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ABSTRACT 

The geometric structure of a material manifold with dislocations and disclina- 

tions is briefly introduced using vielbein and gauge field theory. Combining this 

theory with Noether’s theorem we present a unified equation of variational invari- 

ance and obtain different type of conservation laws for dislocation and disclination 

continuum under the assumption that the variations of entropy and temperature 

inside body can be ignored. In particular, this procedure yields a new conserva- 

tion relation by means of a small gauge transformation which is called the gauge 

conservation law. The duality principle of conservation laws which are present in 

material and spatial spaces is clearly demonstrated by the variational invariance 

equations. 

1. Introduction 

Defect continuum mechanics is an important developing branch of modern 

continuum mechanics, which aims at establishing a sound theoretical basis for 

exploring the elastic and nonelastic behaviors of material with imperfections of 
-. 

various kinds, such as voids, inclusions, inhomogeneities, microcracks, disloca- 

tions as well as disclinations on the microscopic and macroscopic levels. Since 

1952 when Kondo,lp2 initially studied the theory of dislocation continua, followed 

by KrBner,3p4 Bilby,5js et al., a great deal of progress has been made in this field 

(for instance, see Refs. 7-9). The most significant contribution originally due 

to Kondo in the development of dislocation continuum theory was that the ge- 

-ometrical properties of plastic imperfection can be closely related to that of a 
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nonriemannian space. In other words, nonriemannian geometry provides a math- 

ematical basis to describe the motion and deformation of such a continuum. _ - 

For a practical application of the theory we need to deal not only with the 

geometrical properties of plastic imperfections but also with the dynamic gov- 

erning equations. Especially, strong interest arose in the study of conservation 

laws for elastic continuum since Eshebly’O introduced the concept of the force on 

an elastic singularity using an energy-momentum tensor. A. G. Herrmanll gave 

a brief account of the history of development in the study of conservation laws 

for an elastic continuum. These studies12-14 were generally done on the basis 

of Noether’s theorem. This theorem is stated as follows: If an action integral of 

a certain field continuum based on a Lagrangian function satisfying with Euler 

equations of motion keeps infinitesimally invariant under some small transforma- 

tions of independent or field variables, there must exist some conservation laws 

for the field corresponding to the transformations and the number of conserva- 

tion laws are just equal to that of the transformations proposed. Furthermore, 

since the action integral can be represented in both Lagrangian description and 

Eulerian description, the duality principle of conservation laws for the both de- 

scriptions can be established also based on Noether’s theorem.11v14 This principle 

says-that the conservation laws established by simultaneously applying a small 

transformations of the same kind to the Lagrangian and Eulerian action integrals 

are dual to each other since they have a different mathematical form but contain 

the same physical information. 

On the other hand, interest arose in recent years in attempting to relate 

dislocation and disclination theory to gauge theory. Since 1955 when Yang- 

-Mills field theory15 was explored, one recognized that riemannian geometry itself 
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belongs to a kind of gauge field theory. In quite recent years,ls it was learned 

from the study of supergravity theory thatnonriemannian geometry with non- _ - . 
vanishing torsion also belongs to a kind of nonAbelian gauge group theory. 

From this point of view we are convinced that Abelian and nonAbelian gauge 

field theory could be employed in a very natural way for the study of dislocation 

and disclination continuum theory. In fact, some work has been done in this 

regard. A. G. Herrmann l7 first used Abelian gauge theory to deal with the 

gauge invariances in a linear elastic dislocation continuum and to compare the 

similarities of the governing equations of such a continuum with electromagnetic 

field theory. Edelen, l8 Kadic and Edelenlg studied the Yang-Mills type minimal 

coupling theory for dislocation and disclination continuum. A unified approach 

to deal with a defect continuum with dislocations and disclinations was suggested 

using vielbein and gauge field theory.20 

The purpose of the present paper is to derive and discuss the conservation 

relations within the framework of nonlinear elastic dislocation and disclination 

continuum theory by combining gauge field theory with Noether’s theorem. In 

section 2, we shall briefly recall some basic formulation for describing the motion 

and deformation of material continuum with dislocations and disclinations in 

using gauge field theory. In section 3, we employ Noether’s theorem to disloca- 

tion and disclination continua and derive the equations of variational invariance. 

Based on these equations, in section 4 the conservation laws are obtained by 

means of small transformations of various kinds which remain the action integrals 

infinitesimally invariant. We have proved that in addition to the conventional 

conservation laws such as the energy conservation law, material and physical 

-momentum conservation laws and material and physical momentum moment 
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conservation laws for isotropic materials, an additional conservation law called 

the gauge moment conservation law can be constructed using a small rotation _ - 
of local anholonomic coordinate frame introduced for the dislocated and discli- 

nated body in the natural state, which is called the small gauge transformation 

in nonAbelian gauge group theory. This conservation law appears to be new. 

2. General Description of Motion and Deformation 

By Vielbein and Gauge Field Theory 

2.1 GENERAL DESCRIPTION 

The motion and deformation of a material body with dislocations and discli- 

nations can be described through three different states, namely the reference, the 

deformed and the natural states. Hereafter, we always refer them to the r-, the 

d- and the n-state respectively, and assume that in the reference (or undeformed) 

state, the material body does not contain dislocations or disclinations. 

Let xp (j4 = 1,2,3) be the coordinate system with the basis vectors $ and 

metric tensor eO,, = i$.$ for describing the position of a material point P in the 

r-state. When the material body is loaded by external forces from outside, it will 

move-continuously from the r- state to the d-state. Based on the two-point tensor 

method as widely used by Eringen21pz we introduce a new coordinate system ya 

with the basis vectors e and metric tensor et* = e-3 to describe the position of 

the material point P at time t. During the motion, plastic imperfections could be 

possibly created inside the body. For simplicity, we assume that both the basis 

vectors ?$ and e are holonomic but not necessarily rectilinear.ll] The motion 

- 

[l)L t a er we will ease this restriction. 
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of the material point P is assumed to be given by a relation 

Y0 = y=(#, t)- ~.. - - (2.1) : 

or its inverse 

xp = sqy”, t) (2.2) 

On the other hand, the n-state of the material body can be carried out by 

cutting a very small volume element off from its surroundings and releasing it 

from the constraints of the surroundings. The volume element is usually taken 

from the d-state as spanned either by three basis vectors $ (a = 1,2,3) or by 

the corresponding comoving basis vectors 2, = 3; e, where y$ E 8ya/&@. 

The process of cutting can be considered as an affine transformation 4 of the 

torn small material elements from the d-state to the n-state. 

If we introduce a local rectangular coordinate system zA with the local basis 

vector ?!A, each small line element 6 2 linking the two neighboring points P and 

G in the n-state can be expressed by 

where %A is the anholonomic coordinates of the material point P. Therefore, 

there is no one-to-one correspondence between ya and %A or 2” and %A. To 

describe the motion and deformation of the dislocated and disclinated body by 

vielbein and gauge field theory, we present two description methods below. 

2.2 LAGRANGIAN DESCRIPTION 

In the Lagrangian description, ~9’ and t are taken as independent variables, 

-meanwhile the motion y”, vielbeins #,,A (in some references, called distortion) 

t? 



and gauge potentials wPm are dependent variables considered as three kinds of 

determining parameters for the dislocation .and disclination continuum. In the _ - 
following, we shall recall some useful formulae in the Lagrangian description. 

First, the transformation to map the line element ds’o linking the point P 

and & in the r-state to the line element 62 given in (2.3) by a relation 

Since the coordinates %A are anholonomic, the above equations (2.4) are not 

integrable, therefore the quantities 

g/m = tipA &A (2.5) 

can be considered as a metric tensor for a nonriemannian space M, where 4@ 

are called vielbeins in particle physics. 

To fully describe the geometric structure of the material manifold with dis- 

locations and disclination, a gauge potential (also called gauge connections) is 

introduced by gauge covariant derivatives of the vielbei#) as follows 

D, &A = 6, &A - W/,LAB &B (2.6) -. 

where 3, E 8/&p. We notice that the vielbeins tiPA and gauge potential 

wPm possess two different indices p and A, B which do not belong to a same 

space. We call the indices p and A the nonriemannian index and the gauge index 

respectively. Thus, in dealing with the index p in 4@ and w,,~, the vielbein 

f#IPA and gauge connection wPm are treated as vectors so that the metric tensor 

-gPV can be used for lowering or raising the indices p, u, . . . . etc. 



If we keep the index A unchanged, the conventional covariant derivatives of 

vielbein 4PA are defined by an afhne connection I$, in the way _ - 

v, ‘&A = 3, &A - r;v hA (2.7) 

or expressed in the contravariant form 

where the affine connection I” PV possesses only three nonriemannian indices. 

Using two connections wclm and I& the total covariant derivative of any 

physical quantity 2’ which possesses the nonriemannian indices p, u, . . . . and the 

gauge indices A, I?, . . . . is defined by 

From this definition, it is easily proved 2o that the gauge connection wPm has to 

be antisymmetric in the indices A and B, that is, 

WpAB = -wpBA (2.10) 

Within the framework of the current dislocation and disclination continuum 

theory, it is assumed that the total covariant derivatives of +,,A are identically 

zero 

From (2.6) (2.7) and (2.11), we obtain two important basic equations 

= & D, &A , WpAB = & v, &A (2.12) 
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which represent the connections among #PA, I$, and wctm. 

It is known in nonriemannian geometry that torsion and-gauge curvature 

tensors play a central role in determining the geometric structure of the non- 

riemannian space M, which are defined through the afhne connection I’$ and 

gauge connection wP~ by 

(2.13) 

F CIvm = 2 qp %+4B - hr WVIAB (2.14) 

respectively, where 

iww w&B - WpAB WuEB - %AE WpEB (2.15) 

Substituting (2.12)~ into (2.14) and through some straightforward algebra, 

we obtain 

where 

(2.16) 

(2.17) 

represents the conventional Riemann-Christoffel curvature tensor based on the 

affine connection r-j),. 
Since torsion tensor T&, is antisymmetric in the nonriemannian indices p and 

u, and the gauge curvature tensor Fpvm is antisymmetric both in the nonrieman- 

nian indices /.J, v and in the gauge indices A, B, there are only nine independent 

-components left for torsion and curvature tensor. In addition, it is known from 
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--.- 
the dislocation and disclination continuum theory9 that the torsion and curvature 

tensors are responsible for dislocations and disclinations respec_tively, therefore, 

we may define two following second order tensors 

and 

(2.18) 

(2.19) 

to represent the dislocation density tensor and disclination density tensor respec- 

tively, where PXa is the permutation symbol divided by fi and g = det(gpv). 

Substitution of (2.13) into (2.18) leads to the decomposition of dislocation 

density tensor into the following form 

&lrV ,#u 43[& 4ujA - wIXIABl 4ujB) 
(2.20) 

=Bp” + slpv 

where 

B’LV = @  45 a[~ 4+ 
(2.21) 

fp = &a 42 ~J[x~BA~ 4~p 

are Galled the pure vielbein part and the gauge connection part of dislocation 

density, and the pure vielbein part BP” is responsible only for the Burgers vector 

density. When the space M is flat, that is, the gauge connection wcc~ vanishes, 

the Burgers vector density is identically the dislocation density tensor. 

2.3 EULERIAN DESCRIPTION 

In the Eulerian description, instead of zp and t, the coordinates y” and t are 

-considered as independent variables. We use the inverse motion zp(y, t), vielbein 
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-- -- 
q$aA and gauge connection w,~ to describe the motion and deformation of the 

material body. The vielbein #aA, gauge connection w,~ are related to #PA and _ - 

“/LAB bY 

d*A = 2: $LA, dpA = Y; 6aA (2.22) 

and 

WaAB = x! WpAB7 “PM = Y; waAB (2.23) 

where 

(2.24) 

Following the same rule as given in the previous derivation, we list below 

some important formulae in the Eulerian description. 

Metric tensor: 

or 

SW 
b 

= Yi Yu gab 

Gauge Connections: 

WaAB = -“JaBA 

Gauge covariant derivatives of $a,4 : 

Da#bA = aa#bA - vaAB#bB 

(2.25)1 

P-25)2 

wwl 
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-- - 
(2.2% 

P-27)1 

Da+: = aa& + wam$k 

Afline covariant derivatives of #d: - --. - - 

va#ba = aad)bA - ribticA 

Va$i = aa + &4~ (2.27)2 

where r$, are the conventional affine connections, which satisfies 

and 

(2.28)2 

Total covariant derivatives of any quantity 7’,$!&.. 

Specially 

(2.30) 

Using (2.22), (2.23) and (2.28), we may prove from the basic assumption (2.11) _ 

that 

Da$bA = ’ (2.31) 
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Therefore, we have 

WaA.B = &va4bA, r:; = 42Da4aA - 

Torsion tensor: 

TC ab = rfab] = xt xi yg Tkv 

or 

T;” = Y; !Ji? x: T:b 

(2.32) 

P-33)1 

P-33)2 

Gauge curvature tensor and Riemann-Christoffel curvature 

F abAB = 2d[awb]AIl - ba, WbhB 

= -Rabc d 4& 4dB 

= xg xi FpvAB 

(2.34) 

where the Riemann-Christoffel curvature tensor Rabcd is expressed by 

R d abc = xi x; x; y; Rpvx u 

Dislocation density tensor in the Eulerian description 

Q ab = eacd y-b 
cd = gab + wab (2.36) 

and 

gab = ,acd 4h “[c 4AA 

nab = ,acd 4: “[dBAl fbB] 

(2.35) 

P37h 

(2.3% 
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-- .- 
Disclination density tensor in the Eulerian description 

pb = cacd chef Rcdef = yf: & ecIv - (2.38) 

From the above listed formulae, we may see that f$aA, x/L and warn are 

three kinds of basic determining parameters, based on which all other physical 

quantities can be evaluated. 

3. Noether’s Theorem and Variational Equations 

3.1 NOETHER'STHEOREM 

Let us take into account the following action integral 

(3.1) 
E4 

where L represents a Lagrangian density depending on the field variables & and 

their first and second derivatives 92 and 42 with respect to zk in 4-dimensional 

Euclidean space with rectangular coordinates %k (kr = 1,2,3) and ~0 = t, t is 

time. The integral (3.1) is taken over a bounded or unbounded region E4 in the 

space. We should notice that the dependent variables qAi (Ai = Al,Az, . ..) with 

the generalized indices Al, Al, . . . , might be scalar, vector or tensor-valued fields. 

& we know, the variational Euler equations of motion following from 6I= 0 

in (3.1) for the problem with fixed boundaries are 

E(L)= -$- i-g.E@)+&(-?&o w=oJJ~3) (3.2) 

In the action integral (3.1), we introduce the small transformations of depen- 

dent and indepent variables as 

??k = %k + 6%k (k = 9,&T 3) (3.3) 
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where 6%k and 6\Ir Ai represent the variations of independent and dependent vari- 

ables respectively. W ith these transformations (3.3) and (3.4), the action integral 

(3.1) changes into 

From (3.3) and (3.4) we calculate 

Q(E) = $yr) + * * 6*1Ir? + s& + O(Sz2) (IF = 0, 1,2,3) w-9 

It2 (2) = s;;(z) + 6&j + \El& -% 6% + O(sz2) ,,J 

where & means a variational operator only due to the transformation of field 

variables \Irh, thus 

In addition, the new volume element d4 E will change into 

d4 2 = [I + (&k)k]d% (3.8) 

Substituting (3.6) and (3.8) into (3.5) and making use of Taylor series expansion 

technique, we obtain 

r(+4) = I(qAi) + /(E(qti,r4 + VkFk)d4z + o(ik2) 

E4 

(3-9) 
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-- - 
where the operator E on L is given in (3.2), vk means a 4-D divergence operator 

and Fk is expressed by 

(3.10) 

and 

BkC llL d+v =LbkL-agAi c 
aL4 gi 

k X”’ 
(3.11) 

From (3.9), we come to the conclusion that if the fields 04 (Ai = Al,A2, . ..) 

satisfy the corresponding Euler equations (3.2), that is, 

E(L) = 0 (3.12) 

then the functional (3.1) is infinitesimally invariant at 94 under the small trans- 

formations (3.3) and (3.4) of both independent and dependent variables if and 

only if W+ also satisfies 

-. v& = 0 (3.13) 

where Fk is given in (3.10). The equation (3.13) which we call the equation 

of variational invariance is the mathematic version of the celebrated Noether’s 

theorem. In what follows, we shall apply this basic formalism (3.13) to derive 

the conservation laws for the elastic dislocation and disclination continuum by 

means of both Lagrangian and Eulerian representations, and discuss the duality 

-principle of these two sets of conservation laws. 
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3.2 VARIATIONAL FORMULATION FOR DISLOCATION 

AND DISCLINATION CONTINUUM 
_ - 

Generally speaking, a material body containing a large number of moving 

dislocations and disclinations could not possibly be considered as a conservative 

system because during the motion of dislocations and disclinations, the macro- 

scopic plastic deformation takes place as a irreversible thermo-mechanical process 

and the plastic work done by stresses is irreversibly converted to the thermal en- 

ergy leading to the evident increase of temperature inside the body. Meanwhile, 

other irreversible effects, due to heat conduction and viscous dissipation are, in 

general, involved. In this sense, the conservation laws which are valid for the 

perfect elastic medium do not exist for the medium considered here. Sedov, et 

a1.7 gave a rather detailed description based on a general variational principle 

in constructing a mathematical model for dislocation continua by taking into 

account all the irreversible phenomena mentioned above. 

However, if the deformation which occurs in the material is not large, all the 

irreversible effects can be ignored. In other words, the variations of entropy and 

temperature inside body are not significant, therefore the conservation relations 

can also be worked out within the framework of elastic dislocation and disclina- 

tion-continuum theory as was done for perfect elastic medium. 

For simplicity, in the following derivation, the coordinates x” and ya are 

always assumed to be rectilinear so that the difference between the lower and 

upper indexed vector- or tensor-valued quantitites disappears. 

In Lagrangian representation, we assume in (3.1) that 

zo = t, “k = xj~ (A: = p = 1,2,3) (3.14) 
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and the fields qAi take 
__~. - kLpl=a _ - 

Ai=Az=/L4 

and the Lagrangian function haa the form 

(3.15) 

(3.16) 
W/&3’ G,ABt 

. 
WpABVr “pABv 1 

which does not depend on the second position derivatives of ya,4PA and wPm, 

that is, 

The Euler equations of motion corresponding to (3.2) are 

For the following small transformations of xP, t, ya, 4P,4 and wlrm 

zp=xp+bxp 

t= t+t% 

sia =Ya+6ya 

(3.17) 

(3.18) 

W9)l 

&LA = 4pA + b4pA 
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the equation (3.14) is specified to the form 

- 
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where the following abbreviations were introduced 
-- - 

_ - 

S aL a aL 
~4 =-------- - a4vA/~ I I at 34,~ 

- 

aL a aL 
'Pm E a Lj,, -- 

( 1 axv aGpABv 

aL a aL S vABp = -- 
wdBIL L 1 at a44Bp 

(3.20) 

in (3.20)1-4, we have made use of the notations introduced in (3.15). Similarily, 

-in Eulerian representation, we assume in (3.1) that 
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-- - 

and 

20 = t, Zk = ya (k = a =-1,2,3‘) - (3.21) 

Xc( A,-=Al=p 

(PAi E 4aA A;=Az=aA (3.22) 

OaAB &=&=aAB 

here we use iph to replace qk in (3.1) to d’ t’ 1s mguish Eulerian description from 

Lagrangian description and the Lagrangian density takes the form 

or simply 

f =L(Ya, t; xp, 2~49 xpa, daA, daA, 4aAbt JaAb, 

OaAB9 GaAB9 waA.Bb, GaABb) 
(3.% 

(3.23)2 

The Euler equations of motion corresponding to (3.2) are expressed by 

$&(-+q) = ;[--+&(--+)I 
a a 

(3.24) 

With the small transformations of ya, t, xIL, $!Ja,4 and w,~, as given by 

!ia = Ya + &/a 

t=t+st 

% = xp + 62, (3.2511 

$aA = daA + &aA 

OaAB = waAB + swa.&l 
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the equation (3.14) is also specified to the form 

al, 
+ G +cAb(&c)a + a :aLmb wcABb(6Yc)o) 

a 

a 
-Q&l 1 

Ea6t -k pab@b + BpaSzp + SbAawbA + SbABa~bAB 

(3.25)2 

al 
+ --6&A+ 

aL 

a 4bAa a ;bABa 

- 
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where we introduced the following abbreviations 
-- 

a aL BP=+-- [ 1 j4 ah a &pa 

B 
aL a aL =---- w - [ 1 axpa at a ipa 

S aAb 

S aABb - aWi~b-&,(acfa~,> 

(3.26) 

in (3.26)1-4, we have also made use of the notations given in (3.22). In comparison 

of (3.19) and (3.25), we may find out that these two equations (3.19) and (3.25) 

of variational invariance are dual in form, where the role of xP and ya is merely 

interchanged. Using these two basic equations, the conservation laws of various 

-kinds and their duality principles can be worked- out quite simply as discussed 
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below. 
-- -- 

_ - 
4. Conservation Laws and Their Principle of Duality 

A. G. Herrmann11,17 and Duan and G. Herrmann14 discussed in some de- 

tail the conservation laws and their principle of duality in elastic continua in 

terms of an alternate and simpler procedure. The results have been extended 

to dislocation continuum by Duan and DuanlU who indicated that if the same 

kind of transformation of either independent or dependent variables which keeps 

the action integral infinitesimally invariant is applied simultaneously to the La- 

grangian and Eulerian conservation equations, for instance, (3.19)2 and (3.25)2, 

we can obtain the dual conservation laws, which are expressed in different math- 

ematical forms but contain the same physical information. Now, we intend to 

extend the result further to dislocation and disclination continuum by using viel- 

bein and gauge field theory. In dealing with the conservation laws, we have to 

keep in mind that the small transformations of independent or dependent vari- 

ables should be chosen in such a way that the corresponding action integral must 

remain infinitesimally invariant. Following this rule, except for the conventional 

laws such as energy conservation law, material and physical momentum conser- 

vation laws, material and physical angular momentum conservation laws, a new 

conservation law called gauge moment conservation law is derived using a small 

gauge transformtion. 

Translation of Time and Enertrv Conservation Law 

Let 

St = et, 62~ = 0, 6ya = 64pA = 6Wpm = 0 (4.1) 
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in (3.19)2 and 

6t = Et, 6ya = 0, 62, =-waA e.Gw& = 0 (4.2) 

in (3.25)2, where 6t is a small time parameter, we obtain 

de aecr =o 
z+aZ P 

and 

aE aEaEo 
at+ aya (4-3)b 

(4J)a 

respectively. These two equations, which hold true if the Lagrangians do not 

depend on t explicitly, represent the energy conservation law and correspond to 

each other. 

Translation of the Material Coordinate Frame and Material Momentum 

Conservation Law 

Let 

6t = 0, 6x, = cp (P = 1,2,3) (4.4) 

in (3.19) and (3.25), where 6P (p = 1,2,3) is three small parameters of same order. 

Since the translation of coordinate xP does not make any change in ya, 4ltA and 

wpm, we have 

in (3.19)2 and 

bya = 64pA = &dpm = 0 (4.5) 

&/a = &aA = &aAB .= o 

25 
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in (3.25)~. Substituting (4.4) and (4.5) into (3.19), we obtain 
-- - 

ab ab,,=~ ._ - - -- 
at + ax, 

Similarily 

(4.7)a 

(4.7) b 

These two equations represent material momentum conservation laws and are 

dual to each other. As shown for elastic materials, these conservation laws hold 

if and only if the Lagrangians do not depend on zp explicitly. 

Translation of the Spatial Coordinates Frame and Physical Momentum 

Conservation Law 

In the classical physics, it is known that the translation of space coordinates 

y, leads to the linear momentum conservation laws. This also holds true in 

dislocation and disclination continuum mechanics. To show this, let us suppose 

in (3.19) and (3.25), where ca is three small parameters. By the same reason 
-. 

as presented above, translation of spatial coordinate frame does not make any 

change in zcl, d@ and U,,M or f$aA and w,~, thus we have 

and 

w4 

(4.10) 



Substitution of (4.8) and (4.9) into (3.19) leads to the following physical momen- 

turn conservation law in Lagrangian representation: _ - 

aPa + aPw = o -- 
at dxl, 

Similarily we obtain 

aPa + +ab = o -- 
at @b 

(4.ll)a 

(4-11)b 

which represents the physical momentum conservation law in Eulerian represen- 

tation. In fact, the equations (4.11)= and (4.11)b correspond to each other and 

hold true if and only if the Lagrangians L and L do not depend on y. explicitly. 

If we compare the expressions for b, and b,, in (3.20)~~~ with the expressions 

for pa and pab in (3.26)3-d, we may observe that b, and b,, are related to z,,, 94 

in the same fashion as pa and pab are related to ya, &. This comparison is 

also confirmed for BP, Bps and Pa, Pap. We call b,, bpv (or Bp, Bps ) the 

material momenta and pa, pab (or Pa, Pap) the physical momenta. The material 

momenta are independent of the physical momenta, therefore, the conservation 

laws (4.7),-b by no means imply the conservation equations (4.11). - (4.11)b and 

viceversa. 

As mentioned in the introductory section, the above obtained conservation 

laws can be derived using a different procedure. In fact if we take the derivatives 

of Lagrangian function L in (3.1) with respect to zk (k = 0, 1,2,3), through some 

straightforward algebra, we may obtain 

(4.12) 
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where ( )ezp means the explicit derivative of the argument and 
-- 

BkL = 

represents an energy-momentum tensor in &dimensional space. From (4.12), we 

conclude that if the field variables !Ph satisfy with Euler equation of motion 

(3.2) and the Lagrangian does not depend on zk (k = 0, 1,2,3) explicitly, then, 

the following conservation equations 

(4.14) 

hold true. 

Obviously, the conservation eqUatiOUS (4.3),-b, (4.7),-b and (4.11),-b are 

the specific forms of (4.14) when the Lagrangian function L and %k take either 

(3.15) and (3.17) or (3.21) and (3.23) respectively. 

In defect mechanics of elastic continua, the explicit derivative of the La- 

grangian with respect to material coordinates has been termed as “a material 

force density” acting on the elastic singularity or inhomogeneity. Independence 

of the Lagrangian on material coordinates leads to conservation of material mo- 

mentum. On the other hand, as known in classical physics, the explicit derivative 

of the Lagrangian with respect to space coordinates represents a real force acting 

on that element. When the Lagrangian does not depend on the space coordinates 

explicitly, the conservation laws of physical momentum hold true. Now, from the 

above derivation, we have easily extended the results to dislocation and disclina- 

tion continuum. 
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Rotation of Material Coordinate Frame and Material Momentum Moment 

Conservation Law _ - 

The small rotation of a material coordinate frame can be expressed by a 

transformation of coordiates 

6x, = ~jlvX av xx (4.15) 

where cPVh are permutation symbol, and oy are the three small arbitrarily chosen 

parameters. We introduce 

(4.16) 

to express this transformation, by which any physical quantity fPV... having in- 

dices p(, u, . . . is transformed to 

Sfpv... = ($A fx,... + &?I fpx... + - - * (4.17) 

Applying the rule (4.17) to the vielbein and gauge connection transformations 

64~1~ and &J~,AB, . . . etc in (3.19)2, we obtain 

where we define mpv and mdpv as 

m/w = b, XY + apA 4d + S/JAB W,AB 

dL aL 
+- 

a 4vAX 
4pAX +aG VABX qLABx 

(4.18)a 

(4.19) 

(4.20) 
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represent the material momentum momenta. 

In Eulerian representation, X~ (p = 1,2,3) are treated asdependent vari- 

ables, therefore, the rotation of coordinates xL( cannot make any change to the 

veilbein and gauge conection. Substitution of (4.15) into (3.25) leads to 

( 
a&, + wuva 

cpux at aya 1 
= o 

where 

M,w = BP XY, M,uva = &a xv (4.21) 

@-)b 

The equations (4.18)a and (4.18)b represent the same physical law - material 

momentum moment conservation law. The equations (4.18)(2 take a very compli- 

cated form, but, (4.18)b is given in a rather simple form. Usually, we make use 

of (4.18)b to replace (4.18), in solving practical problems. 

Rotation of Space Coordinate Frame and Conservation Laws of Physical 

Momentum Moment 

The physical momentum moment conservation law can be derived by apply- 

ing the small rotation transformation of space coordinates ya 

6Ya = hbc Qb Yc (4.22) 

to the equations (3.19)2 and (3.25)~ in the same fashion as we did for (4.18). - 

(4.18)b. This conservation law is expressed either by 

(4.2% 
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in its Lagrangian representation or by 
-~. - 

( 
a&b 

Cabc at 
=o ~-. 

in its Eulerian representation, where 

mab = pu Yb, mpab = pup Yb (4.24) 

and 

Mab = PO Yb + $A tibA + %4B wbAE4 

WaABe 

@=)b 

(4.25) 

Mdab = Pda Yb + SaAd 4bA + %4Bd WbAB 

+ & ibA+3;a;d ;,A33 
(4.26) 

Gauge Transformation and Gauge Moment Conservation Law 

In dealing with the conservation laws for dislocation and disclination contin- 

uum, a question arises: except for the conservation laws derived above, does there 

exist another kind of conservation law which is related to gauge transformation? 

To answer the question, let us introduce a small rotation transformation for local 

anholonomic coordinate frame as 

6 %A = 6mC “B 6%C (4.27) - 

where ‘YC are small parameters. W ith the transformation (4.27) we call gauge 

-one and using the same rule as given in (4.17),_the variations of vielbein and 
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gauge connection and their derivatives are given by 
It- - 

64gA =cABCaB 4pC _ _ - 

54,fw = &E hEC WpCB + tBEC ‘+AC) 

= 2aE 6[AlEC wpCIB] 

S&LA 
. 

=cABC"B 4pC 

~~,, = 2*E c[A[EC wpCIB] (4.28) 

a&Av= ’ eABCaB 4pCv 

6' WpABv = 2cuE c[~IE~ $c~]v 

Since the rotation of local anholonomic coordinate system is independent of the 

coordinate xc1 or y, and does not make any change in the indices ~1 and u, 

t,herefore under this transformation (4.27), we have 

6t = 6x, = &)a = 0 (4.29) 

Substituting (4.28) and (4.29) into (3.19), we find the following conservation equa- 

tions 
-. 

@E ; agE, = o 
at ax, 

(4.3% 

where 

SE = ~AEC se dpC + 2 f[AIEC wp71B] sp4B 

gEu = CAEC SW 4vC + 2 %4Bj~ fIAIEC WvCIB] (4.31) 

-E-i&+2 
f3L 

+ EAEC (3 k4.Bp 
cIAIEC “vClB] 

VP 
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are called gauge moment tensor in Lagrangian representation. When disclinations 

disappear, that is, the gauge connection vanishes, the equations (4.30)= becomes _ - 

CAEC ;&A 4/Z) + j& SpAv 
aL - 

4pC + - 4 )I =o (4.32) 
Y a4pAv PC 

Especially, for the static problem the above equations are simplified to 

a 
‘AEc ax, 34vAp 

-(” 4&)=0 (4.3311 

or 

CAEC & k’pA 4/G) = o (4.3% 

where W is the internal energy of the dislocation continuum per unit volume 

before deformation, and 

aw 
d/WA =- 

a4,A~ 
(4.34) 

represents the hyperstress tensor in Lagrangian representation. 

In a very similar way, the gauge moment conservation equations (4.30)u can 

be written as 

dGE aGEu o 
at +K= 

in Eulerian representation, where 

GE= EAEC &A 4aC + 2 cIA)EC WaCIB] %AB 

GEu = CAEC SbAo 4bC + 2 ~[AIEc WbCIBj sbABu 

(4*30)b 

(4.35) 

-& &C+2 aL 
+ CAEC e[AIEC “bCIB] 

0 a &bA+ 
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- 
are also called gauge moment tensors in Eulerian representation. When the 

disclinations disappear inside material body, the equations (4.3O)b reduces to _ - 

&zA 4aC) + $ SbAa 
aL - 

CAEC 4bC + - bC =o (4.36) 
U a dbAc 4 I 

Furthermore, for the static problem, this equation is simplified to 

a 
- 

‘AEc %A 
A!!!!- 4+0 
a#,, 

or 

CbuA ‘t’bd = 0 (4.3% 

(4.37h 

and 

aw 
ubuA =- 

a4bAu 

represents the hyperstress tensor in Eulerian representation. 

Finally, we should notice that since gauge transformation (4.27) has nothing 

to do with time and point coordinates, whether or not the Lagrangian function 

depends on time or the coordinates explicitly, the gauge moment conservation 

law always holds true. On the other hand, we can also prove from (4.33) that the 

dislocation density tensor (YP” defined in (2.20) is symmetrical. (Further study 

of the gauge moment conservation laws and its application will be given in a 

separate paper.) 

5. Concluding Remarks 

Combining the vielbein and gauge field theory of dislocation and disclina- 

-tion continua with Noether’s theorm, an effective method is presented to deal 
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with conservation laws and their duality principles in such media. Besides the 

conventional conservation laws derived from the conventional small transforma- 

tion of time, material and spatial coordinates, the procedure yields an additional 

conservation law termed as the gauge moment conservation law by employing 

a small gauge transformation to the variational invariance equations. This law 

corresponds to the isotropic characteristics of the gauge field. When dislocation 

and disclination vanish, all conservation laws reduce to those studied extensively 

in elastic (linear or non-linear) continua 11J3J4 therefore, the results given in the 

paper can be considered as a natural extension from elastic continuum theory to 

dislocation and disclination continuum theory. 

We notice that all conservation laws are expressed in 4-dimensional divergence- 

free forms. For the static problem, the conservation laws can be represented 

through so-called path-independent integral forms which are of major impor- 

tance in the study of defect and fracture mechanics. We would like to mention 

here that any physical quantities appearing in the Lagrangian must remain not 

only covariant with respect to coordinate transformations but invariant with 

respect to gauge transformations as well. Following this principle, the elastic 

strain tensor, dislocation density and disclination density tensors and their time 

differentials are suggested to be such proper quantities. In a separate paper, we 

shall discuss this issue in some detail where special attention will be given to 

the problem of determining the dependence of the Lagrangian on its determining 

parameters and the practical application of path-independent integrals due to 

conservation laws. 
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