we compare the expressions for b, and by, in (3.20)3_4 with the expressions
for ps and p,y in (3.26)3—4, we may observe that b, and by, are related to z, YA
in the same fashion as p, and p,; are related to y,, ®4i. This comparison is
also confirmed for By, Bug and Py, Pgy. We call by, byy (or By, By, ) the
material momenta and ps, pgp (or Ps, Pau) the physical momenta. The material
momenta are independent of the physical momenta, therefore, the conservation
laws (4.7),_p by no means imply the conservation equations (4.11), — (4.11); and

vice-versa.

As mentioned in the introductory section, the above obtained conservation
laws can be derived using a different procedure. In fact if we take the derivatives
of Lagrangian function L in (3.1) with respect to 2z (k =0, 1, 2, 3), through some

straightforward algebra, we may obtain

7] oL

_ E(L) ¥+ 2 By = —(—)m (4.12)

62’( azk
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where ( )ezp means the explicit derivative of the argument and

- oL _ A d oL- A; . OL — 4,
Bie=—Lbut o ¥ _E(a—qr“_g) Vw1
m m

represents an energy-momentum tensor in 4-dimensional space. From (4.12), we
conclude that if the field variables W4i satisfy with Euler equation of motion
(3.2) and the Lagrangian does not depend on z;(k = 0,1, 2, 3) explicitly, then,
the following conservation equations

aBkg _
62( o

0 (4.14)

hold true.

Obviously, the conservation equations (4.3),—p, (4.7)s—p and (4.11),_; are
the specific forms of (4.14) when the Lagrangian function L and z; take either
(3.15) and (3.17) or (3.21) and (3.23) respectively.

In defect mechanics of elastic continua, the explicit derivative of the La-
grangian with respect to material coordinates has been termed as “a material
force density” acting on the elastic singularity or inhomogeneity. Independence
of the Lagrangian on material coordinates leads to conservation of material mo-
mentum. On the other hand, as known in classical physics, the explicit derivative
of the Lagrangian with respect to space coordinates represents a real force acting
on that element. When the Lagrangian does not depend on the space coordinates
explicitly, the conservation laws of physical momentum hold true. Now, from the
above derivation, we have easily extended the results to dislocation and disclina-

tion continuum.
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Rotation of Material Coordinate Frame and Material Momentum Moment

Conservation Law R o

The small rotation of a material coordinate frame can be expressed by a

transformation of coordiates
62y = €y ap T), (4.15)

where €, are permutation symbol, and a,, are the three small arbitrarily chosen

parameters. We introduce

6z, = = €4 Oy (4.186)

to express this transformation, by which any physical quantity f,, . having in-

dices p, v, ... is transformed to
0fup.. = 53;4)\ Naw... + 0z, fu)\... +... (4.17)

Applying the rule (4.17) to the vielbein and gauge connection transformations

6,4 and éwyap, ... etc in (3.19)2, we obtain

Omyy, Omgyy
e‘“’*( ot '+ oz, )=° (4.18)s

where we define my, and mgy, as

Muy =by Ty + 3,4 bua+ 3,48 WoAB

dL aL (4.19)

+ Puar +5—— WuAB)
dbuar dwpamn

Mopy = bop Ty + 8,40 Pra + 8uABo WvAB

oL - oL . (4.20)

+ = bvat 53— WuaB
a ¢pAa 0 WuABo
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represent the material momentum momenta.

In Eulerian representation, z, (4 = 1,2,3) are treated as dependent vari-
ables, therefore, the rotation of coordinates z, cannot make any change to the

veilbein and gauge conection. Substitution of (4.15) into (3.25) leads to

oM, oM,
6‘“’*( at T a;:a) =0 (4.18),
where
M"V = Bﬂ Ty, Muya = Bﬂa Iy (4.21)

The equations (4.18); and (4.18), represent the same physical law — material
momentum moment conservation law. The equations (4.18), take a very compli-
cated form, but, (4.18) is given in a rather simple form. Usually, we make use

of (4.18), to replace (4.18), in solving practical problems.

Rotation of Space Coordinate Frame and Conservation Laws of Physical

Momentum Moment

The physical momentum moment conservation law can be derived by apply-

ing the small rotation transformation of space coordinates yq

0ya = €gpe Op Yo (4-22)

to the equations (3.19); and (3.25)2 in the same fashion as we did for (4.18), —

(4.18);. This conservation law is expressed either by

Om g 3muab) _
eGbC( 6t + ax" - 0 7 (4.23)a
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in its Lagrangian representation or by

OMgp 3Mdab) a8

eabc( ot + 3y =0 (4.23);

in its Eulerian representation, where
map = Py ys, Myeh = Pau Yo (4.24)

and
Mgy = pa yp+ Saa $b4 + SaaB WeAB
oL aL (4.25)
+ — Pade + = W
3 Pode aAe 8 WyABe aABe

Mgap = Pds Yo+ Saad Pba + SaABd WbAB

aL - AL (4.26)

Dband 4 OWaBd

Gauge Transformation and Gauge Moment Conservation Law

In dealing with the conservation laws for dislocation and disclination contin-
uum, a question arises: except for the conservation laws derived above, does there
exist-another kind of conservation law which is related to gauge transformation?
To answer the question, let us introduce a small rotation transformation for local

anholonomic coordinate frame as

624 = €5pc ap d2¢ (4.27)

where a¢ are small parameters. With the transformation (4.27) we call gauge

“one and using the same rule as given in (4.17), the variations of vielbein and
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gauge connection and their derivatives are given by
§du4 = €aBC OB $uC
8 ¢uap = g (€AEC WucB + €BEC WpAC)
= 20 €[A|EC WuC|B|
56,4 = €aBC @B FuC
8 wuAB = 20E €[A|[EC “uC)|B] (4.28)
8 ¢uav = €ABC @B Pucv
5quBV == 20 €[A|EC Y“pC|Bv
38,40 = €ABC @B Pucy

8 wuaBy = 20E €jalEC Yuc|B)y
Since the rotation of local anholonomic coordinate system is independent of the
coordinate z, or ys and does not make any change in the indices p and a,

therefore under this transformation (4.27), we have
bt =6z, =06y, =0 (4.29)

Substituting (4.28) and (4.29) into (3.19), we find the following conservation equa-

tions
%‘lf-+% —0 (4.30)s
where
9E = €AEC Spo $pC +2 €a|EC YuC|B) SpAB
9E, = €AEC Svap $vC + 2 SuABu €[AIEC “rC)B) (4.31)
_ + €4EC .aL éS,,C+2 ——?—!’——— €|A|EC d)uclB)
0 dyau 0 WyABu ,
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_ + €AEC

are called gauge moment tensor in Lagrangian representation. When disclinations

disappear, that is, the gauge connection vanishes, the equations (4.30)s becomes

0 0 oL -
fAEC[at( BA ¢p0) + ( pAv ¢uC + a¢"AV ¢uC)] =0 (4.32)

Especially, for the static problem the above equations are simplified to

6 6W
or
€AEC 7 3 (Ouva Puc) =0 (4.33)2

where W is the internal energy of the dislocation continuum per unit volume
before deformation, and

ow

o = R 4.34
uvA 3 ¢p,Au ( )

tepresents the hyperstress tensor in Lagrangian representation.

In a very similar way, the gauge moment conservation equations (4.30)g can

be written as

0GE , 9GE,s

5 04 =0 (4.30)(,

in Eulerian representation, where

GE = €AEC SoA $ec 2 €a|EC Wac|B] SeAB

GEs = €AEC SbAa $5C + 2 €| 4|EC “bC|B] StABa (4.35)

cb + 2 oL € w
bC 0
Py A a,wa,Ba [A|EC bCIB]r
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are also called gauge moment tensors in Eulerian representation. When the

disclinations disappear inside material body, the equations (4.30) reduces to

07} 0 aL -
fAEC{a(SaA bac) + 6—ya(SbAa $sc + EY ¢bC)] =0 (4.36)

Furthermore, for the static problem, this equation is simplified to

0 ( ow )
€D =0 4.37
AEC 5\ 562 i 1%3 (4.37)
or
€EAEC aiya(a"“ dpc) =0 (4.37)2
and
oW
bad = a¢bAa

represents the hyperstress tensor in Eulerian representation.

Finally, we should notice that since gauge transformation (4.27) has nothing
‘to do with time and point coordinates, whether or not the Lagrangian function
depends on time or the coordinates explicitly, the gauge moment conservation
law always holds true. On the other hand, we can also prove from (4.33) that the
dislocation density tensor a®¥ defined in (2.20) is symmetrical. (Further study
of the gauge moment conservation laws and its application will be given in a

separate paper.)

5. Concluding Remarks

Combining the vielbein and gauge field theory of dislocation and disclina-

" tion continua with Noether’s theorm, an effective method is presented to deal

34



with conservation laws and their duality principles in such media. Besides the
conventional conservation laws derived from the conventional small transforma-
tion of time, material and spatial coordinates, the proéédure yields an additional
conservation law termed as the gauge moment conservation law by employing
a small gauge transformation to the variational invariance equations. This law
corresponds to the isotropic characteristics of the gauge field. When dislocation
and disclination vanish, all conservation laws reduce to those studied extensively
in elastic (linear or non-linear) continuall:13:14 therefore, the results given in the
paper can be considered as a natural extension from elastic continuum theory to

dislocation and disclination continuum theory.

We notice that all conservation laws are expressed in 4-dimensional divergence-
free forms. For the static problem, the conservation laws can be represented
through so-called path-independent integral forms which are of major impor-
tance in the study of defect and fracture mechanics. We would like to mention
here that any physical quantities appearing in the Lagrangian must remain not
;)nly covariant with respect to coordinate transformations but invariant with
respect to gauge transformations as well. Following this principle, the elastic
strain tensor, dislocation density and disclination density tensors and their time
differentials are suggested to be such proper quantities. In a separate paper, we
shall discuss this issue in some detail where special attention will be given to
the problem of determining the dependence of the Lagrangian on its determining
parameters and the practical application of path-independent integrals due to

conservation laws.
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