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1. INTRODUCTION --- - - 

The work presented here, although the center of serious enquiry for three 

decades,., I-’ has not achieved its final form. In particular, we have not yet 

seen how to construct relativistic quantum mechanics with a clear understanding 

of what results, when achieved, would terminate the program. Hence we have 

not yet met the requirements that one of us (CG) sees as necessary for such a 

program. lo Yet this somewhat inchoate theory has suggested a model which 

allows us to generate a bit string universe constructively from a couple of simple 

operations and a few well understood symbols, - a universe that can model more 

simply, and in some cases more accurately than conventional physics, “facts” 

currently accepted by physicists. Many of those involved in this research believe 

we have more than that, but they have not made their case compelling either 

inside their current home 11 or in the broader communities we inhabit (physics, 

philosophy, mathematics, computer science,... . 7) So what this paper is about is 

to get any imaginative reader to think that our approach might be exciting, and 

fun- a strategy suggested to one of us (HPN) by Wheeler some time ago. 

The fun is not far to seek once one can engage in the initial surrender of dis- 

belief. GUTS, SUPERGRAVITY and other theories of physics with (hopefully) 

fewer parameters than those currently required as empirical input, yet more than 

the minimal three we need (for connection, not adjustment, to experiment), are 

avidly sought within “conventionaP frameworks. Mathematics has to face the 

challenge of whether its theorems are “computable”, if not why not - or the 

-relevance of the question, and whether a ‘proof by compute? that cannot be 

checked step by step by humans is a uproof”. Computer scientists have to ask 

whether the demonstrable (and practically important) uncertainties encountered 
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in concurrent programming are more than a problem to be designed around, but 

might set limits to their theories, whether concurrency itself involves problems 

that are beyond the scope of a “universal computer” or “Turing machine” even 

if they could build one, whether %ndomness”is a “meaningful” concept when 

there is no algorithm for computing a random number ,... Our approach in- 

volves all of these questions, so can be fun even where we cannot be certain of 

our uanswers‘s”. 

2. PROGRAM UNIVERSE 2 

Our computer algorithm (Program Universe 2) l2 starts from nothing (in the 

computer, other than program and available memory) and generates a growing 

universe characterized by two cardinals: SU, N E integers. For computer op- 

erations any element of the universe may be simulated by an ordered string of 

the symbols 0,l containing N such symbols which we can call U[i], i E 1, . . . . SU. 

We use two operations to increase these cardinals:(l) PICK, which picks any 

string from the universe with probability l/SU and a second string (shown to be 

different by discrimination - see below) with the same prior probability and gen- 

erates a string by discrimination; if the new string is not already in the universe 

it is adjoined and SU is increased by one. If the string produced by PICK is 

already in the universe we invoke (2) TICK which picks a bit for each U[i], ran- 

domly chosen between the two symbols 0, 1, adjoins it at the head of the string, 

and hence increases N by one; the code then returns to PICK. The flow is thus 

PICK + [novel(adjoin) OR contained(TICK)] + PICK... . 
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That this seemingly trivial program can produce any interesting structure is 

due to the subtleties implied by the discrimination operation which (sometimes) 

creates new strings. For two ordered bit strings of length N, symbolized by 

s; = (..., x;, . . . )N where x; E [O,l], i E [l,N], d iscrimination is defined for bits 

by DNSiSj = (a.., Xi +2 Xi, a.. )N, where +2 is binary addition (exclusive or), or 

for integers by DNSiSj = (...,(~i - Xj)2, . ..)N. This allows us to think of the 

elements of this universe, which we have sometimes called Schnurs, as ordered 

strings of bits or of integers from the set [0, 11, an ambiguity we exploit in defining 

conserved quantum numbers. 

To get the program started we assign the first string in the universe the value 

R (i.e. a random choice between 0 and 1) and the second again the value R, 

provided only it differs from the first. We now enter the main program at PICK, 

and continue till doomsday. We say that each tick follows an event. Note that by 

this specification of events, and the integral ordering of the ticks (even if, outside 

of the computer simulation it turns out to be unknowable) we have abandoned 

the concept of simultaneity, and not just ‘distant simultaneity” as is customary 

in special relativity. 

Discrimination (which we for current purposes write as +, with a + a = 0, 

and a,b linearly independent (1.i.) iff a + b # 0) creates sets which close under 

discrimination called discriminately closed subsets (DCsS). For example, if a and 

b are l.i., the set {a, b, a + b} closes, since any two when discriminated yield the 

third. Similarly if c is 1.i. of both a and b, we have the DCsS {a, b, c, u + b, b + 

,c, c + a, a + b + c}. Provided we call singletons such as {u} DCsS’s as well, it is 

clear that from n 1.i. strings we can form 2R - 1 -DCsS, since this is simply the 

number of ways we can choose n distinct thing one, two,... up to n at a time. 
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The first construction of the hierarchy3 started from discFimination using 

ordered bit strings as already defined. Starting from strings with two bits (N=2) 

we can form 22 - 1 = 3 DCsS’s, for example {(lO)},((Ol)},{(lO),(Ol),(ll)}. 

To preserve this infor:::at ion about discriminate closure we map these three sets 

by non-singular, linearly independent 2 x 2 matrices which have only the mem- 

bers of these sets as eigenvectors, and which are linearly independent. The non- 

singularity is required so that the matrices do not map onto zero. The linear in- 

dependence is required so that these matrices, rearranged as strings, can form the 

basis for the next level. Defining the mapping by (ACDB)(xy)=(Ax+Cy,Dx+By) 

where A,B,C,D,x,y E 0, 1, using standard binary multiplication, and writing the 

corresponding strings as (ABCD), three strings mapping the discriminate closure 

at level 1 are (lllo), (llol), and (1100) respectively/. Clearly this rule provides 

us with a linearly independent set of three basis strings. Consequently these 

strings form a basis for 23 - 1 = 7 DCsS’s. Mapping these by 4x4 matrices we 

get 7 strings of 16 bits which form a basis for 2’ - 1 = 127 DCsS’s. We have 

now organized the information content of 137 strings into 3 levels of complexity. 

We can repeat the process once more to obtain 212’ - 1 II 1.7 x 103’ DCsS’s 

composed of strings with 256 bits, but cannot go further because there are only 

256 x 256 linearly independent matrices available to map them, which is many 

to few. We have in this way generated the critical numbers 137 H hc/2re2 and 

1.7 x lO38 N hc/2rGmi and a hierarchical structure which terminates at four 

levels of complexity: (2,3), (3,7), (7,127), (127, 212’ - 1). It should be clear that 

the hierarchy defined by these rules is unique, a result achieved in a different way 

-by John Amson4. 
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In the context of program universe, since the running of the program pro- 

vides us with the strings and also an intervention point (adjoin the novel string 

produced by discrimination from two randomly chosen strings) where we can 

organize them conceptually without interfering with the running of the program, 

we can achieve the construction of a representation of the hierarchy in a simpler 

way. The procedure is to construct first the basis vectors for the four levels by 

requiring linear independence both within the levels and between levels. Since 

adding random bits at the head of the string will not change the linear indepen- 

dence, we can do this at the time the string is created, and make a pointer to 

that U[i] which is simply i, and which does not change as the string grows. 

Once this is understood, the coding is straightforward, and has been carried 

through by one of us (MJM). Each t ime a novel string is produced by discrim- 

ination, it is a candidate for a basis vector for some level. All we need do is 

find out whether or not it is 1.i. of the current (incomplete) basis array, and fill 

the levels successively. Calling the basis strings Be[m] where L E 1,2,3,4 and 

m E 1, .., B[e] with B[l]..B[4] = 2,3,7,127, we see that the basis array will be 

complete once we have generated 139 1.i. strings. Since the program fills the 

levels successively, it is easy to prove that if we discriminate two basis strings 

from diflerent levels we must obtain one of the basis strings in the highest level 

available during the construction, or level 4 when the construction is complete, 

i.e. if i # j and both < .&t then B; + Bj = some Bl,,t. 

Once we have 139 1.i. basis strings, which will happen when the bit string 

-length Nr39 is greater than or equal to 139, we can insure the generation of 

some represent ation of the combinatorial hierarchy by going to TICK. Then the 

only alteration of these Nr39 initial bits that can occur from then on will be the 
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filling up, by discriminate closure, of any of the remaining elements of the hier- 

archy in this representation as a consequence of the continuing random discrim- 

inations. Since we keep on choosing strings at random and discriminating them, 

discriminate closure insures that we will eventually generate all 2127 + 136 ele- 

ments of the hierarchy [BUT NO MORE]. Of course there will eventually come 

to be many different strings with the same initial bits, Nrsg. We 6x this number 

and call it LL for”labe1 length”; our program automatically generates ensembles 

of strings labeled by some (unknown) representation of the hierarchy. The coding 

which provides pointers to these ensembles is again straightforward. From now 

on we will call the first LL bits in a string the label, and the remaining (N - LL) 

bits the address. Finally we note that when the label array is complete we know 

that among the labels L; at any one level we can find exactly B(i) 1.i. strings and 

no more; it becomes arbitrary which of the many possible choices we make, so the 

rbasis” becomes a structural fact and does not single out any particular strings. 

It follows immediately that if i # j and both < bast then L; + Lj = some Llaet. 

3. LABELS AND QUANTUM NUMBER CONSERVATION 

An event has been defined when the universe has bit-length N and (when 

the labels have closed at bit-length LL) at address bit-length A = N - LL) as 

the failure to produce a new string by discrimination. This can occur only when 

two or more discriminations happen before the next tick. Sequentially, the first of 

the two discriminations we consider resulted from picking Sr and S2 at random 

-and generating a string not yet contained in the universe S3 = DNS~S~. The 

second discrimination can lead to an event~in two different ways. In the first 

case we pick any two of these three strings again. Since Sr + S2 + S3 = ON, 
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this second discrimination necessarily must yield a string alreadyin the universe. 

Then the program takes us to TICK, and all the strings in the universe will be 

augmented by one random bit at the head. Clearly this can happen in three 

different ways, but we cannot tell without further information which one of the 

three occured. The second class of events generated by the program occurs 

when we pick two strings S4 and Ss both of which are different from the first 

three strings considered but which on discrimination yield one of the first three 

strings, that is DNS& is equal to Sr or S2 or S3. Again, any one of these three 

possibilities will lead to TICK and we cannot know which of the three occured. 

We can, however, calculate the relative probabilities between the two classes of 

events;in a subsequent paper we we will show how this enables us to calculate 

coupling constunts. 

Since the levels close, they convey no dynamic information; this must come 

from the addresses, and the labeled address ensembles. By construction addresses 

are random bit strings (other than through correlation with the label). But they 

still have a structure we have not yet exploited, the number of zeros No and the 

number of one’s N’ in any address string. This allows us to define for each string, 

or string segment, a parameter bounded by -1 and 1 Ud = (N’ - N”)/(N1 + No) 

which we call d-velocity. For simplicity we consider first only two bit labels for 

which (10) + (01) + (11) = (00), implying three possible configurations for the 

discriminations that occur in our definition of event:(l) (1O)ulo + (Ol)vol @ 

(Wll - (lo)& + (w;,;(2) (10) UlO + (ll)Vll a (Ol)VOl - (lo)& + 

_( w1; and (3) (1l)ql + (Ol)uol a (1O)vol ++ (11)~~~ + (01)~;~. To these 

labels we have added address strings symbolized by u whose significance we will 

develop below. 
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We can now see, in this limited environment; how quantum number conserva- 

tion comes about. We call a = (10) a particle label, 7i = (01) an antiparticle label 

and q = (11) a quantum label. Then the three configurations can be thought of 

as three primitive scattering processes:( 1) a + is c u + 7i,( 2) q + ii _ q + si 

and(3) u+q _ u+q. We see that if we represent the label as (blbz) then bl- bz 

can be used to define the particle quantum number as +1,0,-l and that the the 

number of particles minus the number of antiparticles is conserved. Further, if 

we link up tick-separated events to make more complicated diagrams, this fact 

will persist. Thus we have established our first discrete conservation law - so far 

only for level 1 labels. 

If we could treat paired descriptors like (lO),(Ol) along a string as independent 

quantum numbers, the interpretation given in the last section would generalize 

to any label with even label length; we could map onto a linear, finite Hilbert 

space without much effort. The hierarchical connection between levels does not 

allow us to do this because, for example, a label with string length 4 allows 16 

symbols, four of which are linearly independent, while the hierarchy requires us to 

use only (any 1.i. choice of) three of these and hence only seven non-null strings. 

Nevertheless, at level 2, it is possible to define conserved quantum numbers for 

two in - two out processes. Since the demonstration is by exhibition, and not 

by an elegant proof, we omit it here. Using an appropriate connection between 

the particle, antiparticle dichotomy and velocity direction, level 2 label event 

structure allows two conservation laws. One implementation allows these to be 

-the difference between the number of particles and antiparticles; for a string 

(bl , b2, b3, b4) this is d = bl - b2 + b3 - b& The second quantum number in 

this pair takes twice the component of spin along the velocity direction to be 
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2~3, y bl + b2 - b3 - b4. Then, as can be seen from-the firsttwo columns of 

Table I, 

Table I 

Two interpretations for level 2 quantum numbers 

(hbhh) d 29, or 21, 2U, 2V, = 2(I, + Uz)] 

STRING: 1110 +1 +1 +1 +2 

0010 +1 -1 +2 +1 

1100 0 +2 -1 +1 

1111 0 0 0 0 

0000 0 0 0 0 

0011 0 -2 +1 -1 

1101 -1 +1 -2 -1 

0001 -1 -1 -1 -2 

d = bl - b2 + b3 - b4; 29, = bl + b2 - b3 - b4 

21, = bl + b2 _ b3 - b4; 2U, = -2bl + b2 + 2b3 - bq; 2v, = -bl + 2b2 + b3 - 2b4 

We have two fermions and two antifermions, two helicity 1 quanta, and an 

3% = 0 interaction with no ‘antiparticle”. The natural interpretation is the 

electron-positron-gamma-coulomb system. Alternatively, we could identify the 

second of these quantum numbers with twice the ‘z component” of isospin. Then 

we define 2U, = -2bl -I- b2 + 2b3 - b4, and find, consistent with the usual definition 

V, = .I, + U,, that we have seven of the eight quantum numbers of the basic SU3 

octet. Our scheme even becomes an octet when we add the label (0000) which is 

degenerate as to these quantum numbers with (1111) [and which will eventually 
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be generated in this position by the continuing discriminations]yof course in our 

context this label is meaningful only when it is part of a longer string. 

Mapping level 2 to level 3 produces four bits which can take on all 16 in- 

dependent possibilities and additional parts of the string which have only three 

independent basis vectors, like level 2, giving 8 x 16 = 128 possibilities from which 

we must subtract the null string to leave 127. It is therefore natural to take the 

octet as the color octet and the 16 states as what we can get from two different 

spin l/2 fermions with their antiparticles, - the up and the down quark? If this 

works out in detail, level 1,2, and 3 then give the first generation of the stan- 

dard model (two component electron neutrinos; electrons, positrons and vector 

quanta with a long range scalar interaction; colored up and down quarks with 

their ant iparticles) 

Turning to level 4, we note that we can obtain a level 4 basis string by putting 

together three basis strings from different lower levels providing us immediately 

with 2 x 3 x 7 = 42 basis vectors, and by repeating this structure three times 

in longer strings end up with with 126 of the 127 basis vectors for level 4. Since 

each of these has, internally, the same quantum number structure, this looks 

suspiciously like the three generations which have been found experimentally 

(electron, up, down; muon, charm, strange; tau, truth, beauty). The 127th basis 

vector is needed for cross-generational interactions. Once we understand it in 

terms of our dynamics, we will have our own constructive candidate for “grand 

unification”. The one string which couples everything in the same way, and which 

occurs with a prior probability of 1/(2127 + 136), then represents the Newtonian 
- 

gravitational interaction, and the starting point for our theory of ‘supergravity”. 
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But to make that development possible we must first- connect our scheme to 

space time. 

4. RECONSTRUCTION OF RELATIVISTIC 
QUANTUM MECHANICS 

To go from quantum number conserving label-specified scattering events to 

a quantum scattering theory we assume that the bits added to a particular la- 

beled ensemble between two scattering events (separated by b = N’ + No ticks) 

conserving that label define a random walk ensemble5 with p =< N’/b > the 

probability of a step in the + direction. Then the step in the opposite direction 

has probability q = 1 - p =< p/b > and (for fixed step length and time inter- 

val) the most probable position moves with velocity u = p - q, which coincides 

with our definition of “d-velocity”. We further assume that we can attribute a 

mass mL (or mass distribution) to each label. Then we can define two digital 

quantities scaled by mL by Et = mLc2 x (N’ + Ne)/2(N’No)‘i2 and pi = 

mI;c x (Nr - N”)/2(N’p)‘/2 Then E2 -p2 2 - c - mic4 independent of our digital 

definition of vd for any label L. However pdc/& = ua = c( N’ - p)/( N’ + fl) 

consistent with our original definition. 

So far our random walks, and energy-momenta are in l+l Minkowski space. 

However, thanks to our postulated (later to be articulated) connection between 

masses and labels, we have a metric space. Further, we have only four basic types 

of event (involving the four levels of the hierarchy) so can construct a 3+1 space 

-which- is rotationally invariant (no way to pick a reference direction). We think 

this is obvious, and find detailkd justification uniiluminating. 
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So far we have, dimensionally speaking, only-[Ml relative to an arbitrary finite 

mass and [L/T] 1 imited by c; the theory is still scale invariant. To introduce a 

unit of length we take the step length in our random walk to be e = he/E, which 

in the unique zero velocity frame (for any otherwise undistinguished bit string 

segment < N’ >=< Ns > and hence < w = 0 > by construction) reduces to 

h/me. Clearly our Lorentz invariance requires h to be a universal constant. We 

now can (once we have made the appropriate connecting links) =measure” the 

distance between events starting from some reference event. But, in contrast to 

the unique zero velocity frame given by our theory, there is no way to single out 

one reference event, or origin in space. Consequently our theory has PoincarC 

invariance, not just Lorentz invariance, and at least at large distance must have 

momentum conservation. Thus our theory has the usual free particle relativistic 

kinematics - the starting point for an S-matrix theory. Since we are developing 

elsewhere a relativistic finite particle number quantum mechanical scattering 

theory, 13-17 . we will not pursue that construction further here. What remains 

is to establish the usual quantum mechanical interference phenomena in space. 

The laboratory paradigm we start with is two ‘counters” with volumes AzAyAz 

whose geometrical dimensions are measured by standard macroscopic techniques 

and a time resolution At measured by standard clocks. When two counters sep- 

arated by a macroscopic space and time interval larger than the volumes and 

time resolutions of the counters have fired, some random walk connecting those 

two volumes has occured. The connection to the bit string universe is the un- 

derstanding that what we have called an event, and connected constructively to 

relativistic quantum scattering theory, initiates the chain of happenings that end 
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in the firing of a counter or equivalent natural -Uevent??~g. But-we do not know 

within those macroscopic volumes where this random walk started and ended. 

To meet this problem, we construct an ensemble of “objects”(i.e labeled en- 

sembles with a specified d-velocity) all characterized by the same vector velocity 

v’ and the same label (or mass) chosen in such a way that, after k steps, each of 

length .i! = (h/mc)[l - (v/c)~]~/~ = he/E, the peak of the random walk distribu- 

tion will have moved a distance .! in the direction of 3. Our basic “quantization 

condition” is E = he/i?, which defines a second length by p = h/A. We take as 

our unit of time the time to take one step, 6t = e/c. Once Yime” is understood 

in this digital sense, the velocity of the peak of each subensemble in this coherent 

ensemble has a velocity c/k. We call this coherent ensemble of ensembles a free 

quantum particle of mass m, velocity v’, and momentum p’= miY/[l - (v/c)~]~/~. 

There is a second “velocity” associated with this ensemble of ensembles, namely 

that with which “somethin@P moves at each step always in the direction v’. We call 

this ~rh; clearly urh = kc, and vuph = c 2. Since this velocity exceeds the limiting 

velocity it cannot support any direct physical interpretation, and in particular 

any which would allow the supraluminal transmission of information; of course 

it can provide for the supraluminal correlations experimentally demonstrated in 

EPR experiments. Associated with each of the two velocities and the label (or 

mass) there are two characteristic lengths &h = A! = he/E; A = ke = h/p. 

Now we consider two basis states for a spin l/2 fermion which we write as 

(10)s and (Ol)F h w ere p’ stands for an address ensemble triple. We have seen 

that such a “particle” can scatter from another and lead to a final state in a dif- 

ferent direction. But there are only two possible states in the new- direction. To 

preserve the (asymptotic) rotational invariance of our theory therefore requires 
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that the new state be expressable as a coherent sum of the two states referring to 

the new direction. Then Lorentz invariance leads directly to the usual spin l/2 

formalism using two-component spinors and Wigner rotations. The operational 

consequences can be followed through and lead to the usual density matrix formu- 

lation with all the “interference” phenomena reduced to probability statementsg. 

The key to this is that our asymptotic definition of momentum, plus coherence 

between spin label states and the momentum direction - which is also an asymp- 

totically measureable quantity - allows us to understand coherent superposition, 

the amplitude squared rule, and therefore the wave-particle dualism within the 

framework of the bit string universe. 

5. UNDERSTANDING THE MASS SCALE AND MASS UNIT 

_ To understand the mass scale we make use of the original hierarchy iden- 

tification tLc/Gmi = 2127 + 136 N 1.7 x 1038[1 f 0(1/137)], which differs from 

experiment only to order l/137. Hence we have the choice of taking the accepted 

proton mass as our mass unit and correcting the gravitational constant, or visa 

versa. Until our dynamics is further developed, we cannot do either. For the elec- 

tromagnetic coupling we have as our first result tic/e2 = 137 f 0(1/137). Since 

we must calculate in the physical “gauge” we can reasonably state that this is 

the value for electrostatic interactions. Then we can calculate finite +enormal- 

ization” corrections due to spin dependence as order l/137 corrections to the 

fine structure constant. For this the finite particle number relativistic quantum - 

scattering theory should suffice, not only to~get definite results but even to kill 

this theory if it is wrong. 
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M.eanwhile, we are justified in using this theoretical number without cor- 

rection to calculate the rest energy of the electron from its electrostatic en- 

ergy m,c2 =< q2 >< l/r >. Since this calculation, initially achieved by 

Parker-Rhode@, has been published several times4*6v7yg, we are brief here. The 

minimal meaningful distance in a zero velocity system with spherical symmetry 

is the Compton radius h/2mpc; r must start from this value, and scales a random 

variable y greater than or equal to one. Similarly, since charge is conserved, 

< q2 >= (he/2a x 137) < ~(1 - z) >. Hence mp/m, = 137~/ < ~(1 - z) >< 

l/y >. Since we have now established our space as necessarily three-dimensional, 

the discrete steps in y must each be weighted by (l/y) with three degrees of free- 

dom. Hence < l/y >= [Iy(l/y)4dy/y2]/[Jr(l/y)3dy/y2] = 4/5. Since the 

charge must both separate and come together with a probability proportional to 

~(1 - z) at each vertex, the other weighting factor we require is ~~(1 - z)~. For 

one degree of freedom this would give < ~(1 - z) >= [JA z3(1 - z)3dz]/[Ji z2(1 - 

z)2dz] = 3/14. Once the charge has separated into two lumps each with charge 

squared proportional to z2 or (1 - z)~ respectively, we can then write a recursion 

relation4~6~7~g K, = [J~[z3(1-~)3+K,-~z2(1-z)4]d~]/[~~z2(1-z)2d~] and hence 

K, -3/14 + (2/7)&-r = (3/14)C;z;(2/7) Th ere ore, f invoking again the three 

degrees of freedom, we must take < ~(1 - z) >= K3 and we obtain the Parker- 

Rhodes result mp/me = 137~/[(3/14)[1 + (2/7) + (2/7)2](4/5)] = 1836.151497... 

Since the electron and proton are stable for at least 1031 years we identify this 

ratio with mp/me in agreement with the experimental value 1836.1515 f 0.0005; 

thus we claim to calculate the basic mass ratio scale for the theory. Whether 

Shis mass ratio calculation remains unchanged when we go on to level 4 and we 
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must show how to calculate the masses of unstable baryons and bosons from our 

dynamical theory is u;:der investigation. 

We believe that so far as QED, and more generally quantum field theory, 

goes our finite particle number scattering equations will either succeed or fail in 

a few years. So far as we can see at this stage they contain the same physics 

for finite processes as the conventional approach, and have the advantage of 

being automatically unitary. Gravitation differs from QED and related theories 

modeled on it in that the field itself is a source of the field. In the weak field 

limit the spin 2 theory of gravitation has the right characteristics, as has been 

known for some time I8 . But Noyes understands from Chris Ishamrg that the 

passage from this microtheory to the macroscopic Einstein theory is plagued with 

infinities. It should be clear by now that if our scheme works this will not be 

our problem. It is primarily for that reason that we are calling our work to your 

attention at this conference. 

6. SUMMARY 

We start from the symbols O,l, binary addition, sequence represented by the 

integers, and a random operator R which gives us either 0 or 1 with equal prior 

probability. From these we construct the discrimination operation for ordered 

bit strings and the strings themselves employing Program Universe 2. We expect 

that when this program is fully evaluated it will provide an algorithmic defini- 

tion of events sequentially ordered by the integers but accessible for purposes of 

interpretation only by statistical arguments. We use the combinatorial hierar- 

chy to organize the information content of the early stages of the construction 

into four levels characterized by the cumulative cardinals 3,10,137 and 2127 + 136. 
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When the information carrying capacity of this construction is exhausted, we use 

these elements as labels to organize the growing universe of strings into labeled 

ensembles of addresses. 

Accepting this growing universe of labeled bit strings as adequately con- 

structed, we use the concept of d-velocity to order the connections between tick- 

separated event 5. We show that the labels support an interpretation as the 

conceptual carriers of conserved quantum numbers between events. By assigning 

a mass to each label (to be calculated at a later stage) we show that we can 

define d-energy anti d-momentum in such a way that our definition of d-velocity 

can be identified formally with a limiting velocity and the masses as invariants. 

We construct a 3+1 dimensional momentum-energy space which, for large bit 

string segments, is approximately continuous and Lorentz invariant. Using this 

basis we construct a momentum space scattering theory with conserved quantum 

numbers and 3-momentum conservation. 

Granted S-momentum conservation, either as deriveable or as an additional 

postulate, we claim to have connected our bit string universe to laboratory prac- 

tice by our counter paradigm and to have conventional relativistic particle kine- 

matics available to us. The random walk paradigm then provides us with the 

basic Einstein-deBroglie quantization condition. We extend this to a wave theory 

by noting that at any level we will have somewhere in the label string the inde- 

pendent pair (lo), (01) h h w ic can be used as a dichotomous variable refering to 

a conserved quantum number. But the algebraic sign of this quantum number is 

-then correlated with the algebraic sign of the d-velocity in the address string. We 

claim that our construction of B three 3 + 1 asymptotic space with rotational and 

Lorentz invariance, plus our scattering theory, then lead to the usual directional 
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properties of spin. Having uncovered a directional (algebraicallysigned) internal 

quantity we then have all that is needed for the understanding of quantum inter- 

ference phenomena, even though our basic theory is discrete. We therefore claim 

to have arrived at an understanding of the wave-particle dualism in our context. 

If it be granted that we have successfully established an understanding of =free 

particle” deBroglie waves and correctly identified the source of the quantization 

condition in terms of random walks, we claim that we have a firm basis for 

constructing a relativistic quantum scattering theory for any finite number of 

“particles”. The “coupling constants” which give the probabilities of scattering 

events relative to the “free particle” basis then can be assigned, because they are 

based on the random elements in Program Universe 2, as the prior probability 

assignments of these events relative to the “free particle” basis. This, we claim, 

justifies Bastin’s original identification of the hierarchy cardinals as the Scale 

constants” of physics, Parker-Rhodes’ calculation of the proton-electron mass 

ratio, and the hierarchy connection between the gravitational constant and the 

unit of mass required by the theory. 

Once this task is accomplished, we will be able to go on to establishing our 

own route to ‘grand unification” and %upergravity”. Here we are, up to a point, 

playing a currently fashionable game. The main difference is that most contem- 

porary approaches take the space-time continuum and quantum field theory as 

the framework within which to pose the problem. Any intuited or postulated 

or “derived” structure for the interaction Lagrangian which is not in conflict 

-with the conventional connection to experiment is fair. In contrast, since we 

have a specific connection between our quantum numbers, the wave-particle du- 

alism, constructed “space-time” and a rigid exoskeleton set by the combinatorial 

- 
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hierarchy, ted. We therefore can hope to discover in a finite time whether our 

theory is necessarily in conflict with experiment, or not. 

Our final point is that by making velocity basic, rather than space and 

time, we believe we have the correct fundamental starting point for unifying 

macroscopic quasi-continuous measurement with a digital model. Further, our 

ticking universe allows us to fuse the special relativistic concept of event with the 

unique and indivisible events of quantum mechanics, and with the events which 

complimentaryly limit our understanding of cosmology. Whatever else survives 

from this attempt to construct a digital model for the universe, we are convinced 

that this is the correct place to connect relativity with quantum mechanics in a 

fundamental way. We close by remarking that the cosmological implications of 

the model are not in obvious conflict with experience. 
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