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ABSTRACT

The geometrical structure of a material manifold with dislocations and disclina-
tions is built by applying vielbein theory and gauge field theory. Two kinds of con-
nections, namely the affine and gauge connection are introduced for describing the
characteristics of plastic imperfections. As a result, the torsion tensor can be decom-
posed into a pure vielbein part and a gauge potential part. The gauge field tensor
constructed based on the gauge connection is shown to be equivalent to the curvature
tensor, and is directly related to disclination. Taking displacement field, vielbein and
gauge connection as three basic determining parameters, the constitutive equations
and governing equations are obtained based on a variational principle for the station-
ary problem. It is emphasized that the physical quantities appearing in Lagrangian
function must be covariant not only in the coordinate transformation but in the gauge
transformation as well. Furthermore, when the elastic strain tensor, the dislocation
and disclination densities are regarded as such quantities, the governing equations are
shown to be covariant for the combined transformation. For practical applications,
two specific forms of the internal energy density are proposed, especially, only nine

material constants are needed for fully description of macroscopically isotropic mate-

rial with dislocations and disclinations.



1. Introduction

Defect continuum physics is an important phase of current development in modern
continuum physics and aims at establishing a sound theoretical basis by which the elas-
tic and nonelastic behavior of a material body with dislocations and disclinations can
be explored. This field, initially studied by Kondo,!:2 and then developed by Krofier 34
Bilby®9 et al. is closely related to the theory of the nonriemannian geometry. Since
then, a great deal progress has been made through many researchers’ efforts.”,8910
It has been discovered that the geometric constructs of nonriemannian space such as
metric, torsion and curvature tensors naturally describe the main characteristics of
plastic imperfections (dislocations and disclinations), there the affine connection plays
an important role in building up the relation between the macroscopic motion and

deformation of a material body and the moving dislocations and disclinations.

Nonriemannian geometry is known as a classic branch in pure mathematics, how-
ever, it is only in recent decades has the connection been made to modern continuum
physics, especially with dislocation continuum theory. On the other hand, since 1955
when Yong-Mills field theory!! was discovered, one recognized that riemannian geom-
etry itself essentially belongs to a kind of gauge field theory.12'13 Furthermore, in quite
recent years, from the study of supergravity theory, it was learned that the geometry of
nonriemannian space with non-vanishing torsion also belongs to a kind of nonAbelian
gauge theory. We should notice that introducing a local basis by means of the vielbein
is a necessary step to describe the nonriemannian geometry with gauge field theory.
We are convinced that the non-Abelian gauge theory can be naturally applied to any
field in theoretical physics provided that it is related to riemannian and nonrieman-
nian geometry theory. Based on this point of view, some work has been done in using
the gauge theory to the study of dislocation continua. A. G. Herrmann!415 first used

Abelian gauge theory to discuss the gauge invariances of the governing equations with



electromagnetic field theory. Her work lead to the further study by Edelen!® and
Kadic and Edelen!” in the Yong-Mills type minimal coupling theory for materials with

dislocation and disclinations.

The paper is intended to present a unified approach to the study of defect me-
chanics by applying gauge field theory to dislocation and disclination continuum. If
both dislocations and disclinations are taken into account, the vielbein theory appears
to be necessary to describe the material manifold in transforming from the deformed
stated to the natural state or from the reference state to the natural state. In using the
vielbein theory, two kinds of connection, namely the affine and gauge connection are
introduced, the former having its usual meaning in nonriemannian geometry theory.
Thus, what we have considered in dealing with the geometric structure of the material
manifold is different from that done in the previous studies, there only the affine con-
nection is treated. Because torsion and curvature are responsible, respectively, for the
dislocations and disclinations, the advantage of introducing two conections is that the
torsion can be directly decomposed into the pure vielbein part and the gauge potential
part, the former responsible for Burgers vector density. When the gauge potential
vanishes, the nonriemannian space becomes a flat one and the dislocation tensor is
completely due to the vielbein. The vielbein is also shown to be responsible for the
plastic strain tensor. In the vielbein theory, the gauge field tensor constructed by
the gauge connection is equivalent to the curvature tensor so that the gauge potential

plays an important role in the description of disclination.

For a complete theory of defect mechanics, we have to deal with not only the ge-
ometric aspects of material manifold but also the dynamic governing equations which
are established usually based on variational principle. It should be emphasized that
the real physical quantities which appear in Lagrangian function must keep their in-

variance not only for the coordinate transformation but for the gauge transformation



as well. Keeping this in mind and using the displacement field, vielbein and gauge
connection as three determining variables, the governing equations has been obtained
in Lagrangian description method without the assumption of small deformation. For
practical purposes, elastic strain tensor, dislocation and disclination density which
are taken to be involved in the fundamental governing equations are proved to be
covariant with the combined transformation too. Within the framework of small de-
formation theory, a quadratic form for the internal energy is proposed for enisotropic
and isotropic dislocated materials. Only nine material constants are needed for the

fully description of isotropic medium.

2. Vielbein Theory and Descriptions of Motion and

Deformation of Materials with Plastic Imperfections

" The motion and deformation of a material body with plastic imperfections (dis-
- locations and disclinations) can be described by three different states, namely the
reference, the deformed and the natural states respectively. Hereafter, we always refer
these three states to the r-state, the d-state and the n-state. Considering the r-state,
let z# be the coordinate system with the base vectors €, in an Euclidian space Fj, in

which the material body is immersed. The metric tensor in the r-state is
hyy =€y @ (2.1)

When the material body is loaded by external forces from outside, it moves and
deforms from the r-state to the d-state. During the continuous motion and deforma-
tion, new plastic imperfectons can be created inside body. The deformed body can be

described by a new coordinate system y® with the base vectors €; and metric tensor

hop =€ € (2.2)



Therefore, we define a relation
y'=y%z,t) (a=1,23) (2.3)
or its inverse

zt = z¥(y, 1) (r=1,2,3) (2.4)

to describe the motion of the body from the r-state to the d-state or from the d-state to
the r-state respectively. The increment vector d7 in the d-state between two material

points with the coordinates y® and y® + dy® is given by
d7 = dy®e, = J dz# 2 = hy dz* (2.5)

where

—— J;: = a”ya y -il.” = J;: za y hp,u ;;”, - ;;u (2.6)

_express, respectively, the “displacement gradient” and comoving coordinate base vec-

tors and its corresponding metric tensor. Thus, the Lagrangian strain tensor is defined

by

Eyy = %(huv —hyy) (2.7)
as indicated in the conventional theory of nonlinear elasticity.

It is known from the dislocation continuum theory®# that the n-state of the ma-
terial body can be obtained by cutting a very small volume element spanned by three
base vectors 7‘# in the d-state off from its surroundings and releasing it from the con-
straints of the surroundings. The process of the cutting is described by using an affine

transformation A of the torn small material element. We may express each small line

element & R in the n-state which is from d7 in the d-state by

SR =024 24 =A-dP=¢,4 dy® 3,4 (2.8)



or in component form

024 = ¢ga dY® = dg4 J2 dz* 2.9
I

where z4 expresses the local coordinate with the local rectangular coordinate base
vectors €4 and ¢,4 is usually called the distortion tensor. If we consider the corre-

sponding increment vector d¥p of d# in the r-state, (2.9) can be written as

b2g =pa dz’ , Gya=¢0osa Jy (2.10)

From (2.9) and (2.10), we can introduce two metric tensors as

Gab = Bad DA » Guv = Opa Sua (2.11a)

which are related to each other by

gab=J¢ I qu , Gu = J: J{Z Jab - (2.11d)
or in contravariant form

P=Jp Il =TT ¢ (2.11¢)

where g5 and gy, are two basic metric tensors for the nonriemannian space, and ¢, 4
is called the vielbein having two indices # and A, which do not belong to the same
space.

To study the geometric structure of the nonriemannian space, we here introduce
two different kinds of transformation for the vielbein ¢,4. The first is a general

coordinate transformation

# = f¥(2) (2.12)



or its inverse

o = fH(z¥) (2.13)

where the transformation functions f“' and f# are differentiable up to all orders of

interest. With these transformations, the vielbein ¢, 4 is transformed to

buale ) =1t dualz,t) |, 4(,0) =2t ¢¥(z,1) (2.14)

where

T p o W
Ty =0pz" Ty =0,z

Thus, the metric tensor g, is tranformed to

gp’u’(x’, t) = xllt' 1'5' guv(z, t) _ (2.15)

or in the same procedure, we have
a __. a ___ B a
Jp=0,y" = Z Ju

E#I - J;: :L‘Z, aa = :CZ, h.p
(2.16)
hﬂ'l}' = hﬂl * th —_— :EZ, xZI hu . hy = :EZ, :L‘; huy

¢u'A = J;:I PoA = xll:' J: Par = xﬁr PuA

Thus, we can see that all the above quantities behave as a tensor, especially, for the
vielbein, which is treated as a vector for the index g while the index A is fixed. We

define the elastic and plastic strain tensor as

1 1
E;, = E(h/w —gw) , Ej,= E(guv —hpy) (2.17)



respectively. With the coordinate transformation (2.12), these two tensors are trans-

formed by

Epy =z 2, By, En, =2, o, B}, (2.18)

Since the plastic strain tensor is expressed from (2.17) as

[—

ET, §(¢MA $va—hy,) (2.19)

we may see that the vielbein is directly related to the macroscopic plastic deformation.

The second transformation S is a local one defined as
62!y = Sap(z) 62 (2.20)

expressed in the component form, which is different from the coordinate transforma-
tion_and represents a local rotation group. It will be discussed in detail in the next
section. We may clearly see that each element after releasing from the d-state can
translate and rotate freely in the n-state. This kind of translation and rotation does
not influence the geometric behavior of the nonriemannian space. We call the trans-
formation (2.20) a gauge transformation representing such a local rotation, therefore

the gauge transformation is orthogonal
S~ Yz) = §T(z) (2.20a)
or in component form

Sap=15Ba , SaBSc=/ac ‘ (2.200)

where ST is the transpose of S having two indices associated with local coordinates

only. Under the gauge transformation, the vielbein ¢, 4 is transformed to

$.4(2, 1) = Spa(z) duB(2, 1) (2.21)



or expressed in its contravariant form

¢'8(z,8) = ¢}z, t) SgA(z) = Sap() dh(z,t) (2.22)

It is easily seen that with the local orthogonal tranformation, the metric tensor g, is
invariant, i.e.,
T2, 8) = 8/, 4(2,t) $,4(z, ) = S4B SBA buC Sca

(2.23)
= bpc $uB buCc = OuB $vB = v

The combined transformation is defined as a combination of the coordinate trans-
formation (2.12) and the gauge transformation (2.20), with which the vielbein obeys

from (2.1) and (2.21) the following tranformation rule

$wa =2y SaB 9B (2.24)
_or in its contravariant form

1! 4
¢4 =zb Sap 0B (2.25)
From the above basic relation, we can show that with the combined transformation,
the metric tensor gy, the elastic and plastic strain tensor should be transformed as
given in (2.15) and (2.18) respectively, that is,

g;"ul = g”'u' 9 Ejle'l/, - Ez,l” ] ELPIVI - E‘p‘,V' (2.26)

In general, for the material body in the n-state, a global coordinate system which
is holonomic with respect to those of the r-state and the d-state, fails to exist. In this
sense, the local transformation S is essentially different from the coordinate trans-
formation, and its properties will be discussed below in some detail by gauge group

theory.

10



3. Gauge Theory and Two Kinds of Connection

As mentioned in section 1, the gauge field theory initiated by Yong and Millsl!
plays an important role in particle physics for describing the interaction among the
fundamental particles of various kinds and in general relativity theory. In order to
apply this theory to the development of defect continuum physics, we shall briefly
recall some fundamental aspects of gauge theory.

Let G be a Lie group with parameters « = {a1y,...,an} and S(a) be a irreducible
representation of G. Assume ¢(z) is a vector in Lie algebraic space. If a is a local
parameter with components oy, as,. .., a, being functions of the coordinates z#, then,

the transformation S for ¢(z)

¢'(z) = S(z) ¢(2) (3.1)
with

S(z) = S(a(z) (3-2)

is called the gauge transformation of ¢(z). Since S(z) is a function of z¥#, the ordinary

derivatives

o 4(e) = oo (3:3)

are not covariant with respect to the transformation (3.1). However, according to
gauge theory, we can find gauge derivative D, ¢ which posses the covariant properties

as follows

D, ¢(z) = 0y ¢(z) — Bu(z) ¢(z) (3.4)

where By (p = 1,2, 3) are called the gauge potential or gauge connection.

11



Let us define a new potential BL associated with the gauge tranformation S such

that

B(z) = S(z) By S™Yz)+ 0, S(z) S™Y(z) (3.5)

where S~ ! is the inverse of S

According to the definition of the gauge derivatives D, in (3.4), we verify from
(3.5) that
D, ¢/(z) = S(z) Dy ¢(2) (3.6)

where

D, =4d,-B,

I 3 Du=a“—Bﬂ

Thus, the covariance of the gauge derivatives has been confirmed.

Using the definition of Dy in (3.4), one can show that there exists a commutative

relation between D, and Dy in the form
(Du Dy — Dy Dy) ¢(z) = —Fup(z) ¢(z) (3.7)
where F,,, are expressed by the gauge potential B, as follows
Fyy =0, B, — 0, B, — By, B)] (3.8)
and
[By, By} =B, B, — B, B, ‘ (3.9)

Egs. (3.8) with (3.9) are a fundamental relation in gauge theory.

It is not difficult to prove from (3.5) that with the gauge transformation (3.1), Fj,,

is transformed by

F,,=98,B,—8, B—B),B)) =S F,, 57! (3.10)

12



which means that Fj, behaves as a tensor in Lie algebraic space. We call F,,, the
gauge field tensor or the curvature tensor.

When the vielbein ¢, 4 defined in (2.10) is taken as ¢ in (3.1), the Lie group {5}
corresponding to the orthogonal transformation (2.14) represents a local rotation group
SO(3). Since the vielbein ¢, 4 has two different indices 4 and A, which correspond,
respectively, to the coordinate and gauge transformation, we may introduce two kinds
of connection in the following way.

According to (3.4), the gauge covariant derivatives of ¢ in the SO(3) group are
defined as

¢1
Du¢=au¢—wu¢ , o=\ &2 (3-11)
93

where w, is called the gauge connection. According to (3.11), if ¢4 is taken as the

vielbein ¢, 4 with the index p of coordinate system z#, we obtain

Du Pva= a# bva— WuAB B (3.12)

and

Dy ¢% =0, ¢4 — WuAB 5 (3.13)

Here the gauge potential components w, 4p are independent of the vielbein provided
that the torsion tensor does exist, which can be seen later.

On the other hand, in dealing with the index g in ¢,4, the vielbein ¢, can
be treated as a vector in nonriemannian space M, therefore, keeping the index A
unchanged, an affine connection Fi‘w can be defined by the conventional covariant

derivatives of ¢,4 with respect to the index p as

Vu ¢UA = au ¢UA - P[)iu ¢)\A (3-14)

13



or expressed in their contravariant form

Vi ¢4 =0y ¢$4+T)) ¢A (3-15)

By using the two connections w, 4p and I‘,);,,, the total covariant derivatives of any
quantity T, which has the nonriemannian index g and the vielbein index A can be

defined by

0P ) .Op....
DX Tpu.. 3)‘ Tuu AB P)\p Téu..AB
(3.16)
)
- ..+r)\5TprAB +"'—wXADTVDB

According to this definition, the total covariant derivatives of ¢,4 are given by

Dy bua =0y bva—Th, dra—wuaB duB (3.17)

or

Dy ¢4 = 0p ¢4 +T ¢4 — wuAB P (3.18)

According to the definition of the total covariant derivatives in (3.17), the gauge

connection w, 4p must be antisymmetric in their latter two indices A and B, i.e.
WyAB = —WuBA (3.19)
In fact, from (2.16), we have
D\ gy = 0y guv — 1‘{,, 9év — Fiu 9us : (3.20)

On the other hand, it is assumed that the total covariant derivatives D, obey the

familiar sum and product roles as the ordinary differentials. Therefore, we may obtain

Dy, guv = D\(dpa dva) = (D) pa) dva+0ua Dy b4 (3.21)

14



Substituting (3.17) into (3.21), it follows that

Dy guv =0 guv — T3, 98 — T3, Guswran(bua $uB + $ua $,8) (3.22)

Comparing (3.22) to (3.20), we get

wxAB(Ppa $vB+ Su4 $uB) =0 (3.23)

Multiplying the both sides of (3.23) by ¢§. #%, we can immediately obtain
WA\EF + W \Fg =0 (3.24)

that is a proof of (3.19). It is usually assumed in nonriemannian geometry that the

total covariant derivatives of vielbein @, 4 are identically zero, i.e.,

Dy ¢y =0 (3.25)

Using this basic assumption, from (3.20) and (3.21), we have
Vxgur =D\ gy =0 (3.26)
and also

Vg =Dy ¢g" =0 (3.27)

Based on the definition of D, ¢,4, from (3.25), we may also obtain two important

: A
relations among ¢, 4, w, 4g and 'y, as

P,();u = ¢i\4 D[l b4 WuAB = ¢% vﬂ PuA (3.28)

which shows that there are only two independent quantities among PuAr wyap and

I‘ﬁu, each of them can be determined from the other two.

15



Since vielbein ¢, 4 has two different indices # and A which do not belong to same
space, we may use vielbein ¢ff1 or ¢, 4 and metric tensor gy, or g*¥ to raise or lower

the indices 4, B,... and p, v, . .. respectively. By this procedure, for instance, we may

define

FuuA = Fl)lu A w;)ZV = WuAB ¢,)‘4 ¢vB (3.29)
From (3.28), it follows that
P;wA =Dy dpa , w;);u = ¢>& Vi dua (3.30)

where ', 4 and wl);,, are also called the affine and gauge connections respectively.
As indicated in (3.5), with the gauge transformation the gauge connection obeys

the transformation law

wi,aB = Sac SBD wucp + 8y Sac)Scp (3.31)
However, under the coordinate transformation (2.14), w, 4p is transformed as a vector
WWAB = Thy WyuAB (3.32)

Therefore, from (3.31) and 93.32) we see that under the combined transformation

(2.25), the gauge connection w, 4p is transformed as

w;;'AB = xZ'[SAC SBD wucp + 8y Sac Spc) (3.33)

Since all three indices of I‘i‘w have no dependence on A, it is not difficult to prove
from (2.28) and (3.31) that under the gauge transformation (2.20) the affine connection

X . .
')y remains unchanged, i.e.,

', =r3, (3.34)

16



But with the coordinate transformation (2.14), the affine connection is transformed by
!
T, W = xi“ :cu, T I‘p,, + 2 P x& (3.35)

where a:z,”, are the second derivatives of £* with respect to z# and 2V Combining

(3.34) and (3.35), we obtain

[} !
M, = Tl (3.36)

which means that with the combined transformation (2.25), the transformation of the

affinity I' is the same as given in (3.35).

4. Torsion, Curvature and Their Relation with Plastic Imperfections

-~ Imnonriemannian geometry, torsion and curvature play a central role in describing
_structure of the space. It was a essential discovery that these two tensors can be directly
related to dislocations and disclinations so that defect continuum physics was laid on
a sound mathematical basis. In the section, we shall apply the gauge theory to define
these two tensors by means of the two connections introduced in the previous section.

From (3.28), we may see that the affinity I‘l);,, is, in general, not symmetric in the
indices g and v. However, recalling Eq. (3.35), we can use the affine connection to

form a tensor as

T), = T}, = (P}W—Pbﬂ) , (4.1)

in the nonriemannian geometry. This tensor is called torsion. From (3.35) and (3.38),

we conclude that with the combined transformation, torsion is transformed as

T'):"V; = :L‘)‘ :tu, ! T)‘ (4.2)

17



Using (3.28) and (3.12), the torsion T can be decomposed into

T/i‘v = Bbv - Q/)lv
where
A A b X\
B;w = ¢A6[[I¢V1A , ﬂ;w = w[,w] (4.3)
A A
Wy = ¢AprB B (4.4)

We call BL‘,, and Q,);,, the pure vielbein part and gauge part of torsion T,}V respectively.
By using the rule of raising or lowering indices A, B or g, v in the SO(3) group space,

the mixed torsion can be obtained in terms of Tﬁ‘y, for instance, we have

Tya = T;i‘u dra = Bupa—Qupa (4.5a)
T;w)\ = T[?V Jax = B;w)\—'n;w)\ - (4.5b)
where
Byya = a[p ¢V]A v s = Wiu|BA| ¢U]B
(4.6)
Bpu)\ = B;ow gox Quux = QZV o

With the combined transformation (2.24), the mixed torsion is transformed as

T},z'V’A = xz, £, S4B T8 (4.7)

In dislocation continuum theory, the torsion tensor is responsible for dislocation.
Since Tz‘u is antisymmetric in its lower indices g and v, therefore, there are only nine
independent components for the torsion tensor T, and the dislocation density a#¥ of

the second order in the Lagrangian form can be defined by T as

ot = [gmo v (4.8)

18



where (9)£2# is the permutation symbol divided by V9, and g = det(guy). Using the
rule of raising or lowering indices, the second order mixed dislocation density aﬁ is

defined as

o = o,y = O (0 44— Mrga) (49)

Obviously, the dislocation density a*” keeps its covariance under the combined trans-

formation, i.e.,

o HY = zﬁ' :c,'j’ at?
(4.10)
o BV = ohV

According to (2.10), the vielbein ¢, 4 is considered as mapping which carries an

element from the r-state to the n-state as
-— bzy = ¢[AA dz# (4.11)

~ where z4 are anholonomic coordinates, thus, Eq. (4.11) is not integrable. The small
volume elements taken from the d-state do not fit together to form a continuous body
after releasing. In this situation, the true Burgers vector of all dislocations enclosed

by a small circuit ¢ in the d-state is given by

ABy =fc bzp = fc Bonsdy® (4.12a)

If ¢ is the canterpart of the circuit C in the r-state, (4.12a) can be also expressed by

ABy — fc b4 dz (4.12b)

By using stokes’ theorem, from (4.12) we obtain

AB, = / / 8], $u1a dS* (4.13)
S

19



If the closed contour C is sufficiently small and we let the small area AS of the surface

bounded by C tend to zero, from (4.13), we get

. AB4
AuPia = Jim Rgw

(4.14)

Comparing (4.14) with (4.6), we find that pure vielbein part By, 4 of the torsion tensor

T, 4 simply represents the Burgers vector density. Using (4.9), we have

oy = Wewe (BxaA - QxaA) (4.15)

Thus, the dislocation density ai is decomposed into two parts, of which the first part
called Burgers vector density is fully due to the vielbein, and the second part is due
to gauge potential. If the space is flat, the dislocation density is indentical to Burgers
vector density. It should be noted that such decomposition could not be obtained by
introducing the affine connection only.

Let us turn to the discussion of curvature tensor and its relation with disclinations.
The mixed curvature tensor F' can be obtained by substituting B, = w, into (3.8),

and then written in their component form

FuyaB = OpwyaB — OvwuAB — WuACWyCB + WyAC WucB (4.16)

From this expression and (2.19), it is easily seen that the curvature F),, 4p is antisym-

metric in both the former indices g, v and in the latter indices A, B, i.e.,

F;wAB = —LfpuAB — _F;wBA = I'yuBA - (4-17)

Substituting the second expression of (3.28) into (4.16) and through some straight

forward algebra, we obtain

FuuAB = —Rzu), Poa ¢;‘3 (4.18)

20



where

is just the Riemann-Christoffel curvature tensor based on the affine connection I‘,’},,.

Equation (4.18) can also be written as

Zu)\ = —FuVAB B ¢31 (4.20)

By making use of (3.31), we may prove that with the gauge transformation (2.21),

F, B is transformed to

FiuuB = SacSep Fuvep (4.21)

therefore, F, op is a tensor in the Lie algebra space with an SO(3) group associated

with the latter indices A and B. Substitution of (4.21) into (4.20) leads to

u‘zf/)\ = —FLVAB ¢')\B ¢540 = RZV)\ (4.22)

which means that the curvature R is invariant for the gauge transformation. Further-

more, with the combined transformation (2.25), and (4.21) becomes

F'IVIAB = S4c SBDx#le'FuuCD (4.23)
p !

Substituting (4.23) into (4.20) again and using (2.21) and (2.22) we have

s ! / 10!
Ry = —Fp,4p dyp 04
(4.24)
= Zgl QIZ, ZZ' xk, RZVX

It asserts that the curvature R is transformed as a tensor in the nonriemannian ge-

ometry with the combined transformation. Therefore, we can use PuA OF guy to raise

21



or lower the indices of R or F to obtain the mixed curvature as we did for the torsion

tensor, for instance, we have

Rypno = R,'f,,)\ Jao -

(4.25)
= —I'uwAB B PoA
From (4.17), the above equation can be rewritten as
R;w)\a = FuVAB PrAPoB (4.26)
and
Ruu)\a = _Ruu)\a = "R;wa)\ = Ruua)\ (4.27)

This means that the curvature tensor R, is antisymmetric in both former two and
the latter two indices g, v and X, 0. Therefore, among R, only nine non-vanishing

independent components are left, they are
Riz12, Byng, Riz12, Ri313, Rigos, Ri323, Rozi2, Rosiz, Roses
To replace the curvature tensor, we may define a second order tensor as
gty — (9)guro(g)gvap Ryoap (4.28)

where #¥ is called the disclination density tensor. Substituting (4.26) into (4.28), we

can express #*” in terms of the vielbein ¢,4 and gauge potential w,4p as
orv = Werral0eveP B 4p $ondpp (4.29)
We may prove that with the combined transformation (2.24), ##¥ is transformed to

v = b’ o o (4.30)

22



On the other hand, the curvature tensor F or R is responsible for disclination, that
is, it can be directly related to the disclination density. As known in nonriemannian
geometry, the geometric significance of the curvature tensor is seen by a transplanta-
tion of a vector V# along a small closed curve in the material manifold until it returns
to the starting point. The disclination density defined in (4.28) is equivalent to the
difference between the final value and the initial value of the vector V# considered.
In a separate paper, we shall to present its geometrical interpretation in some detail
when the closed curve is not small.

Following the method introduced by Kroner and Seeger!8, the generalized equa-
tions of strain imcompability can be derived from (4.28). In fact, when the curvature

does not vanish, through some straightforward algebra, Eq. (4.28) can be written as
o = gt 4 ¢ 4+ ¥ (4.31)
in using the Lagrangian coordinate system z¥. In (4.31), ##¥ is called the Lagrangian
incompatibility tensor. n#¥, which depends only on the dislocation density, represents
the symmetric tensor of the incompatibility. ¢#¥ stands for the nonlinear terms con-
(p)

sisting of the plastic strain tensor F

by

and the dislocation density. They are expressed

= — g gl 9O 0 g
= - v ay (4.32)

g = l euxa evp’y af (KMB _ 2Ef,ﬂ9)(Kapa 2Eapa)
where V( ) means a covariant derivatives based on the metric h,w, and £} A is the
permutation symbol divided by ,/go, where go = det (h,“,), (p )5 is the plastic strain
tensor defined by

EP, = Eu — Ef) = 2(g,,,, — hyy) (4.33)
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and

1

0 0 0
B, =5 |VWEL, + VOB - VL)Efu]

(4.34)

K)\;w= T)\uu + Tu)\u - 4

where T} ,,, is given in (4.6).

5. Basic Governing Equations For y°, ¢,4 and w,p

Generally speaking, a material body containing a large number of moving disloca-
tions and disclinations could not possibly be considered as a conservative system. When
macroscopic plastic deformation due to the motion of dislocations and disclinations
exists inside the body, the irreversible effects not only due to the plastic deformation
but also due to heat conduction and other viscous dissipation should be involved in the
problem. Sedov and Berditchevski’ gave a detail description in constructing the basic
equations for dislocation continuum based on a general variational principle by taking
into account all the irreversible phenomena just mentioned. However if the plastic
deformation is not large so that all the irreversible effects can be ignored, and the ma-
terial body can be treated as a elastic dislocation and disclination continuum. Based
on this assumption, we construct the governing equations for the fields considered.

For a complete description of motion and deformation of materials with disloca-
tions and disclinations, we have to deal with twenty one determining parameters: y9,
¢,4 as well as wy, sp, which are the unknown functions of z# and ¢. The basic gov-
erning equations for them are usually constructed based on a variational principle. In
the Lagrangian description method, the corresponding action integral is supposed to

take the following form

to
= 3 *
I t{(E{L\/ﬁdx)dt (5.1)
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where L represents the Lagrangian function given in the r-state and go = det (hj,). In
order to obtain the corresponding Euler equation, it is necessary to choose the explicit
form of L, that is, to decide how it depends on these determining parameters and their
derivatives with respect to ¢t and z#. For simplicity, let us consider the stationary
problem in which the internal energy no longer depends on time. Therefore, the

Lagrangian L can be written as

p . .
L= _2t eab ¥° yb — W(z#; y°, J;zlv PpAs PuAvs WuAB; “’uABv) (52)

with the notations

¢uAV =0, ¢uA y  WuABY = anuAB

where py is the mass density of material in the r-state, y* = dy?/at is velocity and W
is tlre-internal energy per unit volume. Substituting (5.2) into (5.3), the action integral

(5.1) can be written as

to
1= [t [[0 easi®i® = Wi 4%, I8, $ut, Suavs wuaps wpans)| Vo &2 (5:3)
ty Ej

The Euler equations which follow from 6 = 0 with the fixed boundary conditions are
VWot — fa = priia
Vet — st =0 (5.4)
vOghy _ b =0

where VgP) represents the covariant derivatives based on the metric A, which performs

only on the indices g, v, ..., and the stress tensors and force densities are expressed by

BW v aw (7174 6W

= Oy =, 0
aJ¢ 4 7 04,4

I —_
(12 =
a AB awﬂ ABv

(5.5)
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and

oW oW

ow
oW _ Wy
fG - aya ’ fA a¢uA ’ fAB

BquB

(5.6)

respectively. This system of Eq. (5.4) represents the linear momentum equations, the
“dislocation balance” equations and the “disclination balance” equations respectively.
To determine the specific form of W, we have kept it in mind that the real physical
quantities which appear in the Lagrangian function must keep their covariance for
the combined transformation. This is, of course, of major importance to establish the
specific forms of the basic governing equations. In the previous sections, it is proved

that E,, o and 6#¥ are three proper quantities of this sort, because all of them are

* = covariant with the combined transformation. Thus, the internal energy W is given by

W = W(# E},, o, 6") (5.7)
According to (2.17), (4.9) and (4.29), we write
€ 1 a b
E/w = ) (ean Ju Jy— ¢uA $va)
ot = (8) €17 ¢4 (31 do1a — Winola) (58)

g = W emalodgrab g, 605 (O wo1aB — lwn, wola)
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Thus, we calculate

(e) (¢)
a_ELﬂ=e 5“Jb ——aEaﬂ=“#¢
aJe ab%avp) Odua (e ﬂ)A
af
5% —= —2alrg) + W gfupy)
I
da®P — —9 (g)eauu ¢ﬂ 9o = -2 (g)fa‘w ¢ﬂ évB
3 Bps A > dwuAB AT
(5.9)
af
(69:; o 2 D)gar Wghuo g b F\4p = 20%° 4
i
d 6B
doap . (@) g u(9)ghov g o (dopwrEA — DodWrEBR)
7
ap
ai(’AB = —2@ganw(9)gbroy o o
uABv

Substituting (5.9) into (5.5) and (5.6) and using the chain rule of differentials, we obtain

ghe — Jo (_9%;_3 Lo = _alo)gan 48 66:1’
oy = —2W e Webroy s p ;‘Xﬂ (5.10)
fi=—dua a‘ig% — 2|aclegB) 4 (o) garugl W)\BA]%E + 2600 ¢4 aa;:;
fig=—20e ¢ 5,5 0
+ 20eadn(9)ebov 4 o (8,pu0rpa — ¢aA°-’>\EB)58£%

From (5.10), we may see that the stresses oﬁ" are antisymmetric in the indices g, v

and aﬁVB are also antisymmetric in both u, v and A, B, that is,

M=o , o= otip) =0 (5.11)
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Substitution of (5.10) into the basic governing equations (5.4) leads to the following

expressions

plshe — = p 5* + ¥y - i)
ﬁo)ofi" - Fi=0 (5.12)

(0) pv b
p'ogap — Fup=0

(0)
)]

where the operator D’ acting on stress fields o#¢, aﬁ” and a% represents the total

covariant differentials with respect to all three different indices g, a and A therefore

D,(,O)a"“ = ol + I‘ w0t + Tp, ot Yy

D0ty = VDok? — wyup ol (5.13)
Pal = VWollp — wuas ofp — wupr o4
and
FE= b g~ 20 o) 0+ 200 0 T
uv
Fig= -2 ¢ 4,5 0, = —Fh,

Because it has been proved that E},,, a”” and §*¥ are invariant for the gauge transfor-
mation and are transformed as a conventional tensor with the coordinate transforma-
tion, the system of Eq. {5.11) is seen to be covariant for the combined transformation.
We should also notice that if the Lagrangian function is taken from the n-state instead
of the r-state, the variational calculus done above still hold true, therefore, instead of
(5.11), the Euler equations can be written in the covariant form by using the total co-
variant derivative defined based on the christoffel of gy, for the practical application,

the form given in (5.11) appears more useful.
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In the following, we shall deal with, as an example, the small deformation theory,
in which the internal energy W is taken to be only a quadratic form as
1 HUNO pre € LV pe_. Ao
w =§A ELE, + B, E, a

1
+ Oy By 07 + 5 Dyppg o o (5.14)

1
+ Guu)\a ot gro + 3 K}w)\a gy gro

where AN .. K uv)o are the material constants, thus we have
a%% — AN EE | B QM 4 B o
B%% =B)JES; + Dyyng @ + Gy 07 (5.15)
- %v:/_u = Cul Sy + Gropy @ + Ko 0

Substituting (5.14) into (5.10), we obtain the stress-strain relations in a useful
form. Furthermore, if the material body is assumed to be macroscopically istropie,
the internal energy depends only on the first and second principal invariants of the

tensors E€, a and 6, and takes the form

W=AI{ + Bllg + CI2 + DIl, + EI} + FII; + GIgl,

(5.16)
+HIgl + FI, I
where A, B, ..., F are the material constants, and If, ..., Il are the principal invari-
ants of £, a and @ and are given by
Ig=t,E° |, Ilg—= % [(tr E%)? — t,(E° )]
Ia = tr a |, IIa == % [(tr 0)2 —_ tr 02] (5.17)
L=t0 , Ij= % [(t,- 6)2 — t, 02]
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After the material constants in (5.14) or (5.15) are determined, we substitute (5.13) or
(5.15) into (5.10), then (5.11) the basic governing equation for y°, ¢, 4 and w, 4p could
be solved assuming certain boundary conditions. )

Finally, we should notice that the derivation is based on the assumption that the
internal energy has no dependence on the time derivatives of ¢,4 and w, 4p. If these
time derivatives do exist, the dislocation and disclination currents must be introduced.

It is not difficult to generalize the method to this case and will be discussed in some

detail in a separate paper.
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