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ABSTRACT

We present a systematic analysis in perturbative quantum chromodynamics
and other renormalization theories of higherorder corrections to quark distribu-
tion amplitudes for flavor non-singlet mesons, the wavefunctions which control
leading twist exclusive processes. In particular, we investigate the utility of resid-
ual conformal symmetry near the light cone. We find that beyond leading order
the eigensolutions of the evolution equations are regulator-dependent in renor-
malizable theories. In a specific calculation for ¢3 theory in six dimensions to
two loops, we find that the eigensolutions obey conformal symmetry using dimen-
sional regularization for the subset of diagrams which do not contribute to the
B function, but conformal symmetry is broken using Pauli-Villars regularization.
A comparison with existing calculations of the two-loop kernel for gauge theory
with § = 0 indicates that conformal symmetry does not hold beyond leading

order in QCD in dimensional regularization.



I. Introduction

In recent years it has become apparent that many exclusive processes
fnvolving large momentum transfer can be analyzed perturbatively {n

QCD"z. Leading order analyses have been completed for meson (M) and

baryon (B) electro-weak form factors:"3 meson-photon transition form

factors.1 vy +MM and BB'.4 w-oBF.s and several others. Work

has begun on higher order corrections to these processes, with partiai

6 and meson-photon form factors.7

analyses of meson-meson
In this paper we use conformal symmetry®®10 at short distances to give
predictions for the quark distribution amplitude ¢(z,Q) for flavor non-singlet
mesons (¢'s,K's,p's,etc.), the wavefunctions which control the behavior of exclu-
sive meson processes at large momentum transfer. These predictions are explic-
itly confirmed through two-loop order in ¢3 theory in six dimensions for a subset

- - of graphs with zero S-function using dimensional régularizat'ion, but fail with a
Pauli-Villars regulator. In the case of QCD and other gauge theories, conformal
symmetry does not appear to hold beyond leading order using dimensional reg-
ularization. This unexpected breakdown of conformal symmetry, even for 8 = 0,

may be due to the sensitivity of gauge theory to infrared cutoffs in both of these
regularization schemes. (Of course Pauli-Villars should not be used in QCD due

to breaking of non-Abelian gauge invariance.)

In Section Il we review the general formalism for analyzing exclusive
amplitudes in perturbative QCD. Here and throughout the paper we limit
our discussion to flavor non-singlet mesons. We review the leading order
analysis, and fdentify those elements of the second order analysis that
are still needed to complete the treatment to that order. The central
problem concerns the generalization beyond leading order of the Gegenbauer
pb1ynqmia1s Ci’z(x]-xz) that appear in leading order — {.e. an analysis

of operator mixing under renormalfzation.



It has been shown by Parisi!? that conformal symmetry is satisfied asymp-
totically at short distance in renormalizable field theories with zero B-function.
This result however may only be true for specific ultraviolet regulators. (For a
discussion, see Ref. 8). In Sections II and III we postulate the applicability of
conformal symmetry to the operator product expansion at short distances and
predict the form of the eigensolution of the evolution equation for the distribu-

tion amplitude to all orders in perturbation theory. The corrections from 8 # 0
are then treated in perturbation theory.

In Section IV we show that the predictions of conformal symmetry cannot
hold simultaneously beyond leading order in both Pauli-Villars and dimensional
regularization. As shown in Appendix C, ¢® theory is six dimensions with di-
mensional regularization is consistent in two-loop order with the expectations
“of conformal symmetry. Assuming this also holds in gauge theory we then give
detailed predictions for meson distribution amplitudes in QCD, and in Section

V apply them to the meson form factors.

We also discuss the problem of generalizing our analysis to flavor-singlet
mesons. We briefly summarize the detailed procedure for perturbative calcula-
tions of exclusive amplitudes in Appendix A. These are illustrated by a complete

one-loop analysis and by parts of the two-loop analysis in the same Appendix.

Recently, three explicit calculations!! of the two-loop kernel for the meson
distribution amplitude in QCD have been performed using dimensional regular-
ization, two in light-cone gauge and the last in Feynman gauge. The results
agree with each other, and the diagonal matrix elements are consistent with the
second-order non:singlet anomalous dimensions for deep inelastic scattering cal-
calculated in Ref. 12. The results for the eigensolutions, however, disagree with

the predictions of conformal symmetry.



I11.  Exclusive Amplitudes at Large Momentum Transfer

A. General Formalism

Generally exclusive amplitudes fnvolving large momentum transfer
factor into a convolution of distribution amplitudes 0("1 »Q), one for
each hadron, with a hard scattering amplitude T,,. The pion's electro-

magnetic form factor, for example, can be written as "

o? F(Q) = f[dx]f [95] ¢”(x.Q) Tylxpva0) oy @010l ()
0

(]
where [dy] = dy]dyz 61 -:: yi) and ta -q
the probability amplitude for finding the valence qq Fock state §n the

2 45 large. Here Q(yi.q) is

initial pion, with the constituents carrying longitudinal momentum
yqPyand YoPy o respectively; ‘rH is the amplitude for scattering the

;qE state from the initial to the final direction; and ¢f is the amplitude
for the final-state qq to fuse back into a pion.

Choosing a frame in which p:- p:-bp:- 1, the process independent

distribution amplitude for a pion s quite naturally defined byl2s
4+

- i(xy=x,)2"/2 YY (Q
¢(xi.0)-Igzz,,—e 1 <0W(-:)735 vz)|m] , (2)

4 'zl=0
in At 0 gauge. [In other gauges there is a path ordered factor

exp(‘igﬂl ds A*(25)27/2) between the ¥ and v, making ¢ gauge fnvariant.]

The matrix element in Eq.(2) has an ultraviolet divergence, coming from

2

the light-cone singularity at 2°=0. This divergence {s regulated by

fntroducing a momentum cut-off, or other renormalization scale, equal

2

to Q. Consequently 2° §s in effect smeared over a region of order

2%-- f " -1/02 — the form factor probes distances no shorter than ~1/Q.
Any regulator that is both Lorentz invariant and gauge invariant can

be used. For purposes of §llustration, we use dimensional regularization
and minimal subtraction (withu=Q) in this section. Other regulators

are considered §n Appendix A.



Once a regulator §s chosen, Eqs. (1) and (2) uniquely specify the
gauge invariant hard scattering amplitude TH‘ For the pion form factor,
as for many other processes, T, has a perturbative expansion in powers

of °s(°) with

Ty (xg0940Q) = J—,, £(xq0y402, (Q)) (3)

where n= 0, by dimensional analysfs. [In general n is the total number
of fnitial and final partons less four.] To leading order in us(Q). the
distribution amplitude and therefore also TH are fndependent of the
regulator used in defining ¢. This §s obviously not the case beyond
leading order, as will be {1lustrated in Section 1II.

The variation of ¢(xi,Q) with Q is less drastic and somewhat more
c;é;;icated than TH' The Q-dependence {s determined solely by the ultra-
violet structure of the operator ¥(-2) y’ysw(i) on the 1ight-cone, and
thus can be studied perturbatively. To extract this behavior, we intro-
duce an unrenormalized distribution amplitude °u(xi) defined in 4-2¢
dimensfons. Being in 4-2¢ dimensions, ¢y is ultravioIei finite and

therefore Q-independent. It is related to the true distribution ampli-
tude by a ‘matrix' of renormalization constants Z(xi.yi.Q):

d
6, (x;) = Jf;]l,% 2(x{,94:Q) 6(y:0) (4)

Differentiating this equation with respect to Qz. we obtéin an evolution

equation for ¢:

2 @ d
Q 52’ ¢(Xi.0) & [‘5}% V(Xi.yi.us(Q)) ¢(.Yi.Q) (5)
where
V= -q° -2? gn 2 (62)

aQ



has a power series expansion {n c‘(Q):

o, () ()2
V(xjaygo0g(Q)) = o Vylxgyy) ¢ [5‘-,,—) Vp(xgeyg) #... (6b)

Clearly ¢(x,Q) is only logarithmically dependent on Q; the bbli of the
Q-dependence of an exclusive process §s due to TH' A detailed procedure
for computing V is 11lustrated in Appendix A.

In practice, the evolution equation (5) 1s 211 that 1s needed to
compute the evolution of ¢ as Q changes. Given some inftial distri-
bution ¢(xi.Qo). the equation fs readily {ntegrated numerically to
give ¢(xi.Q) for any Q. An alternative procedure relates the varfation
of ¢ to the Q-dependence of moments of the distribution amplitude:

1 +
ﬁd"] (x;-x,)"6(x4.0) = <0[¥(0) 72—} (15%)" v(0)|riY l .
0 ' S |

+
= o (159" 2 (TR )

independent of m m”»m" = {5 . gf in gauges other than A*=0 gauge].
Clearly the varijation with Q of these moments 1s fdenticgl to the
cut-off dependence of the local operators (13‘)” $&+75(f5*)" v. In
general these operators mix under renormalizatfon, but only operators
having the same number of derivatives can mix in a Lorentz i{nvariant
theory. Consequently, for each fnteger n, there is 2 'tower’' of
operators 0", 13%0("), (12*)%(M), ... where (aé")fo)

+
_ 0 -§ =Yg
o™ 2 3 o) LT 2 (7 )

(8)

can be chosen so that each operator §s separately multiplicatively
. : 12,13

renormalizable, all having the same anomalous dimension y(n)(us).

These operators depend implicitly upon the renormalization scale, both

through o and through the regulator required to define their matrix



elements. For our purposes, the renormalization scale is set equal to

Q. By introducing the polynomials Fh.
) n
Fﬁ(‘l’x2'°s) = jzo a;")(us) (x‘-xz)j ’ (9)

we can define moments Hn(Q).
1

A (Q) -[de] P, (xy-xp0 0,(Q)) 6(x{,Q)

0 . @ (10)
_YY
= <0| ¥ 57 Polfs*s oglule>
that satisfy simple evolution equatfons:
2 2 @ = - 3 v{(Mie @) Fy(@)
aQ ()

2

Equations (9-11) are equivalent in content to the'originaI evolution
equation (Egs.(5,6)). Given the anomalous dimensions y(") and the
polynomials Fh. the complete Q-dependence of the distribution amplitude

§fs determined:

6(x;,Q) = X%, n:fo P, (x;-x,, ©,(Q)) M, (Q) .(12)
where, from £q.(11) , 0
() = Fi,(0,) exp [] 2 v(“)(us(ﬁ))] (13)
Q, A
and where P_ {s defined such that
ﬁdx] P, X%y P = bon (14)

o
In general P, unlike Py s not a polynomial. pe fynctions P, and Py, and



the anomalous dimensions Y(n) can all be determined directly from the
evolution potential v‘“i"i'“s)' One readily obtains defining equations
for Pn'ﬁh and y(") by substituting expansion (12) for ¢ into the evolution

equation (5):

2

Q Fn(y,-yz.us(o)) Y2 = - '}Y(n)(ﬂs) Fn(yl'yz"’s)hyz

%
O'JQ’

- I[dx] Fn(x]'xzous) v(xi oY -us)
(15)
xixPaln-x2eg (@) = 3 v ag) xyxPylxy-xpua)

(-4
2

+ I [dy] V(xuyqe0g) Pplyy-yping)

Being_ first-order differential equations, these equations must be supple-

mented by an inftial condition or other constraint. The choice of an
| Ainitia] conditfon §s largely a matter of convenience and convention,
as will become clear in Section I11.C. below.

The formalism outlined in this section is valid to all orders in

as(Q). Once an ultraviolet regulator has been chosen for defining
¢(x,Q), the evaluation of T, for some process fs straightforward. The
process independent distributfon amplitudes ¢(x,Q), must be specified
at some Q==Qo, either empirically or by some non-perturbative analysis.
The variation of ¢(x,Q) with Q can then be computed efither directly from
the evolution equations (Eqs.(5,6)) or from the moments of ¢ (Egs.(12-15)).
We now specialize our analysis of ¢ to leading and next-to-leading orders.

B. The Distribution Amplitude in Leading Order

The formalism of the previous section simplifies considerable in
leading order. The leading-order evolution potential V] §s readily

computed (see Appendix A)
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[}
Vy(xgyq) = 26Ty, ly-x )8 5+ 55
+ (=20} - G yyyp 8(xq=0y) - (16)
= V) (.Yi "fi)
where Ad(vi, Q) = é(vi, Q) — é(z:, Q).
functions Pn' Fh. and the anbmalous dimensions y‘"’ are then determined

from Eqs. (15), which in this order simplify to the form
I[dx] ph(xl'xzoo) vl(*i'yi) = -y,yz Y;n) Fh‘Y,’Yzoo)
J[dy] Vi(x50¥4) Pp(yy=¥2.0) = =xyx,Pp(x;-x5,0) Y{") a7

Thus 1n the 1imit a +0, P, and P, are eigenfunctions of Vy corresponding
to eigenvalue -y%"). Since Vl(xi.yi) = v‘(yi.xi) §s a symmetric operator
it is immediately obvious that P =P , and that these polynomials form

. -a complete set, orthogonal with respect to weight XyXp The only
polynomials orthogonal for this weight are 3/2-Gegenbauer polynomials

and therefore

F;(x]-xz.uslo) = Pn(x]-xz.O)

3/2
£/ 2(x-x,) (18)

ks
4(2n+3 3/2
{ +n +n] Cn "~ (xxp)
The anomalous dimensions to one loop then follow easily from Eq. (16):

] 28
Y%n) . cF{1 .4 ng }- m&%? (19)

where for pions 6-h 1.

C. _The Distribution Amplitude to Two Loops

In two-loop order, the polynomials P,(z; — z3, a,) have
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the general form

while Pn' no longer a polynomial, must then be given by (see £q.(14))

3/2 @ T 3 332
Pn(xl'XZ.us) = tn/ (xl-xz) - 1% j.£+] dn Cj (X]-Xz) (2])

Substituting these expressions into Eq. (15), we obtain
v = - Jrexdten) B/20-x) Vylxpury) B/ 200rp)  (2220)

n (Q) (n)

2 ;;lf d; 5N w%”) d}‘ - (Vp)p5d (22b)

Q

where (Vz)nj and B, are defined by

(Vs = [1ex2ar] B/ 20xpox) Valxgayy) B/ 20039)
2 g o2(0)
Q -dggas(Q) = B(us(Q)) = '—r— o " oot

To solve for the expansion coefficients dg. we must now deal with
the issue of §nitial conditions for Eq. (22b). At first glance, it seems
most natural to choose initial conditions that make the dg constants,
independent of Q. However, with this choice, the expansion coefficients
equa)l (Vz) j/(B y{")'f'v('])). which becomes very large when
Bo - y{ ) ](j) (e.g., d ] = -148). Such large coefficients are obviously
an artifact of the initial conditions, and do not reflect pathologies
in the behavior of ¢(x,Q). A far more practical initial condition is

d3(Q,) = 0 (232)
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in which case Eq. (22b) implies (n > j)

)= {1 %5 )J (Va)ng (23b)

Then d} is well behaved even in the limit So — 1{") - '1?.):

(Q’)ﬂ ol) (V2)ar

dR— |1 - | = -
1(Q) Q2 1&1)_.,{)

Bo—0

Furthermore a, (Q)d;‘(Q) is bounded in magnitude for all Q > Qo, since it van-
ishes both for Q = Qo and for Q — oco. Consequently deviations from the
leading order result are small throughout this ra.ngé, provided of course (V2)n; is
not large. An additional convenience of this choice is that the relationship be-
tween the moments M, (Q) and the distribution amplitude ¢(z, Q) is unchanged
from the leading order result at Q = Qy, i.e., P, = P, = 3/ ? is exact both at
Q@ — oo and at Q = Qp. This facilitates the determination of the initial moments

from the initial distribution amplitude.

From Eq. (22), we learn that Gegenbauer matrix elements (V3),; of the
two-loop evolution potential determine all O(a,) corrections to ¢(z,Q). The
anomalous dimensions 4(")(a,) for the operators O(") (Eq. (8)) have already
been determined through two loops for the analysis of moments in deep inelastic
scattering.!?13 Thus the diagonal matrix elements of V; (Eq. (22a)) are known.
The off-diagonal matrix elements, and therefore also the coefficients d;-‘, are read-
ily determined if conformal symmetry is valid, as we demonstrate in the next

section.
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III. Consequences of Conformal Symmetry
A. Leading Order

Classical relativistic field theories that are scale invariant and have a renor-
malizable Lagrangian are also invariant under the conformal group, which con-
sists of the translations, boosts and rotations of the Poincaré group together
with dilatations (z# — Az*) and conformal transformations [inversion (=% —

—z*/2?) @ translations @ inversion].1° Scale invariance and therefore also con-
formal symmetry are destroyed in QCD by quark masses, and'by the renor-
malization procedure, which inevitably introduces some renormalization scale A.
However, the evolution potential V(z;,y;,a,) (Eq. (6)) is by definition free of
both mass singularities and of all ultraviolet infinities other than those related
to charge renormalization. Since there is no renormalization of a, in leading

- order, the one-loop potential V; must preserve conformal symmetry. As shown
in Ref. 8, this constraint implies that the functions P, that diagonalize V; must

be Gegenbauer polynomials
Pa(z1 — £2,0) o C3/%(zy — z3) (24)

Then the multiplicatively renormalizable operators 0(*) defined by P, transform
as irreducible tensors not only under the Lorentz group, but under the full con-

formal group as well.®
B. All Orders Analysis of Conformal Symmetry

Beyond leading order, the functions P, can be modified by two effects.
First the dimension of 0(") in Eq. (25) is increased by the anomalous dimension
~(®)(a,). While this should not affect the conformal symmetry of the evolution
potential, it does change the prediction for the Py.

As shown in Appendix B, the general result for operators O(n) bilinear in

spin zero fields in scalar field theory is
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1 3)in+(d-1)+}a(a0) 25

P« o g ) (25)
where dy is the canonical dimension of ¢(d¢ = 1in -4-dimensions, dy = 2 in
six dimensions). For spin 1 fields, with O,(0) as defined in Eq. (8), conformal

symmetry predicts

Pa(2) & = 1 = w (1 — 2t)r+-brio (26)

where dy is again the canonical dimension of ¢(dg = $ in 4-dimensions, dy = 1

in 2 dimensions). The results are true in any space-time dimension.

The second effect is due to the breaking of scale invariance by the running cou-
pling constant. This leads to terms in V' proportional to the S-function that
break the conformal symmetry and therefore modify the P,’s. One expects

“that all symmetry breaking terms in the potential must be of this second type

(x B(as)) because mass scales enter V only through charge renormalization.

Each of these effects leads to terms in the two-loop poténtial V3 that are not
diagonal with respect to the Gegenbauer polynomlals C./ . Furthermore, these
are the only non-diagonal terms in V3 and, consequently, the only terms that
need be computed to obtain the expansion coefficients d;' for P, and P, (Eq.

(23)). Given the expansion coefficients together with the two-loop anomalous
dimensions, one can compute the full distribution amplitude. It is useful to
study these effects for two different distribution amplitudes, one defined with a

Pauli-Villars cut-off and another defined by dimensional regularization (375).

In fact we find that conformal symmetry cannot be simultaneously true in
both regulators beyond leading order. This is discussed in detail in the next
section and Appendix A. This result has been explicitly checked for [¢%]s to
two-loop order for the set of (ladder and crossed ladder) graphs that have no
contribution to B. The dimensional regularization results agree with conformal

symmetry.
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IV. Calculations of the Meson Distribution
Amplitude in Gauge Theory

A. Pauli-Villars Regulator

By definition, the ultraviolet divergence in the distribution amplitude ¢(z, Q)
is removed in Pauli-Villars regularization by subtracting diagrams with the gluon
mass set equal to Q. As we shall show, the distribution amplitudes in this scheme
and dimensional regularization can be related to each other through a correction
to the evolution kernel beyond leading order. In Appendix C we give a complete
calculation of the distribution amplitude and the evolution kernel through two

“Joops for [¢%]s. By keeping only the crossed ladder and ladder contributions, the
model for the distribution amplitude satisfies the Callan-Symansik equation for
B = 0. By explicit calculation through two loops we find, using Pauli-Villars
regularization, the polynomials P, a defined in eq. (12) are the Gegenbauer
polynomials C{"(z) with index

(n)
En== 3.+.1__£g£l:= §.+.gi

° (»)
2 2 TS S

We then find that the functions Pn(z; — z3,a,), the eigensolutions of the
evolution equation for the distribution amplitude, are exactly those predicted by
conformal symmetry (Eq. (25), with d4 = 2), but that this result holds only for
dimensional regularization, not Pauli-Villars. In this section we show that if one
assumes P, = C§* in gauge theories in Pauli-Villars regularization, then again the
conformal symmetry functions arise for the P, in the dimensional regularization

scheme if fp = 0.

With the above assumption for the P,, the polynomials to two loop order for

Pauli-Villars regularization are
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B, (x-xp.0,) = Egn(x,-xz)

« t3/2(x -x,) ¢ o y(") CE(x -X,) K JPPUI
n %%t 172 ap

and therefore, from definition (20), d uould be

v{" ftex) £ BElxyx,) a2 B 0yeg)

[Note that we are led to the scheme with constant d%.]
.

From the discussion §n Section 11.C, there must therefore be a term
VZa in the two-loop potential for which

p3/2

(VZa)nj
J

v(3) _yin
1

] R I[d"].a‘ n|E L3z 12

This expression can be simplified somewhat by using the fdentity

d =3/2 _ d raf €% =32 2

'd'E I gg- XIXZ CJ aE [cn (xlxz) Ej - Cn x]xz th£‘3/2
- tzlz ln(x‘xZ) XIXZ Eglz

and the orthogonality of t&'s with respect to weight (x‘xz)c'k. Thus

the off-diagonal matrix elements of V,, can be written
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(VZA)nJ = Y{n)(an)dY{j)) I[dx] E:’z ln(x‘xz)x]xz :;/2
B n>J (27)
0 J>n

As we argued above, any symmetry breaking terms in V, must be
proportional to B(as) LA Bcu§/4n where 8 " ll-an/3 and ne is the
number of 1ight-quark flavors. The nf-dependent part of this correction
comes entirely from the quark-vacuum-polarfization correction to the
leading order potential and is easily computed. From it the entire
correction is obtained simply by multiplying by - %-Bolnf. In fact,
as we show in Appendix A, there is no symmetry breaking term of this
type for the Pauli-Villars regulator. This rather surprising result

is easily explained. Any term in Vz proportional to Bo should properly

be absorbed into the leading order potential by reéca1ing the argument
of ag. As discussed in Ref.'ls. this sets the argument of o equal
to the mean momentum flowing through the gluons in the leading order
diagrams (up to a constant scheme-dependent factor). Generally con-
formal symmetry will be destroyed {f this mean momentum depends upon

the lTongitudinal momenta, as then a_ varies with X and ¥y However,

(3
the Pauli-Villars regulator automatically sets the mean gluon momentum
equal to Q, independent of X; and Yy because it regulates divergences
by introducing the cut-off Q as a gluon mass. Thus V,, (Eq.(27)) is

the only non-diagonal term in the two-loop Pauli-Villars potential.

B. Dimensional Regularization

The two-loop evolution potential obtained using dimensional
regy1arizatfon must again include the conformally symmetric, but non-

diagonal, potential V,, (Eq.(27)). 1In addition there are two symmetry-
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breaking terms due to the fact that B(a ) #0. The first is proportional
to Bo' and {s readily computed from the vacuum potarizatfon corrections
to leading order, as described above (see Appendix A). A second symmetry-
breaking term fs expected because the coupling constant {s AQt dimension-
Tess in 4-2c dimensions. Thus the scale {nvarfance of the theory s
destroyed, and the B8-function fs non-zero even in leading order —
i.e. B(a,) = -€ o5 = ... . The extraction of this second term from
V, is somewhat subtle because §t is fnduced by an O(c) effect. It is
easier to derive both symmetry-breaking terms together by relating the
evolution potentials for Pauli-Villars and dimensional regularization,
as we now fllustrate.

The distribution amplitudes for the two regulators are related

by a finite renormalization constant 2:

¢py(x4sQ) = J§%§% 2(x44¥5025(Q)) épply4,Q) (28a)
where o (Q
=Yy 5(",'].‘) + _2411— GV(xi.yi) S (28b)

Substituting this equation into the evolution equation for bpyr We
can express one evolution potentfal {n terms of the other:‘3

-1
Voo =2 Vo2 = "?"“ z

where V, is the one-loop potential (Eq.(16)) and where, from Appendix A,

8V 1s

- y
6V-= -2 {x}y, tn ;:- (6,5 * )4 (1+2))  (30)

+ symmetric terms
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Thus the two-loop symmetry-breaking terms in the dimensional regular-
fzation potential are contained {n B
VZb - [V] 8V] ¢ 8°6V . (31)

and all terms that are not diagonal with respect to 3/2-Gegenbauer
poiynomiais are conts
The off-diagonal matrix elements of VZb can be greatly simplified.

First, using Eqs. (17) we can show that
(Vg = (™ +¥i3) [raxdien) T3/ ov t}/2
Secondly, and rather remarkably, we show in Appendix A that off-

diagonal matrix elements of 8V (Eq.(A-11)) are related to the matrix
elements of V,, (Eq. (27)):

1
(Gv)nj * ;¥57 (vza)nj

Thus the non-diagonal matrix elements of VZ for this regulator are given

by
(Voa*Vop)ns = (BOHF))(Y%")-YP)) ][dx] tz’z tn(x %, %5 t}’z (32)
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The prediction of conformal symmetry (Eq. (26) with dg = 3/2)

Pa(z) o —— -i‘f-{u — gt [1 + %qs.”znu - z’)] }

1-—z2 dzn
is in complete agreement with Eq. (32) for fo = 0. As shown in Appendix A the
essential difference between the Pauli-Villars and dimensional regularization can
be traced to the induced contribution to the 8 function in 4 - 2¢ dimensions. De-
spite the consistency of the above approach, we note that explicit calculations!!
of the second order evolution kernel in gauge theories (Abelian QED and SU(N,)
QCD) using dimensional regularization and Bo = 0 (Np = (11/2) N.) do not
agree with the conformal symmetry prediction. [Although the contributions pro-
portional to By do agree with Eq. (32).] The results have been checked in both
light-cone and Feynman gauges. This conflict is unresolved, and hints at an even

subtler breakdown of conformal symmetry in gauge theory.



V. Conclusions

In this paper we have shown that the meson distributfon amplitude

has the form

oxppQ) = xyxp T Pyl @) Bp(@ ()
[15d
where a(Q) =
P = B2 x,) - —‘ﬁ—j:gﬂ a}(@) E3/2(x-xp) + ... (330)

and where ﬂn(Q) §s a moment of ¢ satisfying a standard evolution equation

(Eqgs.(11) and (13)).

Assuming residual conformal symmetry near the light cone, we found a simple

procedure for determining the coefficients d, (See Eqgs. (23) and (25)).



However, as we have discussed in the introduction, the predictions of con-
formal symmetry appear to conflict with explicit tw;loop calculations!! for the
distribution amplitude in QCD using dimensional regularization, although they
do hold for the analogous calculations for ¢® in six-dimension. Assuming these
calculations are correct, this implies that conformal symmetry is broken in a sub-
tle way in gauge theory in dimensional regularization, perhaps due to sensitivity
to infrared cutoffs. If the source of this breakdown can be identified, then confor-
mal symmetry could still be useful as a guide to the higher order corrections to
the distribution amplitude. More important, this unexpected breakdown points
to new effects which control the short distance structure of gauge theory, and

give caution to the formal use on conformal symmetry results.
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Appendix A

One-Loop Evolution Potential and Vacuum Polarization Correctfons

In this Appendix, we rederive the one-loop evolution potential for
mesons and compute the leading corrections due to vacuum polarfzation.
The standard procedure for computing V for some hadron s to compute
the distribution amplitude i{n perturbatfon theory not for the hadron
but rather for a state composed of free quarks {and/or gluons). From
this, the renormalization constant Z and then the evolution potential
(Eq.(6)) are determined. Since V is {nsensitive to low momenta §t is
the same for the hadron as 1t §s for the free quark state.

A related procedure determines the hard scattering amplitude TH
fdé_;ny process. The amplitude for that process 15 computed in
perturbation theory with all hadrons replaced Sy free duarks. Using
the distribution amplitudes for the free quark states, the hard
scattering amplitude s extracted by rewriting the full amplitude {n
a factorized form, as in Eq.(f); foe., 7y, is obtatned b} dividing out
the distribution amplitudes. 1In this way collinear mass singularities
are systematically removed from TH’ leaving {n many cases a well behaved
expansion in us(Q). This procedure 1s particularly simple when ¢ is
defined using dimensional regularization and minimal subtraction. Then
TH fs obtained simply by computing the scattering amplitude for collinear
sets of massless valence quarks using dimensfonal regularization and
minimal subtraction to remove the infrared infinities.

Here we examine the distribution amplitude as defined with each
of two regulators: dimensfonal regularization, and Paul{-Villars

. 16
regularization.
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3. Dimensional Regularization

To determine the meson evolution potential V(x‘ WYy '°s) for a
dimensfonal regulator we first compute the distribution amplitude
QU(xi) in d=4-2¢ dimensfons for a free quark and anti-quark’ carrying
momentum yyP and y,p respectively (yﬁyzsp*-'l and pl-p'- 0).
Schematically, ¢, will have the form

2
= a_|h ao c2 br+a
V”lyz"“-”m[f*“*]*[m] [5* z ]+...]+...(A_1)

where 1, Bys oo should be thought of as operators in xi~y; space,
1/E = 1/e-yg+in 4n, and A §s some infrared regulator (we use a gluon
mass). From this, the renormalized distribution amplitude ¢(Q) 1s defined

by aa(Q)
Vs ¢(Q) =1+ —-" (a1 — di + 5 fnQ?/A%) + - (4-2)

where us(Q) is defined by

a a g
0 (Q) 2 == (14— —2+... (A-3)
s ETE[ -Q-Eh'é ]

so that B(us) = -c o, - B czlh e «.. » The evolution potential then
follows directly from the renormalization constant Z(Q) = oue(Q)'I. and

is given by ;7 .
V= —Q’EQ—zenZ(Q) = E%@bl + (5;(—1?-)-)
(4-4)
[Z(bz — Boar — bra;) + Pods + Pobi(E -ln47r)] + e
This is the basic expression relating ‘u to V.
To compute V to leading order, we must compute @u(xi) for our qq
state t.hrough first order in ac. The relevant diagrams for A“ 0 gauge

are shown in Fig. 1. In lowest order (Fig. 12), ¢, for this state is
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simply .
Y'Y Y583,
277 7z

0:(x1) = c(x‘-y‘) Tr
(A-S)

= 8(x;-yy) &y,

This is all the information needed to define the leading-order hard
scattering amplitude TH for any process fnvolving mesons. One simply
computes the amplitude for scattering collinear qq pairs (in place of
the mesons), and divides by Jaq for each external q or q , where xg 1s
the fraction of the meson's momentum carried by that particle.

In the one-loop graph of Fig. 1b, K is set equal to Xy and the

k™ integral can be evaluated using contour integration. The result is

b o, 2¢[ 2-2¢ 1, fnx)
Vs bo(x,) = ==, Cc(2n)“F{d°" K {x ¥, (1-4
+ ('I«Z)} (A-62)
o, 2C
"ol —-[x,yzﬁ ) 8(yy-x;) + (1++2)]

+ (1-'2)]] (A-6b)
Similarly, the se1f-energy corrections (Fig. 1c) are

By ey = - 25 cf(znf s(xry ) [lez) @20

a(z-
z 1"‘1 kl+zzl /%y

= ﬂo CF 2CF IdZ' l" 2 -
v R0 AL A L W Jy,yz (55 8(zy=x;) ¢+ (1= 2)]

2
o3 5) e
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Eqs. (A-6) and (A-7) completely determine the one-loop evolution potential
and ¢(xi.0). By comparing with Eqs. (A-1) and (A-4) we obtain
fmmediately Eq. (16) for V‘(xi.y‘).

In Section 111, we discuss the fermion vacuum polarfzat{on corrections
to V,. These are easfly obtained from Eqs. (A-6) and (A-7) by including

a factor

n(e?) = -, —2 1433 (A-8)

in the integrands with £ equal to the gluon momentum. A typical term
has the form

2
a V(XY )t e v (xs0ys) ¥,k
0 e [.2-2¢ RA Y4 1
(2nf Id k { n(- )+ (1+e2)
;'-n-z 1 ?l“’llely] xl ‘

2. [%)2 1 1 (1,5 ,.0 ’
= -snf .o W VI3 (E*s-ln-x-;)(\l‘f:\l Y+ (1++2)) (A-9)
N

Noting the subtraction -8, in Eq. (A-4), we see that such a term

contributes

y
- & nd( 3-n ;:- W= v+ (14+2))

to the two-loop evolution potential V,. Thus, from Eqs. (A-6) and

(A-7), the leading correction due to vacuum polarization is

Vep © - Enc % Vy0xgayy) + 8V (x4054))

where
2

9 n
6V = -~y v, Slxgmyy) Gl g -2 ) (A-10)

= 20y, £n(yy/xy) (H;]-};]-) 8(yy=x) = x1¥28(yy-x;) ¢ (1= 2)}
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Only the term in 8V containing £n y,/x, §s non-diagonal with
réspect to the polynomials t'3'12 and so ft §s retained in Section V.
Evaluation of the off-diagonal matrix elements of &V is greatly

simplified by noting that ¢3+0: (Eqs. (A-6,7)) can be uritterfla

@ B Yy

c_._o

—r T ———a " diagonal terms
UoamfE B (yy,) "

¢+ ¢
where
Vo (xeoys) = 2Ce{(xqy,) (1o + —2— ) 6ly;-x{) 4 (1++2))
I R | FLA 172 7% 1™
= v(yi'xi)

Because V] is symmetric under {nterchange of x; and y;, 1t must be
t::,/ 2°€ The

argument here is identical to that given for V] {n Section 11.B, and
oln)

diagonal with respect to the Gegenbauer polynomials

the result s not surprising sfnce the dimensions of the operators
are reduced by -2¢ in 4-2¢ dimensions. Thus Gegenbauer polynomials of
type 3/2 - € are expected (cf. Eq. (25) with dy = (3/2 — €¢) and no v,). The
eigenvalue equatio for V; is then

v](xi'yi) .

[tax1 £3/25(x-x,) (-v{™ +0(e)) E/2E(y,-y,)

(yyyp) €

Expanding to first order in ¢, we find that (for n>J)

'EJ[dx][dy] /2 gu(xguy, )E§IZ= (v%“)-v{j))cj[dx] 2 s, ty/2 o

Borrowing results from Section IV.A, this can be rewritten

Jraxatay) €2/2 v t}/2« (x{M-y {3 [1xd T2 1nlgxplegxy T2 A1) |
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2. Pauli-Villars Regulators

A Pauli-Villars regulator §s introduced by subtracting diagrams
with the gluon mass set equal to Q. The cut-off distribution amplitude
¢ (x;,Q) for the free qq state will have the structure

o (Q) 2
vy ].Vz ¢(Q)=TI *—T—-(bl lngzﬁ l])
(Q) z 2
[ 2 22 2 32 2)*-)
This satisfies an evolution equation with the potential
a

2

as can be verified by direct substitution. The regulated distribution

amplitude is readily computed to first order from Eqs. (A-6) and (A-7):

o, (0) 2
Y\Y2 ¢(XioQ) =Yy G(xi-yi) + ’7ﬁT"V1(*1'yi) &n 52'* cee (A-15)

By comparing this result with that for dimensional regularization, we

find that the two distribution amplitudes are related by

¢Pv(xi 'Q) = J‘B‘:ﬂ Z(xi'yi'us) ¢DR(y1’Q)

a
where 2 = nY; G(xi-yi) + z%-&v with 8V given by Eq. (A.10). Here

and in Eq. (29) we are assuming that the same scheme is being used to
define a, for both Pauli-Villars and dimensfonal regulators. It is,
of course, trivial to change from one scheme to another when using
either regulator.

To obtain the vacuum polarization corrections for a Pau1i-Vi11ars

regulator, we insert
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o (Q)
n(g ) = ~snf—r—[3 ln( 32/02)]

{nto the one-loop fntegrands with £ equal to the gluon's momentum. A
typical term has the form

| 2
Q)2 v(x;oy) y K2 A
S| |l { g n-”+1-~2
n ] J d {kj.”‘ x~|/¥1 ( ‘ ) ( ) )‘2.0

- “f{ (Q)} {v("i”i (E—Qzﬁ‘ o QZ’AZ)*(‘“ZQ

which implies a contribution to Vz from vacuum polarization of the form

- £ ng 13 Y (x094)]

Thus vacuum polarfzation does not fntroduce non-diagonal terms into the

~evolution potential, at Teast in this order. Because of this result,

the 8 part of Vor 25 computed from Eq. (29) (using Vév) agrees with
the direct calculation leading to Eq. (A-10), as it should.



-30-

APPENDIX B

In this appendix!* we give the general constraints of conformal symmetry for
the operator product expansion required to calculate the distribution amplitude

for vector and pseudoscalar mesons at large momentum transfer. To leading twist

(n)a R
viDie-dh ~ { € (:%-tez )nfnr “’zul...z% 17070 (BY)
where ¢t = 1,2 with

i=1

¢ . {Ya (B.2)
* by PUF

o B3

0{"3“‘ a%(0) « LI RSO Mo)r" \: R LT} (B:3)

k=0

D is the covariant derivative and Cp(2? — fez) are singular functions of well
defined dimension (powers of logarithms in QCD). In the ex-pansion Eq. (B.1),
the operators that appear have also external derivatives like in Eq. (B.3). This
does not happen in the discussion of deep inelastic lepton-hadron scattering,
since there only forward matrix elements are involved. Thus-only m =n = k
operators appear there. Also, the expansion of a product of two currents is
involved. However, it turns out that the m=n=k operators are identical in the
two cases. Thus the 5; that control the Q2-behavior in form factors are the same
as in the k-th moment M;(Q?) in deep inelastic lepton hadron scattering (see
the first paper of Ref. 8 for more details).

Let us now apply the form of the operator product expansion for two scalar

fields in case of exact conformal symmetry 19

11/2(200g) 1/2(2,-n)_
Ax)B(0) & (x2-3ex®) AT xPeex) " c:Bx 1. x™ (B4)
n=0

(I-U) o (UX)

1072 (2Rt en)-1] [(1/2) (Rp-2,¢2 ¢m)-1)
. I duu ba
l n

[¢]
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The eigensolutions P,(z) of the distribution amplitude are proportional to
oo e
Y oma [ damebier s () pteym (85
m=n o

n
where I )

keo d-nk tk

and <9W(o)rg”'5;l...'5;k¢(o)]p>- bkpcl"‘pckva‘(’azu' terns)

(B.6)
Comparing (B.1) and (B.4), we then obtain
Z @mn / dz‘e(‘/z)"‘r*(p+)(p+,—)m
Jue]
o [ dEg™ [ duet=9)[y(1 - u))[(1/2)(e+n)=1]
o (B.7)

1
o /dee” / dv e(ilz)e('-')(l —_ vz)[(llz)(tu+ﬂ)—l]
-1

© aizdr; (1- z’)l(llz)(t.ﬂ)-l]

For scalars £y = n + 2d4 + 4a, reproducing Eq. (25). For spinors, where
we take the lowest operator to be a vector [Eq. (8)], this is equivalent to £, =
n + 2dy + vn + 1, reproducing Eq. (26). [Note that for the ¢* interaction in
4-dimensions and the (}y)? interaction in 2-dimensions the potential V; is a
contact potential with measure (1—22), thusyielding Py (z) = Pn(z) = Legendre
polynomials for leading order, in agreement with Eq. (25) and (26). (Actually
only n = 0 appears in the potential.) In the case of ¢3 in 6-dimensions and gauge

theory in 4-dimensions, the leading order polynomials are the :/ z’ as expected.]
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APPENDIX C

It is straightforward to show that the set of ladder and crossed-ladder graphs
in [¢%]s obeys the Callan-Symansik equation with 8 = 0. In this appendix we
summarize the main results for this model which are applicable to the meson

distribution amplitude to two loops. The results are all performed in d = 6 — 2¢
dimensions.

As in Section II we define the expansion of the distribution amplitude
¢(z,Q)=(- z’) EP.(Z, a)ﬂa(Q)
]

where

L Q* — M.(Q) = ——) M, (Q)

dQ2

Jm(0) = —anf?) - oY

The function P, satisfy

(n) v
Q? aqz Pa(z,0) = =2 (“) Po(z,0) + /[d -——(’_’y’ o) Pa(y, @)
with V = aV; + a?V3 +.... Since 8(a) =0, Q* 3-%; P = 0. To one loop, we find

g _ z—-z\| _

Vi(z,y) = —3 {(1 +z)1-y)0(y> )+ (y . -y)} Vi(y,z) .
Consequently the P, to leading order are 5,. normalized Gegenbauer polynomials,
and 'yg ) = 1/(n + 1)(n + 2). To two-loops we expand P, as in Eq. (21) where
(n>J)

1 ~
a o/ [dz][dy) C"(’z(‘:‘;(f':(),f"(”).

We have verified that the cross graph kernel is symmetric, so it does not con-
tribute
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to d;’ The double ladder graph in dimensional regularization has the form

—3p po-2, S(z=m-k) 1 1
go/f kde tk’-i-zﬂ'k kz__zp_k k2+l2_2k.t—*2‘
(C.1)
1 1 1

xt’+2p-l 2—-2p-L £~2¢p-L

Using the usual denominator-combining formulas, and momentum shift, this be-

comes
@) T(20) [ 22l f1an)
x j ae —TC=O 5o X(aip6) o
(3-8 +£) " i
where
X = ~0y + ez +as [(1 - €)(~B1+ Bz + Bst) + E :‘] (C.3)
and

(da) = doydazdas 6 (1 — £3.; o) .

As in Appendix A, we must now identify parts multiplying 1/¢? and 1/e. One
power of 1/e comes from I'(2¢), as usual, while the other comes from the §
integration in the region £ = 0. To draw out the second 1/¢ we must integrate
by parts on £. The double ladder can be written as two terms of the form of Eq.
(C.2) with [(1 — €)% 8(z — X (e, Bi, €)] replaced by

[(1 - &) 8(z — X(e, i, §)) — 6(z — X (4, Bi, € = 0)]
and
6(3 - X(aivpitf = 0) ’

respectively. For the A term the needed 1/e coefficient is obtained by setting

¢ = 0 in the numerator. For the B term we replace £~! = % 3"5 €¢, integrate by



-34—

parts and obtain

1 1 1 ;
B = o*(u) /[da] [dB] {-2?- T 2 tn(asf3(1 - as)) - et znm } (C4)
x 6(z — X(0)) .

The 1/€ terms cancel as required in V. The 1/e contributions to the second
order potential is defined from the combination 2(b; — bja;) (see Eq. (A.4)).

Here we have

1
ba(z,2) = § [ 1da) [dm{ [ % 0= - x @08
0
— tn(a3Bi(1 - a3)) 6(z — X(0)) (C:5)
~2 (‘w +tn :_:) 5z - x_(o»} a-€)
and from the one-loop calculation,

aghy = — / (da] / (48] 6(z — X(0)) {‘w +tn 2; +tn pa} 1-€). (C6)

When the (1 - €2) factors are due to the choice of the weight. Consequently, the

two-loop potential is

V=2 ‘(bz —a1b;)

1
= [1ea tdm{ [ % 10 -0z - x @08 €1
0

— tnfaz(1 - a3))é(z — X(O)} (1-¢€%)

where, as required, all dependence on u?/)? has cancelled.
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We have checked numerically that the result (C.7) for the d’ agrees with
the conformal symmetry prediction, Eq. (32) for ﬂ; = 0. As in Section IV,
we can show that the Pauli Villars regulator gives a different result due to the
term B(a) = —ea # O induced in dimensional regularization. We have also
checked numerically that the Pauli-Villars regulator gives results consistent with

the extended polynomials for the orthogonal polynomials P,. (See Section IV.A).
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Table 1

Non-zero values (for n,j < 15) of

J[dX] tzlz(x]-xz) '-n(x‘xz’ XIXZ tglz(xl"z)

n/3 0 2 4 6 8 10 12
2 -.374

4 =106 -.617

6 = -.047  -.216  -.723

8 -.026  -.108  -.278  -.783

10  -.006 -.064 -.149  -.318  -.B22

12 -.010  -.042  -.092 -.177  -.386  -.B49

4 -.007 -.029 -.062 -3  -.198  -.367  -.B69
n/3 1 3 5 7 9 n 13
3 -.525

5 -.169  -.679

7 -.081  -.251  -.757

g  -.046  -.130  -.300 -.804

N -.029  -.079  -.164  -.333 - -.8%

13 -.020  -.053  -.103  -.188  -.357  -.B6D

15 -.014 -.037 -.0M -.122 -.207 -.375 -.877



n/j

N N

10
12
14

-18.708
- 7.713
- 4.133
2.546
1.7
1.221
0.9

-22.738
-13.261
- B.648
- 6.061
- 4.468
- 3.419

Table 11

-20.912
-14.118
-10.156
- 7.642
- 5.947

Non-vanishing off-diagonal matrix elements

-18.791
-13.781
-10.533
- 8.304

Table 111

of V, (Eq. (32)) for pions

8 10 12

-16.942

-13.1M1  -15.398
-10.445 -12.374 -14.110

°(°s) corrections to the w-y form factor (Eqs. (34))

| o

o N O

Din

-1.6
-3.8
-5.0
-5.8

Tln+Tin

-8.2
-6.1
-0.7

4.4



Fig. 1.

FIGURE CAPTION

Diagram contributing to the unrenormalized distribution

amplitude ¢ through order ag-
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