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ABSTRACT

The topological current corresponding to a system of moving point-like par-
ticles is introduced. The baryon number current, its related field equation and
U(1) gauge potential corresponding to the baryon number are discussed in a gen-
eral way. The 't Hooft static magnetic monopole theory is generalized to the

case of a system of moving monopoles.
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INTRODUCTION

In recent years, topological currents have been found to play a significant
role in particle physics. The interesting well known examples are the magnetic
charge current of 't Hooft monopoles,}:2 the Wess-Zumino anomaly? in nonlinear
.o-models and the Skyrmions current,? the charge of which has been discovered
to possess many properties in common with baryon number.>® In general, the
topological current need not be deduced from the Noether's theorem, a conserved

PN PN RSP ELRS NI Sy L U | IR RN RS R NI
tOpoI10gical CUurrent is aiways iaenivicauy conserveda ana une cnarge

- e I o
TesSpondaing

[«]

or
to which is determined only by the topological property of the current (topological

number) which does not depend on the concrete model.

In this paper we study the inner structure of the conserved topological cur-
rents in SU(2) theory. In Sec. 1 we introduce the topological current corre-
sponding to a system fo point like particles,® which is a foundation to discuss
other kinds of topological currents. In Sec. 2 we study the structure of baryon
number current in a more general way. It contains the discussion of the inner
‘motion of the constituents in baryon, the field equation related to this current
and the U(1) gauge potential corresponding to the baryon number. In Sec. 3
we apply the theory of Sec. 1 to study the topological structure of the magnetic
charge current of a system of moving monopoles and show that in topology the
motion of magnetic monopoles may be interpreted as the motion of the zeros of
the Higgs field. It is in fact a generalization of the topological theory of magnetic
monopoles in Ref. 2.

1. TOPOLOGICAL CURRENTS CORRESPONDING
TO POINT LIKE PARTICLES

We start by studying the topological current corresponding to the point like
particles, which is of importance to discuss other kinds of topological currents in
our paper. Let us consider a current with charge g, in the form’
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where g = 0,1,2,3 and ¢ = 1,2,3. n® are normalized functions in iso-space



which are defined in terms of three basic field functions ¢2 as follows

and

s naa“na = 0

It is evident that j is identically conserved:
MHir=0

Using
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If we define four Jacobians:
efch)‘(g) = e)\ul/pau¢(a>\¢bap¢c, A= 0) l, 2) 3

in which the usual 3 - dimensional Jacobian
1 4,2 .3
i(B)= () | o()=2:8)
T T T d(z!, 2, z3)
and make use of the Laplacian relation in iso-space
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we obtain the §-like current

F=as@®(9) - (10)

F

Suppose that the fundamental field functions ¢%(2,¢) (a = 1, 2, 3) possess k

isolated zeros and let the it" zero be 2 = Z;, we have
6UZ;(),)=0 , i=1--k , a=1,23 (11)
where

Z;=2:(t) , i=1---k (12)

is the trajectory of the motion of the ¥4 zero. It can be proved from (11) that

the velocity of the i** zero is determined by

~ =)/ 0o 19

and it is well known from the ordinary theory of §-function that

k
§(2—2; .
= E iy, 2 (9

However, if we further consider the case that while the point 2 covers the region
neighboring the zero 2 = Z ; (t) once, the function é covers the corresponding

region f; times, then we have

5@1(%) = Eﬁ,n.b'(i‘ 2:(1) (15)

where g; is a positive integer (the Hopf index) and
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is called the Brouwer index.
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Therefore the current (10) can be further written in the form

2z k 4z}
=0 X nb@-2:0)—7 . A=123 (17)
i=1
and the charge density 7
k
p=g, }:1 n6@—-2;(8) , n;=pm; . (18)
$=

We find that (17) and (18) are exactly the current and density of a system of k

classical point particles with charge g,n; moving in 3 - dimensional space.

From (13) we have the total charge of the system

k
G=[pd3z=gozn,- : (19)
R i=1
But on the other hand from (10) the total charge is
- G=[pdPz=g, [6@)d% . (20)
R T ]
If we write
k
Z n; = N+ - N_
i=1

from (19) and (20) we see that while the vector 2 covers R once, the vector must
cover T, Ny times with n = + 1 and N_ times with g = — 1, where 5 is defined
by (16). Therefore the particle or anti-particle character is distinquished by the
sign of the Jacobian at the point 2 = Z ;- The topological number n = ©¥

=17

is called Kronecker index.

The current defined by (1) and its topological characters we mentioned above
is of importance to study the theory of monopoles, which we will discuss in Sec.
3. We would like here to introduce another interesting example of (1). Let us
consider the topological current

1
.’X = mgoe)‘”up Tr[u—la“u u—layu u_lapu] (21)



where u is a unitary matrix with constant angle a

tna

u=¢" "“=cosa + insina (22)
¢ﬂ
n— naTa , na = ’¢_ ’ (23)

and 7, (¢ = 1, 2, 3) are Panli matrices. Current (21) is different from the Skyrmion

Current in normalization constant and the matrix u.

Substituting (22) into (21) we find

U ——i sin
» =nh

1
3a cosa 5 VP €gp un®dynba,nt (24)

which is of a form similar to current (1), but the charge
g = g, sina cosa (25)

depends on angle a. Therefore current (21) with (22) can be expressed as

= % sin® cosa&(a)J)‘(g)

and is corresponding to the current of a system of point like particles with charge

dependent on a. When a = 3, ¢ has its maximal value

3v3

Imez = Tgo < [

The physical meaning and the application of this topological current will be
discussed elsewhile.®

2. THE BARYON NUMBER CURRENT

Over 20 years ago, Skyrme?* showed that the meson-field configuration carries
a topological charge which should be interpreted as baryon number. Witten®®

revived this idea and proposed that baryons may be described phenomenologically



as the solitons of nonlinear sigma models. These solitons by now are called

Skyrmions.

The baryon number current is defined by

P> = 54%36)"“’” TrU~8,U U™'8,U U19,U) (26)

which is identically conserved. It’s associated charge is the winding number of
the map U

B(U) = 541_7:260"” TriU o, UU 9, UU3,U] . (27)

B(U) defined by (27) is additive
B(U,Up) = B(Uy) + B(Uy)

and is conjectured to interpret it as baryon number. The elementary Skyrmion

solution is static and spherically symmetric
Y P . a:“
U = 2 7°F(r) L o= : (28)
r

with boundary condition F(0) = 0 and F(o0) = =, which corresponds to unit

winding number.

In order to study the topological structure of baryon number current (26),

we write the field U in SU(2) space in a more general form

U=¢e"Fl®) =cos F + insin F (29)
where
¢° T
n=naTa ’ na':? ’ ¢=|¢l (30)

¢%(e = 1,2,3) are three fundamental functions of space-time coordinates z#.
When ¢% = %, the field U defined by (29) reduces to (28). If we take ¢® = #°
and F(¢) = Flvi¢, (29) is agrees with that of Ref. 5.



Substituting (29) into (26), taking notice of the relations

nP=1, ndun+dmn=0

we find j* is composed of two parts:

P =ji+ 72 (31)
where
jf‘ = 4—71r76)“‘”"eabcsin2F6uF n"a,,nbapnc (32)
and
Jo = -l—mex””peabcsing’F cos Fa,,n“aun"a,,nc . (33)

If we make use of (5), (7) and (9), jl)‘ and Jg‘ can be also expressed as

~__ 1 sin?FdF (¢
=545 ") 34
i = 3_271-— sin F cos F6($)J)‘(§) . (35)

We shall see later that the current j; denoted by (34) is identical with the
usual baryon current. While the current jo denoted by (35) is analogous to the
current in the last Section, which corresponds to the current of a system of point
like particles with charge

g = %sin:’* F(0) cos F(0) . (36)

From (36) we see that to guarantee the baryon number to be an integer, the

function F(¢) at the origin é = 0 in iso-space must satisfy the condition

[

F($)|p=0 = gm? , m= integer (37)



which leads to j2)‘ = 0. However we may conjecture that in baryons there really
exist some new kind of point like particles corresponding to j2)‘, but the number of
particles and anti-particles must be equal, it can also lead to j2)‘ = 0. Therefore
in both cases we must have -

=i (38)

From (34) and (38) we find the baryon number density

olz) = p(8)1(2)

where
1 sin?F dF
pl¢9) = o2 2 dg (39)
and the baryon number
B B= [ pa)d*z= [ols)d . (40)
|4 T

The above integral shows that the fundamental field ¢® = ¢%z) maps V into
T in iso-space. If we consider the case that while the point vector # covers the
region V once, function :j; covers the corresponding elementary region Ty N times

(i.e. T = NTj) and choose the boundary conditions:

(@) r—o00, ¢=0, F(¢)lgno =
(b) r—0, ¢=a, F(¢)I¢—oa =0
(or r—0, ¢— 00, F(¢)|¢—>oo =0)

then from (39) and (40) we have the baryon number
B=3N;sin2FdF=N ‘ (41)
T 2
where

N = integer



We notice that the boundary condition (a) satisfies the condition (37) which
guarantees the unexpected current jo = 0 and the integral does not depend on

the concrete form of the function F(¢).

Using (34), (38) and (39) the baryon number current j* can be expressed as
= p(z)w (42)
where

o=2O)/ )

u” may be interpreted as 4 - velocity of the constituents of baryon (nucleon). It

can be proved from (7) that

062 = 0t 1(0) o
then we have
- Mhou =0
which can be expressed as
vg.a=-2 (44)

ot

where i is the three dimensional velocity of the constituents.

In stationary case:

¢ = f(z,9,2)
¢a=fa(x’y’z,t) ? a=l’273

p(¢) does not depend on ¢, but the constituents are in moving state. In this case
therefore velocity @ is always tangent to the surface

¢=f(:c,y,z)=c

10



This means the moving constituents will always lie on the family of surfaces

(shells) ¢ = c. For one stationary soliton ¢ = r, and ¢ = ¢ is a closed surface

(sphere). Therefore if the Skyrme-soliton is a baryon and the soliton has a finite

size, the constituents in baryon should be confined. - .

We continue to study the field equations related to the baryon number current

j . Let K1 K2 K3 be functions of #1, $2, ¢3 such that8

J(g) _ K K% K3 _sin’F(¢) dF
¢/ 0(¢1,4%,4%) 4% do
then from (7), (34), (38) and

K . .
€abe J(a) = €5k 0.K'0,K’ 6ch y Og = W

7 and p can be written in the form

) 1 K ¢
A __ K\ (¢
P =52 ()7
11 Auvp ) 7 k
. 1 N K
=5 " (3)
1 K
r=a (%)

Since the preceding current can be also expressed as

-\

[ee
-

if we define a field tensor
=2 ¢wK'o,Kia,K*
fvp= 3r €55k v P

and its dual tensor

. 1 . .
PH =S = o ey Ki, Ko, KF

11
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then from (48) we have the field equation for the baryon number current
9 AR
wf " =dnj" . (51)
We could also define a dual current
vV 1 { J k
and from (49) we have

8,f"° =4rj’ . (53)

We notice that field equations (51) and (53) are analogous to Maxwell’s equa-

tions with magnetic charge and the baryon number current X is the dual current
defined by (52).

The field tensor (49) can be also written in the form
. 2
f‘u/:ﬁk'apkxayk . (54)
To study its inner structure, we denote the vector K by

K=K¢ (55)

where K and € are magnitude and direction of K, respectively. Let é; and 2; be

two arbitrary perpendicular unit vectors, and
€=7¢; X2
and define a vector potential function
au=%ea”(za-ap %), p=1234 , (56)
then f,, can be expressed in term of a,:

2
Juw = 3= K30ua, — yay] . (57)
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This means @, is a U(1) gauge potential and which is relevant to the baryon
number B. f,, is invariant under the U(1) gauge transformation

a;‘ ==a”+a“0

and 4 is related to the angle that €; and @5 are rotating about the axis in direction

-y

€.

n -4

8] = cosfé —sind e,

2= sin0 2 + cosf e
It must be pointed out that the field tensor f,,, expressed as (54) is different
from the usual electromagnetic field tensor by a factor K3, which is a function

of space-time coordinates z#. This factor guarantees that the baryon number

. =\ Py .
current j* = 11;8,, f ¥ does not vanish identically.
To conclude this section, we give an example of the solutions of the partial
differential Eq. (45):

— 8K1! gK! 8K
a¢T 1342 1643

oK? oK? ok2| _ sin®F(g)dF 58
4T agT 85| T g7 dg (58)

dK3 9K?3 8K3
AT 7892 1 943

We take the Ansatz

F 1
l__—_ .
K =3 4s1n2F

then we have

and Eq. (58) reduces to

91, ¢%, ¢°

OK? K2 3K? 1
a’&[‘ ’ a$2' ’W = a . (59)

OK?3 3K3 3K3
a1 7542 7343
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It can be proved that in spherical coordinates in ¢-space

¢l = ¢ sina cos B
¢? = ¢ sinasing
¢3 = ¢ cos g

Eq. (59) becomes

0K, 0K3 0K, 0Ks _
da 98 08 da ¢

A solution of the above equation is
K3=p8 and Kj=— cosc
Substituting this solution into (46) we have
-\ 1 Auvp
=g Oun Oy cosad,f
-and the corresponding baryon number density is

1 . )
p=§;gsmaVr)-VaXVﬂ

where

1

1= F(9) - sin® F(9)

3. THE TOPOLOGICAL CURRENT
OF MAGNETIC MONOPOLES
In SU(2) gauge theory the electromagnetic field is defined by 't Hooft!:

1 .
fuv = F2,n® — Eeabcn“D,,an,,nc (60)
where e is the electromagnetic coupling constant, Flj‘,, is the gauge field tensor

F2, = 0,B%—9,B% + e€u.BLBS . (61)
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By, is the gauge potential and

Dyn® = 3,n® + eeachch (62)

is the covariant derivative of the unit vector n® in iso-space which is defined by
, ¢=14]

Here the fundamental field ¢* (a = 1,2,3) in 't Hooft’s theory is identified with
the Higgs field.

Using (61) and (62) the electromagnetic field tensor fy, can be further written

in the form

fur = 0pAy — 0 Ay — Ky (63)
in which
A# = Bﬁna

is the electromagnetic potential and

1
Kﬂy = E €abe naaunbaync . (64)

Substituting f,, denoted by (63) into first pair of Maxwell’s equation

Ou })‘“ = —4m 3)‘
o (65)
Ap
[ = 55)"“/9 Jvo
we find
111 i
= = MPe 9,n%0,nb0,nt = ])‘ (66)

47 e 2

which is just of the same form as the topological current defined by (1).
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For a system of k classical monopoles with arbitrary magnetic charge g; ({ =

1---k), the magnetic charge current and density in general can be expressed as

k
;=2 52— Z;( M , A=123 (67)

g: ) - (68)

We notice that comparing (17), (18) with (67) and (68) through (686) gives a general
proof of the well-known conclusion that if Maxwell’s Eq. (65) has solution, the

magnetic charge of a magnetic monopole must satisfy the quantized condition
gz':n:'go ’ t=1---k
where

n; = n;; = integer

is a topological number 1*! Chern class and the unit magnetic charge of a mag-

netic monopole is

1

gO:E

The magnetic monopole and anti-magnetic monopole character is distinguished

=)/ VC)

A magnetic monopole with multiple unit magnetic charge is determined by the

by the Brouwer index

+1

]z—-Z

Hopf index f;. In topology the motion of a system of monopoles may be inter-

preted as the motion of the zeros of the Higgs field.
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