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ABSTRACT --- 

We prove that Weyl invariant theories of gravity possess a remarkable prop- 

erty which, under very general assumptions, explains the stability of flat space- 

time. We show explicitly how conformal invariance is broken spontaneously by 

the vacuum expectation value of an unphysical scalar field; this process induces 

general relativity as an effective long distance limit. We show that all ghost de- 

grees of freedom acquire gauge fixing dependent masses, strongly suggest,ing the 

unitarity of the theory. 
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1. Introduction 

Of the four fundamental forces determining low energy physics, three have 

been adequately described as quantum field theories based on the gauge group 

U( 1) x SU(2) x SU(3). Th e remaining force, gravity, has a similar gauge sym- 

metry, the coordinate invariance, but resists quantization. 

- . 

Classically, the gravitational force at large distances is very well described 

by Einstein’s general theory of relativity. On the quantum level this theory has 

serious problems. There is no symmetry forbidding the addition of a cosmo- 

logical action term, though experimentally no such term has been observed. A 

single fundamental particle in the Einstein universe induces an infinite contri- 

bution to the cosmological constant. Thus, unless severe unnatural fine tuning 

is employed, general relativity contradicts the observed world. Moreover, the 

presence of a dimensionful coupling constant is responsible for the perturbative 

nonrenormalizability of Einstein’s gravity [I]. 

It is reasonable to assume that general relativity is a large distance effec- 

tive theory of some fundamental renormalizable gravitational Lagrangian [Z] in 

the same way that Fermi’s four-fermion interaction is the low energy limit of 

the standard U(1) X sU(Z),r, electroweak model. As a first step, consider grav- 

itational actions containing linear and quadratic terms in the curvature tensor. 

These theories are renormalizable [3) and dimensional analysis concludes that the 

linear Einstein term determines the long wavelength behavior while the quadratic 

terms dominate at short distances. Nevertheless, these theories are not unitary in 

the ordinary loop expansion, although nonperturbative techniques seem to sug- 

gest that no ghosts are present (4,5]. Independent of their unitarity properties, 

higher derivative gravitational actions still suffer from the cosmological constant 

problem. 
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A new gauge symmetry is needed. At very high energies all elementary par- 

ticle masses should become negligible. Weyl’s generalized Riemannian space [6] 

naturally incorporates this ideas by possessing an extra symmetry: local con- 

formal invariance. In the resulting Lagrangian, which is quadratic in the Weyl 

curvature tensor, CPv)Jz), a cosmological constant term is forbidden by the 

new invariance but Einstein’s theory is not reproduced at large distances. How- 

ever, by analogy with the Higgs mechanism, general relativity can be induced 

[7] through th e vacuum expectation value (VEV) of a scalar field &(z) which 

spontaneously breaks the conformal symmetry. 

A simple gravitational Lagrangian is: 

LG= (1) 

where G is a dimensionless coupling constant and R(z) the curvature scalar.lll --- 

In the conformal gauge fixing condition &(x) = vu, assuming a nonzero VEV for 
- 

$0(x), the unphysical scalar 40(z) is eliminated and the Einstein term emerges. 

Note that the requirement on (1) to induce the Einstein term with the correct sign 

forces &(z) to enter with a negative kinetic energy. The fluctuating quantum 

fields h&x) and b(z) are defined by: 

gw = tl/w + Gh,u (24 

40 = vo + 0 P) 

where qPv is the Minkowski spacetime metric. Three problems have to be faced 

immediately: the unitarity of the quantum theory, the presence of conformal 

anomalies and the reason for the induction of a scalar VEV. 

IllThe metric tensor g&z) has signature (+ ---), the curvature tensor is defined 
by $&Jz) s a, X$,(Z) - . . . and C$Jz) = R$Jz) - 2REJs) + i R2(z). 
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Due to the presence of higher derivative terms [see eq. (I)], the free graviton 

propagator contains, in addition to the massless spin-two pole, a massive one 

with negative residue. The unresolved question of unitarity can be powerfully 

attacked using an expansion in a naturally small scale independent parameter, 

l/N, where N is an effective number of the fundamental matter fields [4]. In 

general, the Weyl invariant matter part LM of the complete Lagrangian will 

contain NS scalar fields 4, NF Diracfermions rl) and NV vector bosons A,. In 

this expansion, the quantities G2N, vg/N and g:N, where gi denote the matter 

coupling constants, are fixed. To leading order the p-function of the coupling 

- . 

constant G is [4]: 

BG 

_ where the effective number N ES 

free and so there exists a “&CD 

1 N =-- - 
240 (47r)2 

G3 (34 

Ns+6N~+12Nv. The theory is asymptotically 

like” renormalization group invariant scale A at 

which G becomes strong: 

A=p exp [-1:y;)2] W) 

with p the substraction point. The leading order l/N graviton propagator DPV,x,, 

is given by the sum of all graviton diagrams with an arbitrary number of one 

loop matter corrections (fig. 1). Using the five gauge conditions: 

cY,hpV=o ; h;=o (4) 

we obtain: 

qw,xp(P) = qw,xp(P) 
2 

P2[qQ@p2en(-$)] 
(5) 

. 4 



where PPV,+ is the transverse traceless spin-two projector. Notice that Dpv,~,, 

has no real massive poles provided 160n2u2 AzNo > ;. How ever, in the complex p2 plane 

there is a pair of complex conjugate poles. As a result, the theory is unitary to 

leading order [4] but requires the Lee-Wick prescription [8] from thereon. 

Any renormalizable classically Weyl invariant quantum theory needs a renor- 

malization scale which explicitly breaks the scale invariance [9] and is the source 

of the conformal, or trace, anomalies [lo]. In the context of dimensional regu- 

larization this scale p is naturally introduced once any dimensionless coupling 

constant e acquires dimensions as the theory is continued to n < 4 spacetime 

dimensions: 

e = e. p(4-w (6) 

where eu is dimensionless. By replacing the scale /J with the unphysical scalar field --- 

(bu raised to an appropriate power, a conformally invariant theory in n dimensions 
- 

can be written when e -+ eu$o (4-n)/(n-2) [ll]. H owever, a perturbation expansion 

exists only around 40 = vu # 0 when the conformal invariance is spontaneously 

broken [see eq. (Zb)]. Th ere ore, f the appropriate substitution is: 

u (4-Mn-2) 
e+el+- 

( > 
. 

WI (7) 

The renormalization should be done with a similar spirit [ll]. Since the n- 

-. 

dimensional continuation of Weyl invariant theories introduces explicit n de- 

pendence in the Lagrangian, the correct algorithm consists of subtracting n- 

dimensional conformally invariant counterterms. The above method of regular- 

ization and renormalization preserves the Ward identities (W-I) of the sponta- 

neously broken theory and trace anomalies do not arise. This has been shown in 

explicit examples in ref. [II]. 
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It appears that two scales exist, ~0 and the subtraction point ~1.1~1 Never- 

theless, the requirement of a stable perturbation expansion around 0 = 0 will 

determine the ratio vu/p and prove the existence of a single scale parameter for 

the theory. This direct association between the vacuum expectation value (VEV) 

zrg and ~1 transforms the explicit breaking due to p to a spontaneous one and sub- 

stantiates the regularization scheme. The global counterpart of the conformal 

gauge symmetry is the dilatation invariance (91. In a Weyl symmetric theory, 

an infinitesimal dilatation is a particular sum of a coordinate and a conformal 

transformation. The W-I obtained from dilatations takes the form [15]: 

(8) 

- 

where I’(m) is any one-particle irreducible (l-PI) Green’s function and ra w-1) 

includes an extra zero momentum external a field. This W-I corresponds to the 
--- 

low energy theorem for the translated scalar field c and identifies it with the 

Goldstone boson of the spontaneously broken dilatation symmetry, the dilaton. 

Furthermore, eq. (8) is compatible with nonzero beta functions in a Weyl invari- 

ant theory. However, the TJO = 0 limit of the theory does not exist reflecting the 

nonanalyticity at 40 = 0. This is due to the existence of a nonzero beta function 

(3) which forces ZJO to be nonzero and the conformal symmetry to be broken. 

2. The Vanishing of the Cosmological Constant 

Weyl’s gravity has a more complicated dynamical structure than general rel- 

ativity and satisfies a very powerful theorem which, under very general assump- 

12]A systematic treatment of the general properties of Weyl invariant gravitational 
actions, including detailed proofs of all claims in this letter, can be found in 
ref. [15]. 
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tions, explains the stability of flat spacetime. The theory contains an unphysical 

degree of freedom, the dilaton field, that expresses the unavoidable spontaneous 

breakdown of the conformal component of the full symmetry. The theorem 

states that the ability to set equal to zero the tadpole of the dilaton field of a 

Weyl invariant physical system is the necessary and sufficient condition for the 

vanishing of the cosmological constant. 

Consider a Weyl invariant action in n dimensions where the spontaneously 

broken conformal transformations on our fields take the form: 

sqi = -y n(?J,+#) W) 

The general rule for constructing Lagrangian terms in such a theory is quite sim- 

ple. Start with any coordinate invariant theory of gravitons and matter fields. 

Introduce the unphysical scalar field U, the dilaton, and perform finite confor- 

ma1 transformations with parameter n = (1 + $)2/(n-2) to all the dynamical 

variables. This parameter has been chosen such that the transformed fields are 

conformally invariant when the transformation properties of the dilaton itself are 

taken into account. Then, by making the dilaton a dynamical field we obtain a 

Weyl invariant theory of the metric, dilaton and matter fields. The “unitarity 

gauge* 0 = 0 of the conformal symmetry reproduces the original coordinate 

invariant theory. However, we prove that in a Weyl symmetric theory the spon- 

taneous breakdown of the conformal component provides a relation between the 
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parameters of the theory and enables us to naturally achieve a zero cosmological 

constant. 

The W-I of the theory are derived for the generating functional I’ of the l-PI 

Green’s functions using BRS methods in arbitrary linear gauge conditions [15]: 

c a.- lr = 0 -- F#i?, 6F ‘J; (10) 

where F is a generic field variable, E~ is a generic antighost field and Ji is the 

source associated with the BRS transformation of F. The implications of the 

general W-I (10) for the graviton tadpoles assume a particularly simple form in 

the Landau type gauges (4) (see fig. 2): 

_-- 

The translated field a’ E 46 - u& the dilaton of the complete physical system, 

is a linear combination of u EE 40 - vu and all scalars 4 with nontrivial VEV’s. 

According to the action principle the constant background ~6 should take the 

value minimizing the effective potential V(a’) of the theory. At this value, the 

dilaton tadpoles SI’/6 u’ vanish and (11) automatically guarantees the simultane- 

ous elimination of the graviton tadpoles SI’/6h,,.[31 Therefore, the cosmological 

constant is zero to all orders in any perturbation expansion around an extremum 

of the dilaton potential, if one exists. 

The conclusions of our theorem apply to any matter theory, Consequently, 

the standard model U(k) x X7(2) X SU(3) o f 1 ow energy physics when coupled to 

Weyl’s gravity provides a theory describing all four known interactions with zero 

[‘IThis result can be shown to be valid in arbitrary gauges [15]. 
1 
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cosmological constant. The spontaneous breakdown of the electroweak symme- 

try, in its simplest form involving elementary scalars, occurs through radiative 

corrections (121 as dictated by the Weyl invariance, -The lack of an appropriate 

symmetry will eventually drive the electroweak breaking scale up to the Planck 

energies unless severe fine tuning is performed. There exist alternative Weyl 

invariant methods to break U( 1) X SU( 2) L and avoid the hierarchy problem: 

technicolor [13] and possibly conformal supergravity [14] are good candidates. 

The VEV of any physical scalar field should never equal or exceed the Planck 

mass since the highly desirable induced Einstein term would vanish or acquire 

the wrong sign. This is an additional problem scalars could create, in particular 

those of various grand unified models. 

--- 3. Simple Examples 

We have carried the renormalization program for a general Weyl symmetric 

gravitational action along the same lines with ref. [3] and proved the renormal- 

izability of the theory [15]. The most convenient classes of gauges (c, @p) and 

(c, @), for the coordinate and conformal symmetries respectively, are: 

and 

cp= l 
2(n - 1) (Oh:: - d,d,h~“) . 

These choices force the ghost propagator matrix of the theory to be diagonal to 

lowest order. By taking < = 0 and introducing extra derivatives in the conformal 

gauge fixing term all c-dependent divergences are eliminated. Furthermore, in . 
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the l/N expansion, due to the better ultraviolet convergence properties of the 

graviton propagator the renormalization becomes very simple. 

Consider the simplest framework for studying the spontaneous breaking of 

the conformal symmetry; this is achieved when only the scalar field 40 receives 

a VEV vg and the renormalized Lagrangian, in the l/N expansion, is 14 : 

+LM+LGF 

(13) 

where Landau type gauges (4) are assumed in LGF which contains the gauge 

fixing and ghost interaction terms. The effective potential Ve~~[o] of the dilaton 

to leading order in l/N (see fig. 3) is given by [15]: 

--- 
V,//[o] =-- tn 1+2 [ 

k2h (I+ $,) + yg(c72+2vofY) 
1607r2 2~ --N-- v. - - k2tn (-$) 1 - (14 

The necessary and sufficient condition for Vejl[c] to have no imaginary part is 
1607W AZNo > i and th’ IS inequality is identical to the unitarity condition (5). If 

the integral is defined by dimensional continuation, it can be computed using 

methods of complex analysis and a finite answer is obtained: 

Vefj[fl] =&*4[(l+tr-1] (sin 28)e-2e/tan8 ; 0 < 8 5 27r (15a) 

where the angle 0 is such that: 

160s~~~; 0 
A2N 

- e-8/tanB 
sin 0 

. ( 156) 

14]All remaining Weyl invariant terms can be consistently set equal to zero to 
leading order in l/N without altering the physical conclusions [15]. 

. 
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At the minimum of V,.~(LT] for c = 0 the first derivative vanishes and we infer: 

N c--p. 
32Or (16) 

In terms of the Planck mass, vu = ir 3 4n Mpt - q and A2 = 24of&e At 

extremely high energies we have an asymptotically free Weyl invariant theory. 

The physical spectrum of the standard model predicts N = 292 and, therefore, 

the gravitational coupling constant G gets strong very close to the Planck mass 

which emerges as the natural scale of the theory. Using the l/N expansion we 

could penetrate the strong coupling regime of (13) and demonstrate the sponta- 

neous breaking of the conformal invariance in terms of a single scale parameter 

vu whose existence also induces Einstein’s term. 

Notice that for B = 7r/2 the complete effective potential (15) is zero. This 
_--. realizes the field 0 as the “Goldstone mode” of the spontaneously broken dilata- 

- tion invariance. The most striking property of the dilaton field is its dual role 

as a Higgs scalar, acquiring a VEV that breaks a local symmetry, and a mass- 

less Goldstone boson, depositing its degree of freedom to the metric field and 

disappearing from the physical sector. 

Having found vu/A, we can check to one loop the vanishing of the cosmolog- 

ical constant as predicted by the W-I (11). The graviton tadpole t,, (see fig. 4) 

can be calculated: 

t/w = - & GA2(sin 26) e-28/ tan ‘qry _ (17) 

and verifies (11) (see fig. 2): 

(18) 
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For 8 = n/2, t,, vanishes and so does the cosmological constant to this order. 

When the dilaton and, therefore, the graviton tadpole is zero Weyl invariance, 

through its W-I, implies the vanishing of an arbitrary l-PI function involving 

only dilaton and graviton external legs at zero momentum [15]. 

The generalization of the above analysis to an arbitrary Weyl invariant La- 
- . 

grangian is straightforward. In particular, f M may Contain Some Scalars 4; 

which acquire VEV’s vi and provide masses to vector bosons and fermions. Fur- 

thermore, the unphysical field Q can self-interact and mix with these scalars. A 

Lorentz rotation on the fields CT and 4iY dictated by the relative sign difference of 

their kinetic energies, gives the dilaton U’ and Higgs scalars 4: of the theory; the 

VlZVofo’isv~=~v~. 2 The scalar effective potential should be minimized 

in the Higgs and dilaton directions. Alternatively, all the VEV’s are determined 

- by requiring the Higgs and dilaton tadpoles to vanish. Then, the W-I (11) will 

automatically imply a zero cosmological constant; An explicit example of this 

mechanism, whose essential points are presented here, is given in ref. [15]. Let 

t,,, to and ti denote the gravitational, dilaton and Higgs tadpoles respectively. 

The contributions to these quantities up to one-loop come from the scalar quartic 

interactions t(4), as well as the vector boson, fermion and graviton loops ttA), t(+) 

and tth) respectively (see fig. 5). We have: 

(194 

(1W 

Since the Lagrangian possesses classical scale invariance, the gauge symmetry 

breaking occurs by radiative corrections and requires Xi - gj, where Xi and gj 
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represent various quartic and gauge coupling constants [12]. The W-I (11) is true 

diagram by diagram: 

(20) 

To achieve a stable perturbation theory we determine VA and vi’ such that the 

dilaton and Higgs tadpoles are zero. Then, t,, = 0 and the cosmological constant 

vanishes to this order. When the ratio vi/v0 is very small, as it would be in 

the standard model, the value of VA is essentially equal to vg and, therefore, 

gravitation supplies the dominant contribution. 

4. Gauge Invariance and Unitarity 

The presence of a massive spin-two ghost state is a characteristic of all gravi- 
_-- 

tational actions quadratic in the curvature and is the source of their nonunitarity 

in ordinary perturbation theory. We will argue that Weyl’s gravity should be uni- 

tary in the l/N expansion without use of the Lee-Wick prescription: all physical 

quantities, like S-matrix elements, involving only helicity-two massless gravitons 

and physical matter particles as external lines never need unphysical degrees 

of freedom as intermediate states. It is straightforward to extend the standard 

demonstration of the gauge invariance of physical quantities to this theory and 

guarantee the gauge fixing independence of the S-matrix. 

The decoupling of the dilaton has already been shown; we now prove the 

gauge independence of its VEV vu and the gauge dependence of the spin-two 

complex mass M. Notice that in gauge theories exactly the opposite happens: 

the VEV of the Higgs field is gauge variant while the mass of the vector boson 

gauge invariant. But in gravity t,he physical quantity is the Planck mass, which is 
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associated with the VEV of the dilaton, while the spin-two ghost is an unphysical 

particle. 

Consider the gauge fixing conditions (12) used to prove the renormalizability 

of the theory. The derivation of the W-I for the [-dependence of l-PI Green’s 

functions follows that of ref. [3]. A new source term -r) E + is introduced in the 

effective Lagrangian, where q is an anticommuting constant and E the conformal 

antighost. The W-I replacing (10) is [15]: 

Unlike gauge theories, since all the counterterms in the theory are c-independent 

[3,15], there is only explicit &dependence in the Green’s functions and the d/dt 

appearing in (21) gives the total gauge fixing dependence of the I-PI functions. 

_ Ry using vu such that the dilaton (and, therefore, the graviton) tadpole is zero, 

we find from (21): 

d 6I d - -= 
d( 6u o*zvo=o 

(22) 

establishing the gauge independence of vg and, consequently, the Planck mass. 

Moreover, employing (21) for the graviton self-energy we infer [15] the gauge 

parameter dependence of the complex pole M2: 

where 

M2= M;)+; k$$+... (24 

~c-% the pole M2 goes to infinity along a ray in the complex plane; 

both its real and imaginary parts become gauge parameter dependent. Physical 
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quantities, being gauge invariant, should not depend on the gauge variant pole 

M. Thus, the spin-two ghost associated with the pole should be unphysical. 
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Figure Captions 

1. Leading l/N graviton propagator. 

2. Ward identity for the cosmological constant & Landau-type gauges. 

3. Dilaton effective potential to leading order in l/N. 

4. Leading l/N graviton tadpole. 

5. Graviton, dilaton, Higgs tadpoles up to one loop in scalar QED. 
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