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ABSTRACT 

The topological current corresponding to a system of moving poinelike par- 

ticles is introduced. The baryon number current, its related field equation and 

U(1) gauge potential corresponding to the baryon number are discussed in a gen- 

eral way. The ‘t Hooft static magnetic monopole theory is generalized to the 

case of a system of moving monopoles. 
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INTRODUCTION 

In recent years, topological currents have been found to play a significant 

role in particle physics. The interesting well known examples are the magnetic 

charge current of ‘t Hooft monopoles, lp2 the Wess-Zumino anomaly3 in nonlinear 

,a-models and the Skyrmions current, 4 the charge of which has been discovered 

to possess many properties in common with baryon number.5j6 In general, the 

topological current need not be deduced from the Noether’s theorem, a conserved 

topological current is always identically conserved and the charge corresponding 

to which is determined only by the topological property of the current (topological 

number) which does not depend on the concrete model. 

In this paper we study the inner structure of the conserved topological cur- 

rents in SU(2) theory. In Sec. 1 we introduce the topological current corre 

sponding to a system fo point like particles,’ which is a foundation to discuss 

other kinds of topological currents. In Sec. 2 we study the structure of baryon 

number current in a more general way. It contains the discussion of the inner 
-- 
motion of the constituents in baryon, the field equation related to this current 

and the U(1) gauge potential corresponding to the baryon number. In Sec. 3 - 
we apply the theory of Sec. 1 to study the topological structure of the magnetic 

charge current of a system of moving monopoles and show that in topology the 

motion of magnetic monopoles may be interpreted as the motion of the zeros of 

the Higgs field. It is in fact a generalization of the topological theory of magnetic 

monopoles in Ref. 2. 

1. TOPOLOGICAL CURRENTS CORRESPONDING 

TO POINT LIKE PARTICLES 

We start by studying the topological current corresponding to the point like 

particles, which is of importance to discuss other kinds of topological currents in 
our paper. Let us consider a current with charge go in the form7 

where p = 0,1,2,3 and a = 1,2,3. no are normalized functions in iso-space 
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which are defined in terms of three basic field functions 4” as follows 

and 

nana = 1 , naapna =0 . 

It is evident that jx is identically conserved: 

(3) 

axjX =o . (4 

Using 

and 

a 1 - - =- 
0 

cy a 1 ipe 
-- &g(f) &3Qqz~=-~. 0 

(1) can be written as 

= --&go f tApup fabc 
If we define four Jacobians: 

in which the usual 3 - dimensional Jacobian 

and make use of the Laplacian relation in &space 

aada $ = 0 -4xS(J) , aa = & 

(5) 

(6) 

(7) 

(8) 
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we obtain the &like current 

Suppose that the fundamental field functions q4”(Z?, t) (a = 1,2,3) possess k 
isolated zeros and let the ith zero be ?J = zi, we have 

where 

Zi=Zi(t) 7 i=l**.k (12) 

is the trajectory of the motion of the ith zero. It can be proved from (11) that 
the velocity of the jth zero is determined by 

- and it is well known from the ordinary theory of S-function-that 

6(J) = i: l 

i=l I J@lz=z; 
6(3 - Zi (t)) s 

(14 

However, if we further consider the case that while the point 3 covers the region 

neighboring the zero ?iJ = Zi (t) once, the function 3 covers the corresponding 
region pi times, then we have 

S($)J(‘) = 2 Biqi6(2- Zi(t)) 
X i= 1 

where /3i is a positive integer (the Hopf index) and 

(15) 

is called the Brouwer index. 
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Therefore the current (10) can be further written in the form 

3 -’ = go e ni6(a-Zi(f)$ , X = 1,2,3 
i= 1 

(17) 

and the charge density 

PC90 2 nis(2-Z,(f)) 9 tli= $itji . (18) i= 1 

We find that (17) and (18) are exactly the current and density of a system of k 
classical point particles with charge goni moving in 3 - dimensional space. 

From (13) we have the total charge of the system 

G= J 
R i= 1 

But on the other hand from (10) the total charge is 

-- G= 
/ pd3x = go /@)d3t# . 
R T 

(19) 

(20) 

If we write 

k 

c ni - -N+-N- 
i= 1 

from (19) and (20) we see that while the vector 3 covers R once, the vector must 

cover T, N+ times with q = + 1 and N- times with q = - 1, where q is defined 
by (16). Therefore the particle or anti-particle character is distinquished by the 

sign of the Jacobian at the point 3 = Zi. The topological number n = Cf., ni 

is called Kronecker index. 

The current defined by (1) and its topological characters we mentioned above 

is of importance to study the theory of monopoles, which we will discuss in Sec. 

3. We would like here to introduce another interesting example of (I). Let us 

consider the topological current 

(21) 
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where u is a unitary matrix with constant angle [Y 

U =e 
ina =cosa + iflsina (22) 

n = naTa 7 na 4” =- 
4 ’ 

and ?a (a = 1,2,3) are Panli matrices. Current (21) is different from the Skyrmion 

Current in normalization constant and the matrix u. 

Substituting (22) into (21) we find 

*X 
3 = -&go sin3 cr co9 cy f cxpvp cabc c9pna~ynb~pnc (24) 

which is of a form similar to current (l), but the charge 

!I = go sin3 cy cos cu (25) 

depends on angle Q. Therefore current (21) with (22) can be expressed as 

jx = go sin3 o cos Q S(3) J’(g) 

and is corresponding to the current of a system of point like particles with charge 

dependent on Q. When cr = $, g has its maximal value 

Smax = - 

The physical meaning and the a,pplication of this topological current will be 

discussed elsewhile. 

2. THE BARYON NUMBER CURRENT 

Over 20 years ago, Skyrme4 showed that the meson-field configuration carries 

a topological charge which should be interpreted as baryon number. Witten5y6 

revived this idea and proposed that baryons may be described phenomenologically 
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as the solitons of nonlinear sigma models. These solitons by now are called 

Skyrmions. 

The baryon number current is defined by 

*X 3 = --LAPVP Tr[u-a,u u-‘a,u u-‘a,q 
24n2 (26) 

which is identically conserved. It’s associated charge is the winding number of 

the map U 

W) = & ,“~vp z-qu-‘a,u u-‘a,u u-‘a,U] . (27) 

B(U) defined by (27) is additive 

m71~2) = Wl) + wJ2) 

and is conjectured to interpret it as baryon number. The elementary Skyrmion 

&ution is static and spherically symmetric 

u = ,if”PF(t) -a x0 
? 2 =- 

r 

with boundary condition F(0) = 0 and F(oo) = A, which corresponds to unit 

winding number. 

In order to study the topological structure of baryon number current (26), 
we write the field U in SU(2) space in a more general form 

u = einF(4) = cos F + in sin F 

where 

n =nara , no d” =- 
4 9 #=lih 

(29) 

gsJ(a = 1,2,3) are three fundamental functions of space-time coordinates 2”. 

When 4” = za, the field U defined by (29) reduces to (28). If we take 4” = rra 

and F(4) = &4, (29) is agrees with that of Ref. 5. 
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Substituting (29) into (26), taking notice of the relations 

n2=1 , ndpn+dl,nn=O 

we find jA is composed of two parts: 

-X 3 = ji + j2 

where 

cabc sin2 F a,F na&nbi3pd 

and 

i2 = 
1 

G? 
Cxpup~abc Sin3 F cos F apna&nbapnC . 

If we make use of (5) (7) and (9) ji and J$ can be also expressed as 

- 
jt = 

1 sin2FdF Jo f 
0 2n2FG 2 

ji? = -& sin3 F cos F6(3)JA@ . 

(31) 

(32) 

w 

(34 

We shall see later that the current jl denoted by (34) is identical with the 

usual baryon current. While the current j2 denoted by (35) is analogous to the 

current in the last Section, which corresponds to the current of a system of point 

like particles with charge 

9 = &sin3 F(0) cos F(0) . (36) 

From (36) we see that to guarantee the baryon number to be an integer, the 

function F(4) at the origin 3 = 0 in iso-space must satisfy the condition 

F(4) I+0 = irn~ , m = integer (37) 

. 8 



which leads to ji = 0. However we may conjecture that in baryons there really 

exist some new kind of point like particles corresponding to ji, but the number of 

particles and anti-particles must be equal, it can also lead to j$ = 0. Therefore 

in both cases we must have 

ix =jt . (38) - 

From (34) and (38) we find the baryon number density 

P(X) = PM J(g) 

where 

and the baryon number 

1 sin2 F dF 
p(+) = g2 yp-- j& (39) 

-- B= &)d3x = I / kW30 . w 
V T 

- The above integral shows that the fundamental field 4” =- 4”(x) maps V into 

2” in iso-space. If we consider the case that while the point vector 3 covers the 

region V once, function 3 covers the corresponding elementary region 2”’ N times 

(i.e. T = mo) and choose the boundary conditions: 

(4 r--,00, 4=0, F(4)14+o =r 
(b) r--,0, #=u, F(4)I&+a =O 

(or r--,0, +-+~a, F(d) l&+00 = 0) 

then from (39) and (40) we have the baryon number 

‘II 
B= iN/sin2FdF = N 

0 

where 

N = integer . 
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We notice that the boundary condition (a) satisfies the condition (37) which 

guarantees the unexpected current j2 = 0 and the integral does not depend on 
the concrete form of the function F(4). 

Using (34), (38) and (39) the baryon number current jx can be expressed as 

*x 3 = p(x)d (42) - 

where 

ux = J’(g)/ J(z) , WI 

ux may be interpreted as 4 - velocity of the constituents of baryon (nucleon). It 

can be proved from (7) that 

then we have 

which can be expressed as 

where 3 is the three dimensional velocity of the constituents. 

In stationary case: 

d = m, Y, 4 

4” = fa(x,y,z,t) , u = 1,2,3 . 

~(4) does not depend on t, but the constituents are in moving state. In this case 

therefore velocity 3 is always tangent to the surface 

4 = f(x, Y, 4 = c 
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This means the moving constituents will always lie on the family of surfaces 

(shells) 4 = c. For one stationary soliton C# = f, and 4 = c is a closed surface 

(sphere). Therefore if the Skyrme-soliton is a baryon and the soliton has a finite 

size, the constituents in baryon should be confined. 

We continue to study the field equations related to the baryon number current 

jx. Let K1, K2, K3 be functions of d’, $2, #3 such that8 

a(K’, K2, K3) = sin2 F(4) dF - 
a(@,d2,d3) 42 d4 (45) 

then from (7) (34), (38) and 

fabc J 
a 

= fijk aaK’a&j acKk , aa = - 
a$a 

jx and p can be written in the form 

jx =& J(F) J’(g) 
-- 

P =&JE . 
0 X 

Since the preceding current can be also expressed as 

xcvpEijk ap[K ‘a,KjapKk] , 

if we define a field tensor 

f VP =$ cijkKidvKidpKk 

and its dual tensor 

-b f Z--E i “VP fvp = & &vp~ijk Kia,Kjap Kk 

(46) 

WI 

W) 

(49) 

(50) 
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then from (48) we have the field equation for the baryon number current 

a, jAp = 4rjx . (51) 

We could also define a dual current 

:u 
3 = & cijk ap [Kia,KjapKk] (52) 

and from (49) we have 

a,fvp = 4~7 . (53) 

We notice that field equations (51) and (53) are analogous to Maxwell’s equa- 

tions with magnetic charge and the baryon number current jx is the dual current 

defined by (52). 

The field tensor (49) can be also written in the form 

- 
To study its inner structure, we denote the vector 2 by 

k=Kt (55) 

where K and t are magnitude and direction of ii, respectively. Let tl and t2 be 

two arbitrary perpendicular unit vectors, and 

and define a vector potential function 

!i cab& ‘ap 2,) , p a/J = 2 = 1,2,3,4 , 

then fpv can be expressed in term of up: 

(56) 

(57) 
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This means uLc is a U(1) gauge potential and which is relevant to the baryon 

number B. fpv is invariant under the U(1) gauge transformation 

u; = up + a,8 

and t3 is related to the angle that 7!l and i$ are rotating about the axis in direction 
-. e. 

*I el = cos e tl - sin e Z2 

*I 
e2 = dtl + c09ez2 . 

It must be pointed out that the field tensor fPV expressed as (54) is different 

from the usual electromagnetic field tensor by a factor K3, which is a function 

of space-time coordinates z p. This factor guarantees that the baryon number 

current jx = &av f -xy does not vanish identically. 

To conclude this section, we give an example of the solutions of the partial 

differential Eq. (45): 

-- 

We take the Ansatz 

then we have 

r3K3 dK3 cYK3 
,,r ‘,,a’,y 

= sin2 F(#)cZF 
$2 2q - 

K’=F !sin2F 
2-4 

aK1 
a4a 

= sin2FdFf 
d4 4 

and Eq. (58) reduces to 

4 5 42, 43 

(58) 

(59) 
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It can be proved that in spherical coordinates in h-space 

41 = 4 since cosp 
42 = 4 sin f2 sin /3 
43=4cosp 

Eq. (59) becomes 

aK2aK3 dK2 aK3 . -----= sma . 
aa ap ap aa 

A solution of the above equation is 

K3=P and K2=-cosc1 . 

Substituting this solution into (46) we have 

*x = ’ 3 -32 
&vpapfl a, ~0~ a a,p 

and the corresponding baryon number density is 

p=-$sinaVq-Va X-VP 

where 

t7 =aF(4)-i sin2 F(4) . 

3. THE TOPOLOGICAL CURRENT 

OF MAGNETIC MONOPOLES 

In SU(2) gauge theory the electromagnetic field is defined by ‘t Hooft’: 

f PJ = F;gta - f ~abcnaDpnb~ynC Pw 

where e is the electromagnetic coupling constant, F,& is the gauge field tensor 
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Bi is the gauge potential and 

D,na = apa + ecab,&ne (62) 

is the covariant derivative of the unit vector na in &space which is defined by 

na 4” =- 
4 ’ 4=liJl - 

Here the fundamental field 4” (u = 1,2,3) in ‘t Hooft’s theory is identified with 

the Higgs field. 

Using (61) and (62) the electromagnetic field tensor fpv can be further written 

in the form 

f w = a,& - a,A, - Kpy (63) 

in which 

Ati = Bin” 

is the electromagnetic potential and 

(64) 

Substituting fpv denoted by (63) into first pair of Maxwell’s equation 

a,jXp = -4$ 

--XP f C-6 ; xPvp fvp 

we find 

l l l ,xpvp --- 
47r e 2 

cabc aPf8”avnbapd = j’ 

which is just of the same form as the topological current defined by (I). 

(65) 

(66) 
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For a system of k classical monopoles with arbitrary magnetic charge gi (i = 

1 . . . k), the magnetic charge current and density in general can be expressed as 

” = t gi6(Z!-Zi(f))$$ , A= 1,2,3 3 i= 1 
(67) 

p= k fJis(Ii!-Z,(t)) e  
(68)  

i=l 

We notice that comparing (17) (18) with (67) and (68) through (66) gives a general 

proof of the well-known conclusion that if Maxwell’s Eq. (65) has solution, the 

magnetic charge of a magnetic monopole must satisfy the quantized condition 

. 
gi=nigO , l= "' 1 k 

where 

ni = Tjipi = integer 

is a topological number 1 ” Chern class and the unit magnetic charge of a mag- 
- netic monopole is 

The magnetic monopole and anti-magnetic monopole character is distinguished 

by the Brouwer index 

A magnetic monopole with multiple unit magnetic charge is determined by the 

Hopf index pi. In topology the motion of a system of monopoles may be inter- 

preted as the motion of the zeros of the Higgs field. 
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