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ABSTRACT 

We present a systematic analysis in perturbative-quantum chromodynamics 

and other renormalization theories of highemrder corrections to quark distribu- 

tion amplitudes for flavor non-singlet mesons, the wavefunctions which control 

leading twist exclusive processes. In particular, we investigate the utility of resid- 

ual conformal symmetry near the light cone. We find that beyond leading order 

the eigensolutions of the evolution equations are regulator-dependent in renor- 

malizable theories. In a specific calculation for @ theory in six dimensions to 

two loops, we find that the eigensolutions obey conformal symmetry using dimen- 

sional regularization for the subset of diagrams which do not contribute to the 

p function, but conformal symmetry is broken using Pauli-Villars regularization. 

A comparison with existing calculations of the two-loop kernel for gauge theory 

with p = 0 indicates that conformal symmetry does not hold beyond leading - --. 
order in QCD in dimensional regularization. 



-3- 

1. Introduction 

In recent years ft has become apparent that-many l xclustve processes 

Involving large momentum transfer can be analyzed perturbatlvcly 4n 

QCDte2. leading order analyses have been completed for meson (H) and 

baryon (B) clectro-weak form factors!o3 meson-photon transltlon fom 

fact0rs.l w+m and B&4 @*BE, 5 and several others. Work 

has begun on higher order corrections to these processes, with partial 

analyses of meson-meson6 and. meson-photon form factors. 7 

In this paper we use conformal symmetry8~gJ0 at short distances to give 

predictions for the quark distribution amplitude #(z,Q) for flavor non-singlet 

mesons (#~,K’g,p’s,etc.), the wavefunctions which control the behavior of exclu- 

sive.meson processes at large momentum transfer. These predictions are explic- 

itly confirmed through two-loop order in # theory in six dimensions for a subset 
- of graphs with zero p-function using dimensional regularization, but fail with a 

Pauli-Villars regulator. In the case of QCD and other gauge theories, conformal 

symmetry does not appear to hold beyond leading order using dimensional reg- 

ularization. This unexpected breakdown of conformal symmetry, even for f3 = 0, 

may be due to the sensitivity of gauge theory to infrared cutoffs in both of these 
regularization schemes. (Of course Pauli-Villars should not be used in QCD due 

to breaking of non-Abelian gauge invariance.) 

In Section II we review the general formalism for aMlyzh9 exclusive 

amplitudes In perturbative QCD. Here and throughout the paper we limit 
-. 

our discussion to flavor non-singlet mesons. Ue review the leading order 

analysis, and fdentify those elements of the second order analysis that 

are still needed to complete the treatment to that orde;. The central 

problem concerns the generalfratfon beyond leading order of the Gegenbauer 

polynomials Cii2 (x,-x2) that appear in leading order - I.e. an analysis 

of opera tot mixing under renormalfration. 
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It has been ahown by Parisi lo that conformal symmetry is satisfied aaymp- 
totically at short distance in renormalizable field theories with zero fl-function. 

Thii result however may only be true for specific ultraviolet regulators. (For a 

discussion, see Ref. 9). In Sections II and III we postulate the applicability of 

conformal symmetry to the operator product expansion at short distances and 

predict the form of the eigensolution of the evolution equation for the distribu- 

tion amplitude to all orders in perturbation theory. The corrections from ~9 # 0 

are then treated in perturbation theory. 

- . 

In Section IL’ we show that the predictions of conformal symmetry cannot 

hold simultaneously beyond leading order in both Pauli-Villars and dimensional 

regularization. As shown in Appendix C, # theory is six dimensions with di- 

mensional regularization is consistent in twc+loop order with the expectations 

-0Tconforma1 symmetry. Assuming thii also holds in gauge theory we then give 

detailed predictions for meson distribution amplitudes in QCD, and in Section 

V apply them to the meson form factors. 

We also discuss the problem of generalizing our analysis to flavor-singlet 

mesons. We briefly summarize the detailed procedure for perturbative calcula- 

tions of exclusive amplitudes in Appendix A. These are illustrated by a complete 

one-loop analysis and by parts of the two-loop analysis in the sme Appendix. 

Recently, three explicit calculations” of the tw+loop kernel for the meson 
distribution amplitude in QCD have been performed using dimensional regular- 

ization, two in light-cone gauge and the last in Feynman gauge. The results 

agree with each other, and the diagonal matrix elements are consistent with the 

second-order non-singlet anomalous dimensions for deep inelastic scattering cal- . 
calculated in Ref. 12. The results for the eigensolutions, however, disagree with 

the predictions of conformal symmetry. 
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11. fxclusfve Amplitudes at Larqe Momentum Transfer 

A. General Formalism 

Generally,exclusive amplftudes involving lrrge momentum transfer 

factor into a convolution of distributton amplitudes +(xi,Q)., bne for 

each hadron, with a hard scattering amplitude fH' The pion'a electro- 

atagnetic form factor, for example, can be written as 1,2 

42 T,(Q) = &xi.Q) f~(xi8Yi.Q) o(~i,Q)(l +O(# ('1 . 
0 0 

where [dy] - dyldyz e(l -4 yi) and Q'=-q2 is large. Here #(yi,Q) is 

the probability amplitude for finding the valence q5 Fock state in the 

initial pion, with the constituents carrying longftudinal momentum 

Yp,-md YgP, . respectively; T,, fs the amplitude for scattering the 

q: state from the initial to the final direction; and #* fs the amplitude 

for the final-state qF to fuse back into a pion. 

Choosing a frame in which pG=p:+pf'l. the process independent 

distrfbution amplitude for a pion is quite naturally defined b+* 

- 
@(xi ,Q) = 

I 
g l 

i 1x1 -x2)272 Y+Ys 
ww~) z 

1Q 
W(r)ln> 

I 2+=2*-o 
(2) 

in A+=0 gauge. [In other gauges there 1s a path ordered factor l xp((pl: ds A’(zs)z-/2) between the T and $, making $ gauge fnvarfant.] 

The matrix element in Eq.(2) has an ultraviolet divergence, coming from 

the light-cone singularity at z2=0. Thfs divergence is regulated by 

fntroducing a momentum cut-off, or other renormalization scale, equal 

to Q. Consequently z2 is In effect smeared over a region of order 

z2=-*: % -l/Q2 -the form factor probes distances no shorter than G/Q. 

Any iegulator that is both Lorentr Invariant and gauge invariant can . 
be used. For purposes of illustration, we use dimensional regulariration - 

and minimal subtraction (withv=Q) in this section. Other regulators 

are considered in Appendix A. 
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Once a regul8tot is chosen, Eqs. (1) and (2) uniquely specify the 

gauge invariant hard scattering amplitude TH. for the pion form factor, 

as for many other pmcesses, fH has a perturbatjve expansion in powers 

of a,(Q) with 

(3) 

where n- 0, by dimensional analysis. [In general n is the total number 

of initial and final pattons less four.] To leading order in a,(Q), the 

distribution amplitude and therefore also TH are independent of the 

regulator used in defining @. This is obviously not the case beyond 

leading order, as will be illustrated in Section III. 

The variation of $(xi,Q) with Q is less drastic and somewhat raore --- 
complicated than TH. The Q-dependence is determined solely by the ultra- 

- 
violet structure of the operator&r) ~'~S$(z) on the- light-cone, and 

. thus can be studied perturbatively. To extract this behavior, we intro- 

duce an unrenormalized distribution amplitude 9,(x,) defined in 4-2~ 

dimensions. Being in 4-2~ dimensions, #,, is ultraviolei finite and 

therefore Q-independent. It is related to the true distribution ampli- 

tude by a 'Mtrix'of renormalization constants Z(xi,yi,Q): 

4$+ - Z(xi nyi .Q) dyi l Q) 
a_ 

(4) 

Differentiating this equation with respect to Q2, we obtain an evolution 

equation for 8: 

Q2 a 7 4b,m = 
aQ J g v(xi .yi .a,W) @(yi *Q) 6) 

where 
. V = -Q2 a an 2 

z 
(6a) _ 
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h a s  a  p o w e r  ser ies  e x p a n s i o n  in  as(Q):  

o ,(Q ) 
V b + y & Q ) )  - -r V l(xi.~ i) +  .Y2bi .~I )  + ..- (6b)  

- . 
Clear ly  @ (x,Q ) is on ly  logar i thmica l ly  d e p e n d e n t o n  Q ; th e  br i lk  o f th e  

Q - d e p e n d e n c e  o f a n  exc lus ive  p rocess  Is d u e  to  ftc. A  d e ta i led  p rocedure  

fo r  c o m p u tin g  V  4s  I l lustrated fn  A p p e n d i x  A . 

In  pract ice,  th e  evo lu t ion  e q u a tio n  (5)  is al l  th a t is n e e d e d  to  

c o m p u te  th e  evo lu t ion  o f +  as  Q  c h a n g e s . G iven  s o m e  ini t ial  distr i- 

b u tio n  ~(X i ,Qo) .  th e  e q u a tio n  4s  read i ly  in teg ia ted numer ica l l y  to  

g ive  +(x,,Q ) fo r  a n y  Q . A n  

o f Q  to  th e  Q 4 e p e n d e n c e  o f 
1  

- I & I h l -x2h4x i  .Q ) =  

al ternat ive p rocedure  re la tes th e  var ia t ion 

m o m e n ts o f th e  d is t r ibut ion ampl i tude:  

< O lT(O ) y &  ( iT+ ,"  # (O )]JQ ) l p +  l 
n - 

C O ] (ia + ) m p  - ;; (W)"  J1 ]],,sp)  (7)  

i n d e p e n d e n t o f m  [ia '+ &  * iv-gsf in  g a u g e s  o the r  th a n  A '= 0  g a u g e ]. 

C lear ly  th e  var ia t ion wi th Q  o f th e s e  m o m e n ts is fd e n tic#l to  th e  

cut-off d e p e n d e n c e  o f th e  loca l  o p e r a tors  ( ia*)m ~ ‘y,( i~)” Jr. In  

genera l  th e s e  o p e r a tors  m ix u n d e r  renonnal i ra t fon,  b u t on ly  o p e r a tors  

hav ing  th e  s a m e  n u m b e r  o f der ivat ives c a n  m ix in  a  L o r e n tr (nvar iant  

theory .  C o n s e q u e n tly, fo r  e a c h  in teger  n , th e r e  fs a  'to w e r ' o f 

o p e r a tors  0  (n), dO(") .  ( ia+)20(n) .  . . . w h e r e  (at)fO ) 

(8)  

c a n  b e  c h o s e n  so  th a t e a c h  o p e r a tor  is s e p a r a te ly  m u l tip l icat ively 

renormal jzab le ,  a l l  hav ing  th e  s a m e  a n o m a l o u s  d i m e n s i o n  y h + a s ) .1 2 ~ 1 2  

T h e s e  o p e r a tors  d e p e n d  impl ic i t ly u p o n  th e  renormal iza t ion  scale,  b o th  

th r o u g h  as  a n d  th r o u g h  th e  regu la tor  requ i red  to  d e fin e  the i r  m a trix 
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elements. for our purposes, the renormalization scale is set equal to 

Q. By introducinq the polynomials vn, 

Pn(xppas) l f ain) 5 
j-0 

(a,) (xl-X$ l 

we can define moments R,,(Q), 
1 

A,(Q) a 
I 

~dx]Fn(xl-x2. a,(Q)) +(xi.Q) 

0 + 

= CO] T 2 V,(#‘. 
(Q) 

aJ+ln> 

w 

(10) 

that satisfy simple evolution equations: 

Q2 2 R,,(Q) = - k r(“)b,(P)) fin(Q) 

:y(“)(a,) l 2 yl(n) + G Y2 + ..* 
11 
as 2 (n) 

(11) 

Equations (9-11) are equivalent in content to the original evolution 

equation (Eqs.(5,6)). Given the anomalous dimensions y 
(n) and the 

polynomials Fn. the complete Q-dependence of the distribution amplitude 

is determined: 

$(xi*Q) B ~1x2 n o Pn x1-x~~ as(Q)) r?,(Q) I ( t 
I (12) 

where, from Eq.(ll) , 

(13) 

and where P, is defined such that 
1 

I 
IdXI Fn ~1x2 Pm D bm (14) 

b 
In general P,, unlike Fn* is not a PolYnomial- T&functions pn and pS, and . 
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the anomalous dimensions y (n) can all be determined directly from the 

evolution potential V(xi,yi,as). One readily obtains defining equations 

for Pn.rn and y (4 by substituting expansion (12) for 0 lnto the evolution 

equation (5): 

- J kJx1 ~,,(xl-x2.c$ Vbi .q .as) 

(15) 

Q2 a 2 xlx2Pn(xl-x2.as(Q)) m fr(")o,) xlX2Pn(Xl~X2+) 

+ J c&l Vbi BY~ .as) Pn(Yl-Y2eas) 

Beingfirst-order differential equations, these equations must be supple- 

mented by an initial condition or other constraint. The choice of an 
- 

initial condition is largely a matter of convenience and convention, 

as will become clear in Section 1I.C. below. 

The formalism outlined in this section is valid to all orders In 

a,(Q). Once an ultraviolet regulator has been chosen fdr defining 

$(x,Q), the evaluation of fH for some process is straightforward. The 

process independent distribution amplitudes $(x,Q), must be specified 

at some Q=QO, either empirically or by some non-perturbative analysis. 

The variation of +(x,Q) with Q can then be computed either directly from 

the evolution equations (Eqs.(5,6)) or from the moments of@(Eqs.(l2-15)). 

We now specialize our analysis of 4 to leading and next-to-leading orders. 

B. The Distribution Amplitude in Leadinq Order 

The formalism of the previous section simplifies considerable in 

leading.order. The leading-order evolution potential vl 1s readily 

computed (see Appendix A) 
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vl(xi .Yi) - 2cf{“lY2 ebl’xl)bwh,l; + + 1 

+ (l-2)) - Cf YlY2 6(x1-Y+ 06) 
= Vl (Yi l q 1 

where A#(vi, 9) = 4(1/i, 0) - d(zit 9). . 

functions P,, Fn, and the anbmalous dimensions y\") are then determined 

from Eqs. (15). which in this order simplify to the form 

J [dx] v,bI-x2.0) Vl(q.~i) = -yIy2 ~1'"' v,(yl-y2.0) 

J (n) 
[dy] V1 (Xi sY~) Pn(Yl”Y2~O) l mXlX2Pn(Xl’X2~O) yl (17) 

Thus in the limit as +O, P, and p,, are l igenfunctions of V1 corresponding 

(4 to eigenvalue -yl . Since V,(xi,yi) - Vl(yi,xi) is a synetric operator 
--- 

it is imediately obvious that P, =Fn, and that these polynomials form 

a complete set, orthogonal with respect to weight x1x2.- The only 

polynomials orthogonal for this weight are 3/24egenbauer polynomials 

and therefore 

5,(xI-x2.as4 - $,bl-x2.0) 

3/2 = En (x1-x2) (18) 

E f&$&J cpxl-x2) 

The anomalous dimensions to one loop then follow easily from Eq. (16): 

where for pions 6-h K = 1. . 

(19 

C. The Distribution Amp1 itude to Two loops 

. 
In twc+loop order, the polynomials &(zl - 22, a,) have 
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the general form 

F~(x~-x~~~S) = Cn -3’2(xl-x2) + > nf d? t3’2(x1-x2) l 
n j-0 3 5 . (20) 

. 

while P,, no longer a polynomial, must then be given by (see Eq.(14)) 

Pn(xl-x2,0s) = t;'2(x1-x2) - g ; d; t;‘2(x1-x2) 
j=n+l 

Substituting these expressions into Eq. (15). we obtain 

00 
y2 

- - 
J 

[dx][dy] t3’2( n xl-x2) V2(xi#Yf) "i'2(Yl-Y2) 

42 d dn - as(Q) 

i$j 
4n {(B,-Y~~)*Y~(J)) dj" - (V2),$ 

_-- 

- where (V2)ti and B. are defined by 

(V2)nj D J [dxltdyl t3’2( n xl-x2) v2(xi*Yi) j t3'2(Yl-Y2) 

Q2 *as(Q) = B(as(Q)I 
a2(Q) 

* - -+ B. - . . . 

(21) 

(228) 

(22b) 

To solve for the expansion coefficients d;' we must now deal with 

the issue of initial conditions for Eq. (22b). At first glance, it seems 

most natural to choose initial conditions that make the d” constants, 5 
independent of Q. However, with this choice, the expansion coefficients 

equal (V2)nj/(80'Y1 (")+~(ii)). which becomes very large when 
11 

B. - y{“‘$) (e.g., dl =-14B). Such large coefficients are obviously 

an artifact of the initial conditions, and do not reflect pathologies 

in the behavior of +(x,Q). A far more practical initial condition is 

. 
d?(&) - 0 (23a 1 
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in which case Eq. (22b) implies (n > j) 

(80-Ypr,‘j)mo 

1 

(V2)nj 

B,-Y~“)+Y~ 
j) . (23b) 

Then 9 is well behaved even in the lit /3o + $‘I - #I: 

Furthermore cx,(Q)q(Q) b is --- ounded in magnitude for all Q 2 Qc, since it van- 

ishes both for Q = QO and for Q -+ 00. Consequently deviations from the 
- leading order result are small throughout this range, provided of course (V2)aj is 

not large.. An additional convenience of thii choice is that the relationship be- 

tween the moments tin(Q) and the distribution amplitude r$(z,Q) is unchanged 

from the leading order result at Q = Qo, i.e., PA = pn = Ei’* is exact both at 

Q + oo and at Q = Qo. This facilitates the determination of the initial moments 

from the initial distribution amplitude. 

From Eq. (22), we learn that Gegenbauer matrix elements (Vs)aj of the 

twc+loop evolution potential determine all O(Q,) corrections to 4(z,Q). The 

anomalous dimensions rfn)(a,) for the operators Of”) (Eq. (8)) have already 

been determined through two loops for the analysis of moments in deep inelastic 

scattering.‘*Js Thus the diagonal matrix elements of V’ (Eq. (22a)) are known. 

The off-diagonal matrix elements, and therefore also the coefficients q, are read- 

ily determined if conformal symmetry is valid, as we demonstrate in the next 

section. 

. 
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III. Consequences of Conformal Symmetry 

A. Leading Order 

Classical relativistic field theories that are scale invariant and have a renor- 

malizable Lagrangian are also invariant under the conformal group, which con- 

sists of the translations, boosts and rotations of the Poincard group together 

with dilatations (zp + X9) and conformal transformations [inversion (z” 4 

-tijz2) @ translations @ inversion]. lo Scale invariance and therefore also con- 

formal symmetry are destroyed in QCD by quark masses, and by the renor- 

malization procedure, which inevitably introduces some renormalization scale A. 

However, the evolution potential V(zi,yi, a,) (Eq. (6)) is by definition free of 

both mass singularities and of all ultraviolet infinities other than those related 

to charge renormalization. Since there is no renormalization of a, in leading 

- order, the one-loop potential VI must preserve conformal symmetry. As shown 

in Ref. 8, this constraint implies that the functions Pn that diagonalize V’ must 

be Gegenbauer polynomials 

- 

F&(21 - Z&O) cc ty2(z1 - 22) (24 

Then the multiplicatively renormalizable operators Otn) defined by P’ transform 

as irreducible tensors not only under the Lorentz group, but under the full con- 

formal group as we1l.s 

B. All Orders Analysis of Conformal Symmetry 

Beyond leading order, the functions Pm can be modified by two effects. 

First the dimension of Ofn) in Eq. (25) is increased by the anomalous dimension 

7 (4 (a,). While this should not affect the conformal symmetry of the evolution 

potential, it does change the prediction for the &. 

As shown in Appendix B, I4 the general result for operators O(n) bilinear in 

spin zero fields in scalar field theory is 



. . .: _ <. _ :_ - ---- --_ j _ -.. _~ 

-14- 

1 
a4 a (I_ $) g (l- 2 t I'+(~-l)+f7r(41 

) (25) 

where dg is the canonical dimension of #(db = 1 in - Cdimensions, d# = 2 in 

six dimensions). For spin i fields, with O,(O) as defined in Eq. (8), conformal 

symmetry predicts 

1 
w4 a (I-$) z (l--z 3 I~+(rp-t)+tll 1 (26) 

where do is again the canonical dimension of d(dd = i in 4-dimensions, d& = $ 

in 2 dimensions). The results are true in any spacetime dimension. 

The second effect is due to the breaking of scale invariance by the .running cou- 

pling constant. This leads to terms in V proportional to the /?-function that 

break the conformal symmetry and therefore modify the P~‘s. One expects 

- thxt all symmetry breaking terms in the potential must be of thi second type 

(a P((y&)) because mass scales enter V only through charge renormahiation. - 
Each of these effects leads to terms ‘m the two-loop potential Va that are not 

diagonal with respect to the Gegenbauer polynomials ez/‘. Furthermore, these 

are the only non-diagonal terms in V’ and, consequently, the only terms that 

need be computed to obtain the expansion coefficients 4 for p,, and PO (Eq. 

(23)). Given the expansion coefficients together with the twdoop anomalous 

dimensions, one can compute the full distribution amplitude. It is useful to 

study these effects for two different distribution’amplitudes, one defined with a 

Pauli-Villam cut-off and another defined by dimensional regula&ation (MS). 

In fact we find that conformal symmetry cannot be simuItaneously true in 

both regulators beyond leading order. This is discussed in -detail in the next 

section and Appendix A. Thii result has been exphcitly checked for [@lo to 

two-loop order for the set of (ladder and crossed ladder) graphs that have no 

contribution to @. The dimensional regularization results agree with conformal 

8ymmetry. 

. 
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IV. Calculations of the Meson Distribution 

Amplitude in Gauge Theory 

A. Pauli-Villars Regulator 

By definition, the ultraviolet divergence in the distribution amplitude 4(z, Q) 

is removed in Pauli-Villars regularization by rubtracting diagrams with the gluon 

mass set equal to Q. As we shall show, the distribution amplitudes ‘m  thii scheme 

and dimensional regularization can be related to each other through a correction 

to the evolution kernel beyond leading order. In Appendix C we give a complete 

calculation of the distribution amplitude and the evolution kernel through two 

- Lops for [@le. By keeping only the crossed ladder and ladder contributions, the 

model for the distribution amplitude satisfies the Callan-Symansik equation for 

/3 =’ 0. By explicit calculation through two loops we find, using Pauli-Villars 

regularization, the polynomials F,, a defined in cq. (12) are the Gegenbauer 

polynomials E?(z) with index 

en = 
3 +)(a) = 3 
2+ 2 

z+y+... . 

We then find that the functions P,,(zr - 22, a,), the eigensolutions of the 

evolution equation for the distribution amplitude, are exactly those predicted by 

conformal symmetry (Eq. (25), with d4 = 2), but that this result holds only for 

dimensional regularization, not Pauli-Villars. In this section we show that if one 

assumes P n = efi in gauge theories in Pauli-Villars regularization, then again the 

conformal symmetry functions arise for the Pn in the dimensional regularization 

scheme if PO = 0. 

W ith the above assumption for the pn, the polynomials to two loop order for 

Pa+-Villars regularization are 
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-E Fnbl-x2.q = c,$x,-x~) 

312 = t” bp2) + G Y1 *s (n) d -$ ) x c, 1-9 cm3,2’* -0. l 

I 

and therefore, from definition (20). dj” would be . 

(') Y1 J 

[Note that we are led to the scheme with constant 9.1 

.-- 

From the discussion in Section II.C, there must therefore be a term 

V2a in the two-loop potential for which 

t Yin) J 
This expression can be simplified somewhat by using the identity 

d EC1 -3/2 o d 

dc “IE=$ xlx2 cj x rtk (X,X2) c-lr q - iy2- 9x2 qjc 3,* L 
312 - ti'* Ln(xlx2) xp2 tj 

and the orthogonality of $'s with respect to weight (x,x2)cob. Thus 

theaoff-diagonal matrix elements of Vza can be written 
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(VZaGlj - (n)tY~n)-Y~j)) l[dx] tzi2 fn(xlx2)xlx2 $" 

I n*3 (27) 

0 on 

As we argued above, rny s-try breaking terms In V2 mutt be 

proportional to B(a,) = - Boot/4n where B. - ll-2nf/3 and nf Ss the 

number of light-quark flavors. The nf-dependent part of this correctfon 

comes entirely from the quark-vacuum-polarization correction to the 

leading order potential and is easily computed. From it the entire 

correction is obtained simply by multiplying by - $ Bo/nf. In fact, 

as we show in Appendix A, there is no s-try breaking tern of this 

type for the Pauli-Villars regulator. This rather surprising result 
.-- 

is easily explained. Any term in V2 proportional to B. should properly 

be absorbed into the 'leading order potential by resealing the argument 

of as. As discussed in Ref. 15, this sets the argument of as equal 

to,the mean momentum flowing through the gluons in the leading order 

diagrams (up to a constant scheme-dependent factor). Generally con- 

formal symmetry will be destroyed if this mean momentum depends upon 

the longitudinal momenta, as then as varies with xi and y,. However, 

the Pauli-Villars regulator automatically sets the mean gluon momentum 

equal to Q, independent of xi and yi, because it regulates divergences 

by introducing the cut-off Q as a gluon mass. Thus Vpa (Eq.(27)) is 

the only non-diagonal term 4n the two-loop Pauli-Villars potential. 

B. Dimensional Regulariration 

The two-loop evolution potentjal obtained using dimensional 

regularization must again include the confonnally tymnetric, but non- . 

diagonal, potential Vza (Eq.(27)). In addition there are two symmetry- 
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breaking termr due to the fact that #(a,)+ 0. The first 4s proportional 

tb Bo, and is readily computed from the vacuum polarization corrections 

to leading order, as described above (see Appendix A). A second synrnetry- 
. 

breaking term 4s expected because the coupling constant Is not dimension- 

less tn 4-2~ dimensions. Thus the scale Invariance of the theory Is 

destroyed, and the $-function Is non-zero even fn leading order- 

i.e. B(aS) = -c as - . . . . The extraction of this second term from 

V2 is somewhat subtle because it is Induced by an O(c) effect. It 4s 

easier to derive both synrnetry-breaking terms together by relating the 

evolution potentials for Pauli-Villars and dimensional regularizatfon, 

as we_~ow illustrate. 

The distribution amplitudes for the two regulators are related 

by a finite renormalization constant z: 

@PbJX4 = I 
Ml qy2 z(xidi.as(Q)l 9~R(qJl) (2oa 1 

(28b) 

Substituting this equation Into the evolution equation for ep,,, we 

can express one evolution potential in terms of the other: 13 

'OR - z 
-1 

Vpvf - Q2 -+ f n z 
(29) 

- vPv + (VI 6V-6V v, +Bo 6V)i . . . 

where VI is the one-loop potential (Eq.(16)) and where, from Appendix A, 

6V is 

6V. = -25 {x1Y2 Pn -h,fi + &)e(Y,-x,) + (1 * 2)) (30) 

+ symmetric terms 



Thus the two-loop symnetry-breaking terms In the dimensional regulat- 

lzrtion potential sre contained In 

v2b l fv, ,av] + Boev , (31) 

and all terms that are not diagonal with respect to 3/24egenbautr 

polynomials are contained in Vza + V2b . 

The off-diagonal matrix elements of V2b can be greatly simplified. 

First, using Eqs. (17) we can show that 

w&j - (BooY, (n) l yl(j)) j[dx)[dy] t;'2 6V t;'2 

Secondly, and rather remarkably, we show in Appendix A that off- 

diagonal matrix elements of 6V (Eq.(A-11)) are related to the matrix .-- 

elements of VZa (Eq. (27)): 

(av)nj * '+ (V2a)nj 

Thus the non-diagonal matrix elements of V2 for this regulator are given 

by 
(V2a+v2b)nj o = (B +Y!‘))(Y~~)-Y~~)) JWI ti’2 fn(x,x2\xlx2 ti/' (32) 
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The prediction of conformal symmetry (Eq. (26) with d4 = 3/2) 

is in complete agreement with Eq. (32) for PO = 0. As shown in Appendix A the 

essential difference between the Pauli-Villars and dimensional regularization can 

be traced to the induced contribution to the p function in 4 - 2~ dimensions. De- 

spite the consistency of the above approach, we note that explicit calculations” 

of the second order evolution kernel in gauge theories (Abelian QED and SU(N,) 

QCD) using dimensional regularization and /30-= -0 (k~ = (1112) IV,) do not 

agree with the conformal symmetry prediction. [Although the contributions pr+ 

portional to /Sc do agree with Eq. (32).] Th e results have been checked in both 

lig:kt-cone and Feynman gauges. This conflict is unresolved, and hints at an even 

subtler breakdown of conformal symmetry in gauge theory. 
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V . Conc lus ions  

In  th j r  p a p e r  w e  h a v e  s h o w n  th a t th e  m e s o n  dis t r ibut ion amp l i tude  

h a s  th e  fo r m  

dx,*Q ) =  “1 x 2  “iO  ” 1-  2 ’ $  - P  (x x  a  IQ )) a ”(P)  ’ (33a)  

w h e r e  
a  (9)  - 

p "  =  tpx,-x,) - .*- 1  
J = n + l  

d ;(Q ) t;‘2(x,-x2) +  .- l (33b)  

a n d  w h e r e  R ,(Q ) 3s  a  m o m e n t o f 0  sat isfy ing a  s tandard  evo lu t ion  e q u a tio n  

(Eqs.( l l )  a n d  (13)) .  

A s s u m i n g  res idua l  c o n fo rma l  s y m m e try n e a r  th e  l ight  c o n e , w e  fo u n d  a  s imp le  

p rocedure  fo r  d e te rm in ing  th e  c o e ff icients di,  ( S e e  E q s . (23)  a n d  (25)) .  



However, as we have discussed in the introduction, the predictions of con- 

formal symmetry appear to conflict with explicit twiloop calculation& for the 

distribution amplitude in QCD using dimensional regularization, although they 

do hold for the analogous calculations for #z in six-dimension. Assuming these 

calculations are correct, this implies that conformal symmetry is broken in a sub- 

tle way in gauge theory in dimensional regularization, perhaps due to sensitivity 

to infrared cutoffs. If the source of thii breakdown can be identified, then confor- 

ma1 symmetry could still be useful as a guide to the higher order corrections to 

the distribution amplitude. More important, thii unexpected breakdown points 

to new effects which control the short distance structure of gauge theory, and 

give caution to the formal use on conformal symmetry results. 
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A Appendix 

One-Loop EvOlutfOn Potenti and Vacuum Polarization corrections / 

In this AppendSx, we tederive the one-loop evolution potentIa1 for 

mesons and compute the leading corrections due to vacuum polarfration. 

The standard procedure for computing V for some hadron fs to compute 

the distribution amplitude fn perturbation theory not for the hadron 

but rather for a state composed of free quarks (and/or gluons). From 

this, the renormalization constant 2 and then the evolution potential 

(Eq.(6)) are determIned. Since V is insensitive to low momenta it is 

the same for the hadron as It is for the free quark state. 

A related procedure determines the hard scattering amplitude TH 
~-- 

for any process. The amplitude for that process Is computed 4n 

- perturbation theory with all hadrons replaced by free quarks. Using 

the distribution amplitudes for the free quark states, the hard 

scattering amplitude Is extracted by rewriting the full amplitude In 
. 

a factorized form, as In Eq.(l); Lt., T,, is obtafned bj dividing out 

the distrjbutjon ampljtudes. In this way collinear mass singularities 

are systematically removed from fH, leaving 4" many cases a well behaved 

expansion $n as(Q). This procedure Is particularly simple when $ 1s 

defined using dimensional tegulariration and minimal subtraction. Then 

TH is obtajned simply by computing the scattering amplitude for collinear 

sets of massless valence quarks using dimensional tegulariration and 

mInima subtraction to remove the infrared infinities. 

Here we examine the distrjbutfon amplitude as defined with each . . 

of two regulators: dimensional tegularization, and Pauli-Villars . 

tegular~ration. 
16 
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1. Dimensional Requlariration 

To determine the llleson evolution potential V(xi,yi,as) for 8 

.d%nensional regulator we first compute the distribution rnplitude 

9,(x,) in d=4-2c dimensions for a free quark and anti-quark carrying 

kmentum ylp and y2p respectively (y,+y2=p% and pJ-pm- 0). 

Schematically, 0, will have the fotm 

where l,ai, . . . should be thought of as operators fn xi-y1 space, 

l/E = l/& -yE+Pn 4x, and X is some infrared regulator (we use a gluon 

mass). From this, the tenormalirtd distribution amplitude e(Q) Is defined 
~-- 

m  4(Q) = 1+ F(a1 - d1+ b1LnQ2/X2) + l l l 

where as(Q) is defined by 

aO a,(Q) z--p aO 6O 1 + %-+ . . . 0 46 1 

(A - 2) 

(A-3) 

so that 6(as) I -E as - go of/4n - . . . . The evolution potential then 

follows directly from the renormalization constant Z(Q) - $,@(Q)", and 

is given by 17 

V--Q2 -&W(Q) = Fb1+ (2>, 

(A - 4) 

[ 
2(b2 - P0al - ha) + P04 + @0b1(7g -tn4r) 1 + l l l 

This is the basic expression relating #,, to V. 

To compute V to leading order, we must compute +,,(xl) for our qF 

state through first order in as. The relevant diagrams for A+=0 gauge . 
are shown in Fig. 1. In lowest order (Fig. la), @, for this state is . 
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This is all the Information needed to define the leading-order hard 

scattering amplitude lH for any process involving mesons. One simply 

computes the amplitude for scattering collinear q% pai- (in place of 

the mesons), and divides by q for each external q or h , where xi It 

the fraction of the meson's momentum carried by that particle. 

In the one-loop graph of Fig. lb, k+ is set equal to x1, and the 

k- integral can be evaluated using contour integration. The result is 

-- OO J- ~,b(q) = - C 
2n2 F 

(A-6a) 

I 

J 
= -& 3XlY2(l ++y) e(Yp,) + w-41 

. 
+ 2c+x,Y2e(Y,-xl )+xlY2wYlIx,) 

+ (l-2)1 

Similarly, the self-energy corrections (Fig. lc) are 

(A-6b) 

JuIu2 e;(q) = - 3 tF(2nfE 6(x yY 1) j[dz] d2’2fkA 

+ (l-2) 
I 

(A-7a) 

QO 
* TYlY2 6(x1-Y+ &,‘X1) + (1 - 211 

4ltx 

. Wb) _ 



-26 

Eqs. (A-6) and (A-7) completely determine the one-loop evolution potential 

and @(Xi Jo. By comparing with Eqs. (A-1) and (A-4) we obtrh 

Mediately Eq. (16) for Vl(xl,yI). 

In Section 111, we discuss the fermion vacuum polarlratfon corrections _. 

to vl. These are easily obtained from Eqs. (A-6) and (A-7) by Including 

8 factor 

II = - * n OO [1+"] 
Jr- c 3 

(A-8) 

fn the integrands with 11 equal to the gluon momentum. A typical tcnn 

has the form 

v(xf’Y*h V’b+Yf) 

kf + X2xl/yl 

n( 
- -:)+(I~*) 

x1 > 

2 [I Oo * 1 
= - 3 "f '4ii (X2x,,y,)2t )(v+&')+ (l-2 

3 
(A-9) 

Noting the subtraction -goal In Eq. (A-4). we see that such a term 

contributes 

Yl - $ nf{( $-Ln -)v - V'+(ly*)) 
x1 

to the two-loop evolution potential V2. Thus, from Eqs. (A-6) and 

(A-7). the leading correction due to vacuum polarization is 

TIP = - : nf [ 5 V~(X~BYI) +6v(xi*Yi)l 

where 

6V = 
.* 

-y,Iyz 6bi-Yi ) $( ; - 2 5 ) 
(A-10) 

- 2tFfxly2 Iln b]/"l ) 1' ,+,!X, + - ) e(y,-x,) - x,Y2909-x,) + (1 * 2)) 
. 
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Only the term in 6V containing Ln yl/x, is non-diagonal with 

respect to the polynomials ti/z end so it Is retained In Section IV.: 

Evaluation of the off-diagonal natrlx elements of 6V Is greatly 
#S3 

simplified by noting that $i++t (fqs. (A-6,7)) can be wrltterr 

+ diagonal terms 

where 

v,(x~,y~) = 2~F{~x~y2)7-‘(1-E + & ) e(y1-x1)+ wal 

Because 0, is symmetric under (nterchange of x1 and yI, It must be 

- diagonal with respect to the Gegenbauer polynomials typ-'. The 

argument here is identical to that given for V1 In Section 1I.B. and 

the result is not surprising since the dimensions of the operators 0 (4 

are.reduced by -2t in 4-2~ dimensions. Thus Gegenbauer polynomials of 

type 3/2 - c are expected (cf. Eq. (25) with d, = (3/2 - c) ad no r,,). The 

eigenvalue equatio for VI is then 

I [dx] t;/2-E(xl-,2) ;;;+;;;!; = (-Yl(“) + o(C)) t~‘*-%‘,-y2) 

Expanding to first order In c, we find that (for n>j) 

-E 
I 

[dx][dy] t;'* sv(x,,y,)t;'*= ($)-r[j))+dx] 6 tr,x,x,t;'* 

I 6=3/2 

Borrowing results from Section lV.A, thii can be rewritten 

I [di]rdy] iE/* 6v $I*= $‘)-$))J[dx] 1:/* Wxlx2)x1x2 ti/* (A-11) 
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2. Pauli-Villats Requlatots 

A Psuli-Villars regulator is introduced by subtracting diagrams 

with the gluon mass set equal to Q. The cut-off distribution l nplitude 

#(x,,Q) for the free qF state will have the structure 

a (Q) ,‘yIyz e4Q) = n + -‘i;;- (bI in $ + a,) 

+ p$r(c2 fn2 $+ b2Ln $+ a2)+...)(A-13) 

This satisfies an evolution equation with the potential 

as 2 
V-aiibl+ (b2- 60ar -b,a,) (A-14) 

as can be verified by direct substitution. The regulated distribution ~-- 
amplitude is readily cbmputed to first order from Eqs. (A-6) and (A-7): 

(A-15) 

By comparing this result with that for dimensional regulatization, we 

find that the two distribution amplitudes are related by 

where z = YlY2 
P 6(x1-yi) + -6V with bV given by Eq. (A.10). Here 

and in Eq. (29) we are assuming that the same scheme is being used to 

define as for both Pauli-Villars and dimensional regulators. It is, 

of course, trivial to change from one scheme to another when using 

l jther regulator. 

TO obtain the vacuum polarization corrections for a pauli-Vjllars 

regulator, we insert 
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W2) Q (Q) 
l - f nfv*, [ 5 - &n(-p'/Q*)] 

into the one-loop integrands with f equal to the-gluon's momeMu% A 

typjcal term has the form 

r$]' jd( (k;t;;;;;, IN- $I+ (1 -zfQ2 

(---T-• 5 en Q2/A2)+ 
an2Q2/x2 

which implies a contribution to VP from vacuum polarization Of the form 

- f nf C$ V1 (xi di 13 

fhu-vacuum polarization does not introduce non-diagonal terns into the 

evolution potential, at least in this order. Because of this result, 

the B. part of VoR as computed from Eq. (29) (using VP,,) agrees with 

the direct calculation leading to Eq. (A-10). as it should. 
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APPENDIX B 

- 
I 

In this appendix” we give the general constraints of conformal symmetry for 

the operator product expansion required to calculate the distribution amplitude 

for vector and pseudoscalar mesons at large momentum transfer. To leading twist 

where i = 1,2 with 
i-1 

. ,w (I W) 
u i-2 

l “%P(O) I  

E 
Ok%. klo $nka 

VW 

D is the covariant derivative and &(z’ - irm) are singular functions of well 

defined dimension (powers of logarithms in QCD). In the expansion Eq. (B.l), 

the operators that appear have also external derivatives like in Eq. (B.3). This 

does not happen in the discussion of deep inelastic lepton-hadron scattering, 

since there only forward matrix elements are involved. Thusonly m = n = k 

operators appear there. Also, the expansion of a product of two currents is 

involved. However, it turns out that the m=n=k operators are identical in the 

two cases. Thus the qb that control the Q2-behavior in form factors are the same 

as in the k-th moment &(Q2) in deep inelastic lepton hadron scattering (see 

the first paper of Ref. 8 for more details). 

Let us now apply the form of the operator product expansion for two scalar 

fields in case of exact conformal symmetry lg 

A(x)B(o) rl; (x2-icx’) 
-l/2 (PA43) m 

1 (x2&x0) 
l/Z(&-nl_AB a1 

n=O 
c, x . . .> ’ uw 

cI 
(ux) 

l du u a,...o, 
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The cigenaolutiona P’(z) of the distribution amplitude UC proportional to 

where 
n 

8 l 
mn kmo dmnk bk 1 

Comparing (B.1) and (B.4), we then obtain 

00 
,c, I crmn d*-e(‘/2)‘*-P+ (p+) (p+z-)” 

= 

1 

a W’ 
I I 

du ,WW-I(1 _ yf)Kl/2)(L+4--ll 

-1 

a: (1 A - Z~)Kllwa+4--ll 

For scalars I?,, = n+2dd+r ,,, reproducing Eq. (25). For apinors, where 
we take the lowest operator to be a vector [Eq. (8)], this is equivalent to & = 

n + 2d4 + qn + 1, reproducing Eq. (26). [Note that for the 4’ interaction in 

I-dimensions and the ($+)2 interaction in Zdimensions the potential VI is a 
contact potential with measure (l-z’)O, thus yielding Pm(z) = Fn(z) = Legendre 

polynomials for leading order, in agreement with Eq. (25) and (26). (Actually 

only n = 0 appears in the potential.) In the case of $3 in &dimensions and gauge 

theory in 4-dimensions, the leading order polynomials are the Czi2, as expected.] 

. 
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APPENDIX C 

It is straightforward to show that the ret of ladder and crossedyladder graphs 

in [#S]e obeys the Callan-Symansik equation with j9 = 0. In thin appendix we 

rummarize the main resulta for this model which are applicable to the m-on 

distribution amplitude to two loope. The results are all performed in d = 6.- 2r 

dimensions. 

As in Section II we deBne the expansion of the distribution amplitude 

4(GQ) = (1 - 3) c P&9 &L(Q) 
0 

where 

-- = $ an(Q) 

The function P,, satisfy 

r’“‘(a) 
1 

Q2 a02 
AT- Pn(z,a) = - 2 K(v) + 

/ 
[dY]vf;;2a1 pn (Y, Q) 

0 

with V = av, + a’V2 + . . . . Since B(Q) = 0, Q2 & Pi, = 0. To one loop, we tid 

W&Y) = -i (1+2)(1-Y)e(Y=)+ 
I 

(-)} =wY,z) l 

Consequently the P’ to leading order are e,, normalized Gegenbauer polynomials, 

and $” = l/(n + l)(n + 2). T o t wo-loops we expand & as in Eq. (21) where 

(n > i) 

We have verified that the cross graph kernel is symmetric, so it does not con- 

tribute 
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to q. The double ladder graph in dimensional regularization haa the form 

-d I d6-2'k k-2'f~:;;';' k2-;p k L'+L1_;k t . . . - x2 . 
(C4 

1 1 1 

Using the usual denominator-combining formulas, and momentum shift, this be- 

comes 

a2(r) w4 / 
kf al (a3(l - Q3))’ / [da 

where 

X= -1 +a2+w 
[ 

(l- t)(-A+B2 +M)+ t ";'s,Q' 1 w 
and 

(da) = da1 da2 das 6 (1 - I&, tq) . 

As in Appendix A, we must now identify parts multiplying l/c2 and l/c. One 

power of l/c comes from I’, as usual, while the other comes from the t 

integration in the region t = 0. To draw out the recond l/t we must integrate 

by parts on e. The double ladder can be written as two terms of the form of Eq. 

(C.2) with [(l - o2 J(z - X(egBis 0) replaced by 

and 

s(z - X(QitBi9 t = 0) , 

respectively. For the A term the needed l/t coefhcient is obtained by setting 

c t O.in the numerator. For the B term we replace tEB1 = ! & ct, integrate by 
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parts and obtain 

B = a’(p) J [da] IdPI 

x 6(Z - X(0)) . 
The l/r2 terms cancel as required in V. The l/c contributions to the recond 

order potential in defined from the combination 2(b3 - blq) (see Eq. (A.4)). 

Here we have 

- Wa3&(1- 03)) a(~ - X(0)) (C-5) 

-- 
-2 (7k+Ln f) a(=-X(0)) 

1 
(1G2) 

and from the one-loop calculation, 

Ulbl = - - X(O)) TE + fn (C.6) 

When the (1 - e2) f ac t ors are due to the choice of the weight. Consequently, the 

twcAoop potential is 

V2 = 3 ,@2 - mbl) 

- fn [aa(l - at)]6(z - X(0) (1 - f2) 

where, as required, all dependence on JA~/X~ has cancelled. 
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We have checked numerically that the result (C.7) for the d{ agrees with 

the conformal symmetry prediction, Eq. (32) for j30 = 0. As in Section IV, 

we can show that the PauIi Villars regulator gives a different result due to the 

term /3(a) = -Ea # 0 induced in dimensional regularization. We have also 

checked numerically that the Pauli-Villars regulator gives resuIts consistent with 

the extended polynomials for the orthogonal polynomials F6. (See Section N.A). 
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Table I 

Non-zero vrlues (for n,j 5 15) of 

I 
[dx] ~~'2(x,-x2) Ln(x,x2) x1x2 $'2(xl-x2) 
. 

n/3 0 2 4 6 0 10 12 

2 
4 
6 
0 

10 
12 
14 

9.374 

0.106 
. 

0.047 
0.026 
0.016 
-.O lO 

---.007 

0.617 
0.216 
0.108 
0.064 
0.042 
0.029 

0.723 
-.270 
0.149 
0.092 
9.062 

w.703 
0.318 
0.177 
0.113 

0.822 
0.346 
498 

0.849 
0.367 0.869 

- 

n/3 1 3 5 7 9 11 13 

3 0.525 

5 0.169 
7 -.oal 

9 0.046 
11 0.029 
13 0.020 
15 0.014 

0.679 
0.251 
0.130 
0.079 
0.053 
a.037 

9.757 
0.300 
0.164 
0.103 
0.071 

0.804 
0.333 
0.188 
0.122 

. 0.837 
9.357 
0.207 

0.860 

0.375 -.a77 
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n/j 0 2 4 6 0 10 12 

2 -10.708 
4 - 7.713 -22.738 

6 - 4.133 -13.261 -20.912 

8 - 2.546 - 8.648 -14.118 -18.791 

10 - 1.711 - 6.061 -10.156 -13.781 -16.942 

12 - 1.221 - 4.468 - 7.642 -10.533 -13.111 -15.398 

14 - 0.911 - 3.419 - 5.947 - 8.304 -10.445 -12.374 -14.110 

Table II 

k&vanishing off-diagonal matrix elements of V2 JEq. (32)) for pions 

-- 

Table III 

O(as) corrections to the n-y form factor (Eqs. (M)) 

n 1 on fln+fin 

0 2.4 -1.6 -6.7 -8.2 

2 1.5 -3.8 -2.2 -6.1 

4 1.2 -5.0 4.3 -0.7 

6 1.0 -5.0 10.1 4.4 



FIGURE CAPTION 

Fig. 1. Oiagram contributing to the unrenomalIred distribution 

amplitude 0, through order aSo 
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