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ABSTRACT 

The behavior of supersymmetric theories at finite temperature is examined. 

It is shown that SUSY is broken for any 2’ 2 0 because of the different statistics 

obeyed by bosons and fermions. This breaking is always associated with a 

-Goldstone mode(s). This phenomenon is shown to take place even in a free 

massive theory, where the Goldstone modes are created by composite fermion- 

boson bilinear operators. In the interacting theory with chiral symmetry, the 

same bilinear operators create the chiral doublet of Goldstone fermions, which 

is shown to saturate the Ward-Takahashi identities up to one loop. Because of 

this spontaneous SUSY breaking, the fermion and the bosons acquire different 

effective masses. In theories without chiral symmetry, at tree level the fermion- 

boson bilinear operators create Goldstone modes but at higher orders these modes 

become massive and the elementary fermion becomes the Goldstone field because 

of the mixing with these bilinear operators. 
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-- - 1. INTRODUCTION 
_ - 

The supersymmetric theories at finite temperature have been investigated 

by several authors. Das and Kaku’ first investigated the one-loop effective 

potential (free energy) at finite temperature and suggested that supersymmetry 

(SUSY) behaves differently from regular symmetries in that it is always broken 

at finite temperature, regardless of whether it is broken or unbroken at zero 

temperature. Furthermore, by observing that the fermion field develops an 

inhomogeneous term in its SUSY transformation law, they suggested that this 

breaking is spontaneous and the Goldstone fermion appears. Then Girardello 

et.al.2 clearly established that SUSY is broken at finite temperature by showing 

that the (effective) mass-splitting between the bosons and fermions occurs at 

one-loop level. They also noted that this symmetry breaking is because of the 

fact that fermions and bosons obey different statistics. However, they concluded 

that this breaking was explicit in the sense that there was no Goldstone fermion 

associated with it. 

Later several authors3-’ looked at the SUSY transformations, which involve 

an anti-commuting (Grassman) parameter and claimed that proper account of 

this-parameter leads to the conclusion that unbroken SUSY at 2’ = 0 stays 

unbroken at any T > 0. Their analysis, however, involves unphysical correlation 

functions that have periodic boundary conditions in imaginary time for both 

bosons and fermions. 

In more recent articles:-’ SUSY theories at finite temperature were inves- 

tigated with the attention to the physical correlation functions. By calculating 

them at the one-loop order or at the leading order of the l/N-expansion, it was 

found that SUSY was broken at T > 0 because of a nonzero thermal average of 
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-- - the auxiliary field (F)p, in agreement with the work of Girardello et. al.. How- 

ever. they also found that this breaking is associated -with a Goldstone fermion, 

namely a massless fermion that couples to the supercurrent. Therefore they con- 

cluded that SUSY can be thought to be broken spontaneously. 

The understanding of this phenomenon involves a subtlety associated with 

the quantization of field theories at finite temperature. In ref. 2, the imaginary- 

time (Matsubara) formalism was used. Whereas this formalism is suitable for 

studying the perturbative aspects of a theory, there are two main problems with 

it. The first is that the study of the dynamical response functions (for example 

the correlation functions) involves an analytic continuation to Minkowski (real) 

times-l0 which is not straightforward in the Fourier transform of these quantities. 

The second problem is associated with the fact that the imaginary-time formalism 

explicitly breaks Lorentz covariance (frequencies are discrete while momenta 

are continuous). Since SUSY is deeply related to the Lorentz covariance (the 

-anti-commutator of the supercharges are proportional to +‘P,,), it comes as no 

surprise that in Matsubara formalism SUSY appears to be broken explicitly at 

2’ > 0. Indeed the computations done in refs. 7,8 used a covariant formalism to 

reveal the interesting physics underlying SUSY breaking at finite temperature. 

However several puzzling questions were left unanswered. Among them are 

the following: Why is SUSY breaking found at higher orders (of either the loop- 

expansion or the l/N-expansion) of the theory? While Das and Kaku suggested 

that this phenomena may be a kind of dynamical symmetry breaking, the 

different statistics of fermions and bosons are evident in the tree-level propagators 

-7 see eqs. (2.1) and (2.2)). This suggests that .SUSY may be broken at tree 

level. This also leads to the following question about free field theory: Does the 
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-- - difference of the statistics has any consequences in SUSY breaking? If so, what 

kind-of breaking is it; are the broken-symmetry WardiTakahashi (WT) identities 

satisfied with a contribution from the Goldstone fermion mode? 

Yet another problem exists in SUSY models with R-invariance. In these 

models, the quantum numbers prevent the auxiliary fields from acquiring a 

nonzero thermal average and the fermion from coupling to the supercurrent (even 

if it is massless). This kind of model has not been studied before, although its 

physics is interesting in relation to the above questions; according to the general 

argument, the difference of statistics of bosons and fermions should result in the 

SUSY breaking even in these models. Then what is a good order parameter? Is 

there a Goldstone fermion? 

In this paper, we answer these questions and expose the physics of SUSY 

breaking at finite temperature. In particular, we are interested in understanding 

whether there are Goldstone fermion( namely the massless excitations that 

couple to the supercurrent. We restrict ourselves to the models in which SUSY 

is unbroken at zero temperature. 

This paper is organized as follows. -. In section 2, we briefly review the 

formalisms for quantizing field theories at finite temperature. Our emphasis 

is on their relevance to the analysis of the SUSY theories. We also mention the 

general WT identities that are essential in the following sections. In section 3, 

a free SUSY field theory at finite temperature is studied. This simple example 

is interesting in the sense that its physics is quite non-trivial. The analysis of 

this section forms a basis for the investigations of the interacting models in the 

following sections. In section 4, we analyze the chiral (R-invariant) Wess-Zumino 

model which is mentioned above. Section 5 is devoted to reviewing the finite- 
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temperature aspects of the Wess-Zumino model without chiral symmetry. We 

study this theory in the context of the results- obtaine-d in thesections 3 and 4. 

Our conclusions are summarized in section 6. 

A comment on the notation: For brevity, we omit the signs for t,he T-products 

throughout this paper. Namely, any product of operators bri)2...bn means the 

T-product of the respective operators, T{6,&...6,}. 

2. FINITE TEMPERATURE FIELD 

THEORIES AND SUPERSYMMETRY 

As was mentioned in the introduction, there are two formalisms that allow 

the quantization of field theories at finite temperature. They are the imaginary 

time formalism and the real time formalism. In this section, we briefly review 

the features of both formalisms that are relevant for our later analysis of the 

.SUSY theories. 

In the imaginary time formalism, *l-i2 the Green’s functions are generated 

from the Euclidean action that is an integration over a finite imaginary time range 

0 < r 5 /3 (S l/M’). The boson fields obey the periodic boundary condition -. 
while the fermion fields obey the anti-periodic boundary condition. Thus the 

frequencies are discrete whereas the (three-)momenta are continuous. This 

renders this formalism non-covariant. As has been pointed out, the perturbation 

theory using this quantization method is quite straightforward. However, in 

order to extract the dynamical information of the system, one has to continue 

g-1o analytically to the real time. (This is evident when one wants to study the 

linear response functions, since they are equivalent to the Green’s functions in 

the real time.) This continuation is easily carried out in the configuration space, 
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-- - but in Fourier space this procedure is more subtle and involves the spectral 

representation of the correlation functions ?**r _ - 

In the real-time formalism, the Lagrangian is not affected by the temperature. 

It only affects the (real-time) Green’s functions through the asymptotic boundary 

condition. The Green’s function for (pseudo)scalar bosons is given as follows~1~*3 

Wk) = k2 _ fz + ic + Bm~(k) 6(/c’ - m2) , 

where in the rest frame of the thermal equilibrium state, 

nm f ,a,Po; _ 1 - 

Similarly for spin i fermions, 

Sg( k) = vf + m) 
( 

k2 _ L2 + ic - 27m(k) W2 - m2,> , 

where 

?2J-(k) s 
1 

,alPol+l * 

(2.14 

(2.16) 

Before going any further, we interpret the unfamiliar terms in the above, which 

are crucial for later calculations and interpretations: At finite temperature, 

the thermal equilibrium state is a “plasma” of excitations. Namely, all the 

energy levels are populated with real (on-shell) particles. The probability of 

occupation is given by the Bose-Einstein or Fermi-Dirac statistical factors. When 

the Heisenberg fields are expanded in terms of the creation and annihilation 

operators, a t and a, the propagators contain aa t t and u a terms. The second 

terms in the propagators arise from either creating or annihilating a particle in 
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-- - the populated energy levels. The on-shell b-functions are because of the particles 
_ - 

in the thermal equilibrium state being on mass-shell. -The relative sign between 

Da and SD is of course because of the commutation relations. 

This formalism can be made explicitly covariant by inclusion of the four- 

velocity vector uP of the thermal equilibrium statef3 (The necessary changes 

are po+pu in (2.lb) and (2.2b).) Dolan and Jackiw” noted that the perturbation 

method that uses the above propagators encounters ambiguities at higher orders 

because of the product of &function terms. It was found that in order to avoid 

this ambiguity and complete the real-time formalism one can double the degrees 

of freedom (Therm0 Field Dynamics - TFD)t4 Namely, for each of the dynamical 

degrees of freedom cp; in the zero-temperature theory, an extra degree of freedom 

(ghost) (p; has to be introduced. The vertices of the perturbation theory consist 

of the usual ones plus the ones among ghosts themselves. The ghost sector 

contributes through the “off-diagonal” elements of the tree propagators (Cpipo;). 

ln this way, the ghosts lift the ambiguities in the naive perturbation theory and 

the real-time Green’s function of the usual fields can be calculated directly. 

For analyzing the SUSY theories at finite temperature, we use this real-time 

formalism. The technical reason is that we want to investigate the real-time 

Green’s function, which can be directly calculated in that formalism. It is also 

because, in order to avoid an explicit breaking of SUSY, it is necessary to work 

with a covariant formalism as mentioned in the introduction. 

Although a full analysis of the theory would require the machinery of 

the TFD formalism, we will content ourselves with understanding the relevant 

physics in low orders in perturbation theory~where the usual real-time approach 

is unambiguous. ln particular, because of the above properties of the ghost 
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-- - sector, the one-loop inverse propagators re.ceive no contributions from ghosts. 

Consequently, there will be no need to consider the ghosts in the computations 

that we will do in the following sections (except only one insignificant case). This 

will be further mentioned in the appropriate places. 

In ref. 7, the WT identities of the real-time operators were derived by 

an analytical continuation from the imaginary-time expressions. It was shown 

that the WT identities at finite temperature in real time are the same as the 

zero temperature case provided that we replace vacuum expectation values of 

operators by thermal averages. The thermal average of an operator is written 

(b)p f 
Tr ( 6e-PH) 

Tre-BH ’ (2.3) 

where b is a Heisenberg (as opposed to Matsubara) operator and H is the 

Hamiltonian of the theory. The expression (2.3) is correct in the rest frame 

of the thermal-equilibrium state and can be written in a fully covariant fashion?3 

For completeness we give the necessary expressions below: The principal WT 

identity resulting from the symmetry of the transformation (o; + cp; + +o;, (~0; 

represents either a bosonic or fermionic fields) is, 
- 

WS&) + c W4)p = 0 ? (2.4 i 
where S,, is the Noether current of the symmetry. This WT identity is true in the 

presence of the external sources Ji for the fields pi. All the necessary identities 

are obtained by taking functional derivative of the eq.(2.4) in terms of the sources. 

The above identity can also be obtained directly in the TFD formalism. In the 

path-integral expression of the generating functional, the WT identities can be 

obtained as the results of the invariance of the functional integral under the 
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(local) change of integration variables, pi(z) ---) pi(z) + f( %)&i( %)- The identity 

(2.4). is derived by doing this change only in the sector of theusual degrees of 

freedom. 

3. FREE MASSIVE MODEL 

We have noted in the introduction that there are still some unanswered 

questions on the SUSY breaking at finite temperature. One of the questions 

was how the symmetry is realized in “free” models, where particles interact only 

with the heat bath but not with each other. In this section, we study this question 

in the context of the massive free Wess-Zumino model. 

The most general Wess-Zumino modellS is defined by a supermultiplet 

0 = (2, $J, 7), where 7 is a auxiliary field and $J a Majorana spinor. In terms of 

the component fields, 2 = 
J( 
l2 A + iB), and F = -#F + iG). The fields A and 

I: are scalars and B and G are pseudoscalars. The Lagrangian reads, 

(34 
+ TP’( 2) + ?W( zt) - ;ih+w) + r_p’h(Zb 9 

where Q = i(l f r5) and P(Z) a polynomial of at most third order in 2. The 

SUSY transformations can be found in the literature and will not be repeated 

here. Under these transformations, the change in the action is, 

6JdJxL = pxzaw, , (3.2) 

where c is the Grassman transformation parameter. The supercurrent is given 

- as follows, 
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-- - In this section, we chose P(Z) = imZ2 (m: real), which defines a free theory 
_ - 

with A, B and $J all of the same mass m. 

Since we want to know the consequences of the different statistics in the 

propagators of bosons and fermions, we need the WT identity that relates them. 

It is, 

The steps leading to (3.4) can be found in refs. 2, 7. The finite temperature 

propagators for $, A and B are given in (2.2) and the AF propagator is, 

The right hand side of (3.4) is easily found to be, 

r.h.s. = -2~ J d!P 
o’w+ mMP2 - m’)[nB(p) + n~(p)]e-iP(Z-v) , (3.6) 

where ng (no) is the Bose (Fermi) statistical factor. The corresponding terms in 

the left hand side of (3.4) can be written as, 

or, 

1.h.s. = i 
J 

6 
pqzd4q bf + m) (,#- A)Sg(q)Da(p) eigyBipz b4(p - q) . (34 

From the form of the propagators (2.2), we see that in the product Sp(q)DB(p) 

there is a term: 

I = 2ni(A+ m) 6(P2 - m’)n&) 6(q2 - m’)nF(q) 
q2 -m2+ic - p2 - m2 + ic ’ 1 (3.9) 
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-- - that as p-+ q brings a singularity that can cancel (j- A) 6(p-q) in the numerator 

of (3.8). It is easy to see that only (3.9) has this singularity: The contribution of 

(3.9) to (3.7) gives, 

1.h.s. = i 
J - m2M+ 4 - (d+ m)(q2 - m2)] 

x 6(P2 
1 

- m2)m(d Q2 - m2hk7) 
q2 -m2+ic - p2 -m2 + ic eiw-ipz~4(P -9) - 1 

(3.10) 

After some algebra, we find this expression to be equal to (3.6) (in the limit c-,0) 

therefore 1.h.s = r.h.s. and the WT identity is fulfilled. This is rather surprising 

because the left hand side of (3.4) is the integral of a total derivative and it would 

vanish unless there is massless state. Since the contribution to the right hand 

side arises from (3.7), we will look for this state in the corresponding contribution 

to the $A propagator. 

In this non-interacting 

of the “free” propagators; 

theory, the composite +A propagator is the product 

(@&-9p = Sp -. (;++!o-r) , (3.11) 

where we introduced the center of mass momentum P and the relative momentum 

r. The temperature dependent part of the above product contains a singularity 

for Per = 0. For small P, (3.11) is given as follows, 

+ 27ri(f+ m) w(r) + w(r) 
2P.r 

+ 27ri ng(r)nF(r)S(2P.r) 
> 

6(r2 - m2) . 

(3.12) 
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-- - Using the identity, 
* - 

J+m =2P.r; ~ --$--m)P , (3.13) 

we project out the massless pole, 

W@A)p = -j 27r(n&r) + nF(r))&(? - m2) + . . . . . , (3.14) 

where we wrote only the contribution of the first term in (3.14). The dots 

stand for terms that do not contribute to the WT identity (3.4). It is because 

the singular terms that come from the second term in (3.13) are multiplied by 

(,f+ m)J’ from the left, as in eq. (3.8). Then, this term yields zero because of 

S(? - m’). Therefore the massless pole given in (3.14) is the one which plays the 

role of the Goldstone pole. Note that for T -*O the residue of this pole vanishes 

ase -$=i?P-. Mth oug h we have only mentioned the composite operator $A, 

the same can be said for y$B. 

The physical interpretation for (3.14) is the following: As we mentioned 

before, the thermal-equilibrium state consists of all the excited states of the 

system being populated by real particles with probabilities given by the statistical -. 
factors. The excitation spectrum of the theory is supersymmetric; bosons and 

fermions have the same masses. Therefore if we create say a fermion in one 

of these energy levels and destroy a boson (from the thermal-equilibrium state) 

in the same energy level, this process costs no energy. The same is true for 

creating a boson and destroying a fermion. The eq. (3.14) is the sum of these 

two amplitudes. 

The similar reasoning indicates that if the masses of the fermions and bosons 

are mg and mF respectively it would cost [rnB - mFI to create this excitation 
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with zero center of mass momentum (see Sec.5). It is also easy to see that the 

amplitude for a process involving two bosons or two fermidns vanishes. 

With this analysis of the very simple non-interacting model we have learned 

several things. As we suspected SUSY is broken at finite temperature because 

fermions and bosons have different statistics. However what is surprising is that 

the symmetry is realized in the Goldstone fashion. Namely, the WT identity 

relating the Green’s functions of bosons and fermion is non-trivially satisfied 

indicating the presence of a massless excitation that couples to the supercurrent. 

While in this model the auxiliary field cannot be an order parameter (always 

(F)B = 0) because of the lack of the interaction, the order parameter of SUSY 

breaking is given by the right hand side of the WT identity (3.4), a linear 

combination of the fermion and boson propagators. Therefore we interpret this 

breaking as the spontaneous breaking of SUSY and this massless excitation as 

the Goldstone fermion. 

- 

13 



-- -- 4. INTERACTING MODEL WITH CHIRAL SYMMETRY 
_ - 

In the last section, we found a new and interesting feature of SUSY at finite 

temperature. The analysis was done in a noninteracting theory. Therefore the 

next question is what do we expect in an interacting theory. Are the excitations 

created by the composite operators +A and $‘$E? still massless? How does it 

affect the other channels like a single +!J? In order to answer these questions, 

we study the interacting Wess-Zumino models in the following sections. As we 

mentioned before, we are also interested in what happens to the R-invariant 

models, where the auxiliary field is not allowed to be the order parameter. 

Therefore, we first investigate an R-invariant (chiral) model in this section. 

By chasing P(Z) = QgZ" in the L agrangian (3.1), we obtain an interacting 

theory that is symmetric under the following chiral transformation, 

(4.1) 

This is a special case of R-invariance possible for SUSY theories. At zero 

temperature to the tree level, both SUSY and the chiral symmetry are explicit 

(unbroken). Because of the chiral symmetry, the fermion is massless. Therefore 

its SUSY partners A and B are massless. It has been shown that the Coleman- 

Weinberg mechanism does not take place in this theory?6 

Let us now investigate the model at finite temperature. At tree level, we find 

that SUSY is broken but the chiral symmetry is not. The WT identity (3-4) is 

satisfied in the same way as in the previous section (except that now m = 0). 

Namely, the fact that the fermion and boson propagators have different statistics 

indicates that the operators $A and r5$B create massless excitations that couple 

to the supercurrent. These are interpreted as Goldstone fermions that form a 
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doublet under the unbroken chiral symmetry. Although a single $ is massless 
_ - 

at this order, it does not couple to the current and therefore is not a Goldstone 

fermion. 

In higher orders, we expect the same breaking pattern to persist: the chiral 

symmetry is unbroken while SUSY is broken. For the chiral symmetry, it is 

known that if it is unbroken at zero temperature, the finite temperature effects 

leave it unbroken. In fact, from the one-loop effective potential, we find 

(Z)p=(7)p=o - (4.2) 

We expect SUSY to be broken because even in the interacting theory the fermion 

and the boson propagators are essentially different because of the statistics. 

This effect will be reflected in the corresponding spectral representations of the 

propagators. 

For this reason, the WT identity for the propagators, eq. (3-4), should 

be satisfied with a nonzero right hand side. Thus there must be a massless 

Goldstone mode contributing to the left hand side. In order to see explicitly 

how this massless mode contributes, we examine the WT identity for the inverse 

prol%gators. This may be derived from (3.4) by multiplying both sides by the 

inverse propagators I’G and IA (in the functional sense), 

(44 

-i iqh Y)+rAAk d . 

We have dropped the terms which contain I’m, because these are zero because 

of the chiral symmetry (I; and A do not mix because of their different chiral 

charge). We have also neglected the “ghost” fields since the result is not affected 
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by them up to the one-loop order. The reason for working with the inverse 

Green’s functions and not with the propagators themselves-is because the latter 

require knowledge of the spectral density whereas the former do not involve this 

quantity and are easier to compute. Furthermore, the one-loop calculation of 

the inverse propagators does not involve contributions from the “ghost” sectors 

and therefore are straightforward. That is, the right hand side of (4.3) is given 

by the usual Feynman diagrams for the self-energy correction, but with the 

thermal Green’s functions (2.1) and (2.2) instead of the usual ones. The one- 

loop Feynman diagrams for the left hand side of (4.3) are illustrated in Fig.1. 

(Actually the external A and $J lines are truncated by the corresponding I”s.) 

Among the four of them, only (a) and (b) can have the necessary singularity to 

give a nonvanishing contribution. This can be seen from the fact that only in 

these diagrams +A and r5$B are intermediate states. The same mechanism that 

gave rise to the singularity in the $A channel at tree level also works in the loops. 

.Diagram (b), h owever, vanishes because the bare masses vanish. (Actually, there 

is a corresponding diagram with “ghost” lines. But it identically vanishes too.) 

Careful calculation shows that the identity (4.3) is indeed satisfied nontrivially, 

with the 1.h.s. being, 

1.h.s. = -2ng’ J dk 
p-+@2)(fiF(k) + ns(k))(~~~~2 ’ (4.4 

where p is the external momentum. The fact that only diagram (a) gives a 

nonzero contribution to the left hand side of (4.3) indicates that the composite 

operator $JA (and q5$B) creates a massless excitation that couples to the 

supercurrent. That is, even in this interacting theory, there is the chiral doublet 

of Goldstone fermions in the same composite channel as at the tree level. 
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It is interesting to note that not all the $A and 7’$B couple to the 

current. So far we have been dealing with bilinear operators with two arbitrary 

coordinates, for example +(z)A(y). H Owever the local Operator +( z)A(z) E XA( 2) 

(or, in momentum space, the linear superposition of all the states with relative 

momentum r with equal weight) decouples from the supercurrent, 

J d4z 8~(SP(z)$+)A(z)) = 0 . (4.5) 

and the same holds for 7’$B. Although the states created by these local 

operators are massless, the coupling to the supercurrent vanishes up to one-loop 

order because of the zero bare mass. 

Next let us look at the tc, channel. At finite temperature, chiral symmetry 

does not prevent the fermion from acquiring a mass. Indeed chiral symmetry 

only requires {7’, I’$(p)} = 0. Th’ is relation can be satisfied with I’+(p) = 

Fl(p2, pu)~+Fz(p2,pu),2f, where zl,, is the four velocity of the thermal equilibrium 

l3 state and Pi,2 are scalar functions. In this way, the zeroes of I’$(p) may not 

be at pP = 0. The chiral symmetry has further consequences for the SUSY 

breaking. In fact, the following WT identity relevant for the single fermion, 

cannot be satisfied with a nonvanishing (F)p. The reason is that there is no 

singlet under the chiral symmetry in either side, so they both vanish. This shows 

that rc) cannot be a Goldstone fermion (this is in contrast to what happens in the 

case without chiral invaria,nce). 

In fact, the one-loop calculation” shows. that the fermion acquires an 

effective mass fgT. It is because of the mixing between the T+$ and XA,JJ: The 
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one-loop fermion self-energy is essentially given by the propagators (x(-p)~(p)), 

which is singular at pP = 0. This singularity leadssto the following one-loop 

inverse fermion propagator for small momentum po (at 3 = a), 

ryPo,a = 6) N -ire (4.7) 

This shows that the fermion mass arises from the masslessness of the state 

created by x(z). This also indicates that the amplitude for the process +(p)+ 

ti(P - 9) + 49) h as a singularity as p +O. The one loop contribution is depicted 

in Fig.2. 

For the bosons A and B, the one loop calculation shows that they acquire 

the effective mass & gT. This difference between the effective masses of the 

fermion and the bosons is because of the spontaneous breaking of the SUSY: the 

presence of the Goldstone fermion mode in the $A and 7’$B renders the left 

hand side of (4.3) nonzero, so that the poles in the fermion propagator and the 

boson propagator do not coincide. 
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-. 5. INTERACTING MODEL WITHOUT CHIRAL SYMMETRY 
_ - 

In the previous section, the chiral symmetry (4.1) irevented the fermion from 

becoming a Goldstone fermion. In this section, we investigate the physical aspects 

of a model that does not have this symmetry. One of those models is given by 

P(Z) = -1Z + igZ3 in the Lagrangian (3.1). 

Although this model has been studied in ref. 7, here we would like to 

understand the role of the excitation created by the bilinear operators $A and 

r5t+bB: In this non-chiral case we know that Q becomes a Goldstone fermion 

at one-loop level. The auxiliary field develops a nonvanishing thermal average. 

Therefore there is a question as to whether the excitations created by these 

composite operators remain Goldstone fermions at higher orders. And if not, it 

still has to be clarified how it decouples from the supercurrent. 

In order to investigate this theory, we start by shifting the fields in the 

Lagrangian by their thermal averages. In component notation, A=A,+Af, and 

‘F = F, + Fl, where A, E (A)p and F, = (F),g are determined by the minimization 

conditions of the effective potential. The induced masses of the physical particles 

(obtained after eliminating the fluctuations of the auxiliary fields) are: 

(54 

At tree level, the minimization condition yields A, = 2/a and Fe = 0. 

At this level, this model describes bosons land .fermions, all of the same mass 

m = m. In th is sense, this model is a direct extension of the free model 
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discussed in the section 3. As before, the excitations created by the operators 

+A and ~$JB are massless, and saturate the’(tree level) WTidentity (3.4) as 

in the free theory. Hence at tree level these composite operators create the 

Goldstone modes arising from the breaking of SUSY. 

At, one loop level, F developes a nonzero thermal average that is proportional 

to ewrn/= for T< m. Thus according to (5.1) the induced masses are different. 

This results in a shift of the massless pole in the free $A (and $B) propagators: 

Instead of (3.12) the @A-propagator now contains a singularity when 2P.r + 

rni-m$ =O. Applying the following identity instead of (3.13), 

P 
7j-+ J+m* =(2P.r+mi-m$)P+m:-md 

( + P+my-rn+ f- f+Wi)(p+rn, -mA) , 

(5.2) 

we obtain the shifted pole, 

(5.3) 

As mentioned in sec. 3, this shift can be interpreted physically. Destroying a 

boson of mass mA from the statistical ensemble, and creating a fermion of mass 

rnQ (or vice-versa) in the same energy level (with zero center-of-mass momentum) 

costs energy N ImA - m$l. 

The explicit calculation of the one-loop fermion self-energy indicates a pole 

at zero momentum. 

Iypp=O) = 0 . F-4) 

The WT identity (4.6) is saturated with this massless pole, which is then identified 

as a Goldstone fermion. 
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-- - In this model, the WT identities for the inverse propagators are given by 

(4.3) with an extra term -ii?,$,(z, y) on the right--hand side. This identity 

is now satisfied in a different fashion. Namely, we find that diagram (a) of fig. 

1 no longer contributes to the left hand side. This can be traced to the fact 

that because of the shifting of the pole the propagator (5.3) is finite as p + 0. 

For the same reason, the diagram (b) d oes not contribute either. Some of the 

nontrivial contributions to the WT identity are shown in fig. 3. These are 

nonvanishing because the one-loop propagator of the field $ has a pole at zero 

momentum. Therefore we see that the mechanism by which the WT identity 

(4.3) was nontrivially fulfilled (at one-loop in the model with chiral symmetry) 

no longer applies in this case since F # 0. Instead, the fermion T/J becomes a 

Goldstone excitation and saturates the WT identities. 

In the last section, we mentioned that the masslessness of the excitations 

created by XA$(%) was responsible for generating a chiral-nonbreaking mass 

for the fermion at the one-loop level. This was because there is a mixing 

term $(dxA,dd in the Lagrangian. In this non-chiral model, however, the 

contribution of the (x(-p)~i(p))~ to the fermion self-energy cancels the mass 

term for pP = 0. This is the mechanism that makes the fermion massless at 
-. 

one-loopt 

This is a very interesting phenomenon: At tree level $A and r5$$? create a 

pair of Goldstone fermions at T# 0 because of the lack of the mass splitting. 

But at one-loop level, the auxiliary field acquires a nonzero thermal average. 

As a result, the singularities are transferred to the $J field through mixing with 

$A and $y5B. In this way, the $J becomes massless and $A and r5$$? become 

massive. 
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-- - 6. CONCLUSION 
_ - 

In this paper we have investigated the physics of symmetry breaking of SUSY 

theories induced by finite temperature effects. 

The breaking of SUSY arises because fermions and bosons obey different 

statistics. We have quantized these theories at finite temperature in a Lorentz 

covariant way (real-time formalism) and have found that this breaking is always 

associated with massless excitations that couple to the supercurrent. These are 

identified as Goldstone fermions. 

Even in the simple case of a free field theory, there are Goldstone excitations 

created by the fermion-boson composite operators, $A and r’$B. These 

states nontrivially saturate the WT identities that relate boson and fermion 

propagators. Their different statistics yield a temperature-dependent piece in the 

difference of the propagators, which then is canceled by the contribution of the 

zero-momentum coupling of the massless composite states to the supercurrent. 

In an interacting theory where there is a chiral symmetry (R-invariance), 

the auxiliary field is prohibited from having a non-zero expectation value. A WT 

identity then forbids the elementary fermion from coupling to the supercurrent at 
-. 

zero momentum. We have shown that this type of model posesses essentially the 

same features as the free theory. That is, the same composite operators +A and 

q5$B create Goldstone excitations, which now form a doublet under the chiral 

symmetry. These excitations are explicitly shown to saturate the WT identity 

up to the one-loop order. These excitations appear as an intermediate state in 

the process tl) -+ $ + A(B), rendering the amplitude for this process singular as 

the incoming momentum goes to zero. 

In the model without chiral symmetry, there is an interesting phenomenon. 
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At tree level, the thermal average of the auxiliary field vanishes. The elementary 

fermion is massive and composite operators create Goldstonelermions. At the 

one-loop level, the auxiliary field acquires a nonzero thermal average. The 

elementary fermion becomes massless and is the Goldstone fermion. The 

excitations created by +A and q5$B are no longer massless. It is seen that the 

local couplings of $ to $A and $r5B are responsible for 1/, becoming massless. 

This clarifies the structures of the Goldstone fermions found previously. If one 

looks only at the single fermion channel, one finds the Goldstone fermion at one- 

loop level, and one might think that this phenomenon is similar to the dynamical 

breaking. However, in the composite sector, the symmetry breaking is manifest 

at the tree level. It becomes visible in the single fermion channel through mixing, 

only at higher orders in the perturbation theory. 

In the free theory example, the Goldstone modes do not contribute to the 

thermodynamic properties because of the lack of interactions. In interacting 

theories, however, we expect these modes to contribute to the therm*dynamic 

properties. In the non-chiral case, for example, the Goldstone pole of the fermion 

would give a power law behavior to the specific heat were it not for the fact that 

theprobability (residue) of this pole is N emrnlT at low temperatures. 

We believe that aspects of SUSY at finite temperature deserve to be studied 

further since they posesss new interesting physical properties that are not known 

in the zero temperature theories. It would also be very interesting to study these 

aspects in gauge theories. 

After completion of this work, we received a paper by Matsumoto et. al?” 

-where it is also realized that there are massless excitations created by bilinear 

operators. 
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FIGURE CAF!TIONS 

1; The one loop graphs relevant for the left hand- side-of-the WT identity 

(4.3). The solid lines stand for the fermion and the wavey lines for bosons. 

The circle with the cross stands for the supercurrent. The external lines 

are actually truncated, but are shown here for clarity. 

2. The vertex correction graph which generates a singularity for p-+0 in the 

process W) -+ NP - d + 44. 

3. Some of the one-loop contributions to the WT identity of the inverse 

propagators ((4.3) plus the FA-term). The double solid lines represent 

the one-loop dressed fermion propagators. The external $J and A lines are 

actually truncated. 
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