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ABSTRACT 

The geometrical structure of a material manifold with dislocations and disclina- 

tions is built by applying vielbein theory and gauge field theory. Two kinds of con- 

nections, namely the affine and gauge connection are introduced for describing the 

characteristics of plastic imperfections. As a result, the torsion tensor can be decom- 

posed into a pure vielbein part and a gauge potential part. The gauge field tensor 

constructed based on the gauge connection is shown to be equivalent to the curvature 

tensor, and is directly related to disclination. Taking displacement field, vielbein and 

gauge connection as three basic determining parameters, the constitutive equations 

and governing equations are,obtained based on a variational principle for the station- 

ary problem. It is emphasized that the physical quantities appearing in Lagrangian 

function must be covariant not only in the coordinate transformation but in the gauge 

-. 

--- 
transformation as well. Furthermore, when the elastic strain tensor, the dislocation 

- and disclination densities are regarded as such quantities, the governing equations are 

shown to be covariant for the combined transformation. For practical applications, 

two specific forms of the internal energy density are proposed, especially, only nine 

material constants are needed for fully description of macroscopically isotropic mate- 

rial with dislocations and disclinations. 
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1. Introduction 

Defect continuum physics is an important phase of current development in modern 

continuum physics and aims at establishing a sound theoretical basis by which the elas- 

tic and nonelastic behavior of a material body with dislocations and disclinations can 

be explored. This field, initially studied by Kondo,lp2 and then developed by Kroiier,3y4 

Bilby5j6 et al. is closely related to the theory of the nonriemannian geometry. Since 

then, a great deal progress has been made through many researchers’ efforts.7~8Jg~10 

It has been discovered that the geometric constructs of nonriemannian space such as 

metric, torsion and curvature tensors naturally describe the main cha.racteristics of 

plastic imperfections (dislocations and disclinations), there the affine connection plays 

an important role in building up the relation between the macroscopic motion and 

deformation of a material body and the moving dislocations and disclinations. 
--- 

- 

Nonriemannian geometry is known as a classic branch in pure mathematics, how- 

- ever, it is only in recent decades has the connection been made to modern continuum 

physics, especially with dislocation continuum theory. On the other hand, since 1955 

when Yong-Mills field theory” was discovered, one recognized that riemannian geom- 

-. 

etry itself essentially belongs to a kind of gauge field theory.12113 Furthermore, in quite 

recent years, from the study of supergravity theory, it was learned that the geometry of 

nonriemannian space with non-vanishing torsion also belongs to a kind of nonAbelian 

gauge theory. We should notice that introducing a local basis by means of the vielbein 

is a necessary step to describe the nonriemannian geometry with gauge field theory. 

We are convinced that the non-Abelian gauge theory can be naturally applied to any 

field in theoretical physics provided that it is related to riemannian and nonrieman- 

nian geometry theory. Based on this point of view, some work has been done in using 

the gauge theory to the study of dislocation continua. A. G. Herrmann14p15 first used 

Abelian gauge theory to discuss the gauge invariances of the governing equations with 
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electromagnetic field theory. Her work lead to the further study by Edelen16 and 

Kadic and Edelenl? in the Yong-Mills type minimal coupling theory for materials with 

dislocation and disclinations. 

The paper is intended to present a unified approach to the study of defect me- 

chanics by applying gauge field theory to dislocation and disclination continuum. If 

both dislocations and disclinations are taken into account, the vielbein theory appears 

to be necessary to describe the material manifold in transforming from the deformed 

stated to the natural state or from the reference state to the natural state. In using the 

vielbein theory, two kinds of connection, namely the affine and gauge connection are 

introduced, the former having its usual meaning in nonriemannian geometry theory. 

Thus, what we have considered in dealing with the geometric structure of the material 

manifold is different from that done in the previous studies, there only the affine con- 

nection is treated. Because torsion and curvature are responsible, respectively, for the 

- dislocations and disclinations, the advantage of introducing two conections is that the 

torsion can be directly decomposed into the pure vielbein part and the gauge potential 

part, the former responsible for Burgers vector density. When the gauge potential 

vanishes, the nonriemannian space becomes a flat one and the dislocation tensor is 

completely due to the vielbein. The vielbein is also shown to be responsible for the 

plastic strain tensor. In the vielbein theory, the gauge field tensor constructed by 

the gauge connection is equivalent to the curvature tensor so that the gauge potential 

plays an important role in the description of disclination. 

For a complete theory of defect mechanics, we have to deal with not only the ge- 

ometric aspects of material manifold but also the dynamic governing equations which 

are established usually based on variational principle. It should be emphasized that 

the real physical quantities which appear in Lagrangian function must keep their in- 

variance not only for the coordinate transformation but for the gauge transformation 
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as well. Keeping this in mind and using the displacement field, vielbein and gauge 

connection as three determining variables, the governing equations has been obtained 

in Lagrangian description method without the assumption of small deformation. For 

practical purposes, elastic strain tensor, dislocation and disclination density which 

are taken to be involved in the fundamental governing equations are proved to be 

covariant with the combined transformation too. Within the framework of small de- 

formation theory, a quadratic form for the internal energy is proposed for enisotropic 

and isotropic dislocated materials. Only nine material constants are needed for the 

fully description of isotropic medium. 

- . 

2. Vielbein Theory and Descriptions of Motion and 

Deformation of Materials with Plastic Imperfections 

- - -~ 
The motion and deformation of a material body with plastic imperfections (dis- 

- locations and disclinations) can be described by three different states, namely the 

reference, the deformed and the natural states respectively. Hereafter, we always refer 

these three states to the r-state, the d-state and the a-state. Considering the r-state, 

let 29 be the coordinate system with the base vectors 2, in an Euclidian space J33, in 

which the material body is immersed. The metric tensor in the r-state is 

When the material body is loaded by external forces from outside, it moves and 

deforms from the r-state to the d-state. During the continuous motion and deforma- 

tion, new plastic imperfectons can be created inside body. The deformed body can be 

described by a new coordinate system y” with the base vectors & and metric tensor 
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Therefore, we define a relation 

Y0 = y”(x, t) (a = 1,2,3) 

or its inverse 

(24 

XP = Xl”(Y, t) (cc = 1,293) (24 

to describe the motion of the body from the r-state to the d-state or from the d-state to 

the r-state respectively. The increment vector d3 in the d-state between two material 

points with the coordinates ya and ya + dya is given by 

- . 

d3=dya1a= Ji dx’&=iEp dx’ (2.5) 

where 

express, respectively, the “displacement gradient” and comoving coordinate base vec- 

tors and its corresponding metric tensor. Thus, the Lagrangian strain tensor is defined 

bY 

(2.7) 

as indicated in the conventional theory of nonlinear elasticity. 

It is known from the dislocation continuum theory3j4 that the n-state of the ma- 

terial body can be obtained by cutting a very small volume element spanned by three 

base vectors i,, in the d-state off from its surroundings and releasing it from the con- 

straints of the surroundings. The process of the cutting is described by using an affine 

transformation A of the torn small material element. We may express each small line 

element 6 a in the n-state which is from d? in the d-state by 

(2.8) 



or in component form 

&A = #aA dya = (baA J; dxp (2.9) 

where ,?A expresses the local coordinate with the local rectangular coordinate base 

vectors 2~ and f$aA is usually called the distortion tensor. If we consider the corre- 

sponding increment vector d?o of d3 in the r-state, (2.9) can be written as 

From (2.9) and (2.10), we can introduce two metric tensors as 

w&b are related to each other by 

(2.10) 

(2.114 

(2.11b) 

or in contravariant form 

9 ab = Ja Jb gp” , 
P v 

gpv = Jl J; gab (2.11c) 

-. 

where gab and gPV are two basic metric tensors for the nonriemannian space, and dPA 

is called the vielbein having two indices p and A, which do not belong to the same 

space. 

To study the geometric structure of the nonriemannian space, we here introduce 

two different kinds of transformation for the vielbein ($@A. The first is a general 

coordinate transformation 

xp’ = p’(x) (2.12) 



or its inverse 

xp = fP(xP’) (2.13) 

where the transformation functions fp’ and fp are differentiable up to all orders of 

interest. With these transformations, the vielbein $bPA is transformed to 

where 

Thus, the metric tensor gPV is tranformed to 
- _ -~ 

gp&‘, t) = $1 xt; Spv(X, q (2.15) 

or in the same procedure, we have 

(2.14) 

(2.16) 

Thus, we can see that all the above quantities behave as a tensor, especially, for the 

vielbein, which is treated as a vector for the index ~1 while the index A is fixed. We 

define the elastic and plastic strain tensor as 

(2.17) 
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respectively. With the coordinate transformation (2.12), these two tensors are trans- 

formed by 

Since the plastic strain tensor is expressed from (2.17) as 

(2.18) 

(2.19) 

we may see that the vielbein is directly related to the macroscopic plastic deformation. 

The second transformation S is a local one defined as 

= s&x) 6%B 

expressed in the component form, which is different from the coordinate transforma- 

tianand represents a local rotation group. It will be discussed in detail in the next 

section. We may clearly see that each element after releasing from the d-state can 
- 

translate and rotate freely in the n-state. This kind of translation and rotation does 

not influence the geometric behavior of the nonriemannian space. We call the trans- 

formation (2.20) a gauge transformation representing such a local rotation, therefore 

the gauge transformation is orthogonal 

s-l(x) = ST(x) (2.20a) 

or in component form 

5’2 = SB, , 25’~ SCB =~AC (2.20b) 

where ST is the transpose of S having two indices associated with local coordinates 

only. Under the gauge transformation, the vielbein fjPA is transformed to 

&Atx, l) = sBA(X) &B(z, t, (2.21) 

. 
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or expressed in its contravariant form 

It is easily seen that with the local orthogonal tranformation, the metric tensor gclV is 

invariant, i.e., 

- 

&(x, t) = &,tx, t) #;A(xr t, = &LB SBA ‘?bC %A 
(2.23) 

= SBC d$B tipC = 6pB hB = g/w 

The combined transformation is defined as a combination of the coordinate trans- 

formation (2.12) and the gauge transformation (2.20), with which the vielbein obeys 

from (2.1) and (2.21) the following tranformation rule 

(2.24) 

or in its contravariant form - 

I q$ = 4’ Ku3 & (2.25) 

From the above basic relation, we can show that with the combined transformation, 

the metric tensor gPur the elastic and plastic strain tensor should be transformed as 

given in (2.15) and (2.18) respectively, that is, 

(2.26) 

In general, for the material body in the n-state, a global coordinate system which 

is holonomic with respect to those of the r-state and the d-state, fails to exist. In this 

sense, the local transformation S is essentially different from the coordinate trans- 

formation, and its properties will be discussed below in some detail by gauge group 

theory. 
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3. Gauge Theory and Two Kinds of Connection 

As mentioned in section 1, the gauge field theory initiated by Yong and Millsll 

plays an important role in particle physics for describing the interaction among the 

fundamental particles of various kinds and in general relativity theory. In order to 

apply this theory to the development of defect continuum physics, we shall briefly 

recall some fundamental aspects of gauge theory. 

-. 

Let G be a Lie group with parameters cu = (~1,. . . , a,} and S(o) be a irreducible 

representation of G. Assume 4(x) is a vector in Lie algebraic space. If (Y is a local 

parameter with components or, ~9,. . . , on being functions of the coordinates zp, then, 

the transformation S for 4(x) 

4’(x) = S(x) 4(x) (3.1) 
--- 

with 

S(x) = s(m) (3.2) 

is called the gauge transformation of 4(x). Since S(x) is a function of xp, the ordinary 

derivatives 

are not covariant with respect to the transformation (3.1). However, according to 

gauge theory, we can find gauge derivative DPq5 which posses the covariant properties 

as follows 

where BP (p = 1,2,3) are called the gauge potential or gauge connection. 
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Let us define a new potential gP associated with the gauge tranformation S such 

that 

B’,(x) = S( 2) Bp s-y x) + a, S(S) S--l(x) (3-5) 
where S-l is the inverse of S 

According to the definition of the gauge derivatives D,, in (3.4), we verify from 

(3.5) that 

HP 4’(x) = S(x) D, 4(x) P-6) 

where 

~p=~,-B’, , D,=i+-BP 

Thus, the covariance of the gauge derivatives has been confirmed. 
- _ -~ 

Using the definition of D, in (3.4), one can show that there exists a commutative 

relation between D, and Dv in the form 

(D, Dv - Dv D,) 4(x) = -&w(x) 4(x) (3.7) 

where FPy are expressed by the gauge potential BP as follows 

F,, = i3, Bv - 8, BP - [BP, &I (3.8) 

and 

[BP, Bv] = BP Bv - Bv BP (3.9) 

Eqs. (3.8) with (3.9) are a fundamental relation in gauge theory. 

It is not difficult to prove from (3.5) that with the gauge transformation (3.1) Fpv 

is transformed by 

Fhv = 8, B’, - a,, I? - [B’,, B’,] = S Fpy S-l (3.10) 
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which means that Fpy behaves as a tensor in Lie algebraic space. We call Fpv the 

gauge field tensor or the curvature tensor. 

When the vielbein 4PA defined in (2.10) is taken as 4 in (3.1), the Lie group {S} 

corresponding to the orthogonal transformation (2.14) represents a local rotation group 

SO(3). Since the vielbein dPA has two different indices p and A, which correspond, 

respectively, to the coordinate and gauge transformation, we may introduce two kinds 

of connection in the following way. 

According to (3.4) the gauge covariant derivatives of 4 in the SO(3) group are 

defined as 

- . 

41 

D,4=$4-w,4 , 4= ( 1 42 (3.11) 

$3 

where- wP is called the gauge connection. According to (3.11), if $A is taken as the 

vielbein $IIA with the index p of coordinate system xfi, we obtain 

D, &A = 3, &A - “pAB hB (3.12) 

and 

D,&=a,&-WpA& (3.13) 

Here the gauge potential components wlcu are independent of the vielbein provided 

that the torsion tensor does exist, which can be seen later. 

On the other hand, in dealing with the index ~1 in f$PA, the vielbein tiPA can 

be treated as a vector in nonriemannian space M, therefore, keeping the index A 

unchanged, an affine connection I’;, can be defined by the conventional covariant 

derivatives of 4PA with respect to the index j.4 as 

v, ‘&A = 8, &A - $, &A (3.14) 
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or expressed in their contravariant form 

v,4~=&4~+qP; (3.15) 

By using the two connections wPm and I’$,, the total covariant derivatives of any 

quantity T, which has the nonriemannian index p and the vielbein index A can be 

defined by 

_ . 

(3.16) 
- . . . + I’{, T;F.y& + . . . - wxm T;;vopsb - . . . . . . . . . . . 

According to this definition, the total covariant derivatives of c$~A are given by 

Dp &A = a, OVA - rbv +XA - w&4B &B (3.17) 

--- 
or 

According to the definition of the total covariant derivatives in (3.17) the gauge 

connection wllm must be antisymmetric in their latter two indices A and B, i.e. 

“j&3 = -“$BA (3.19) 

In fact, from (2.16) we have 

- (3.20) 

On the other hand, it is assumed that the total covariant derivatives D, obey the 

familiar sum and product roles as the ordinary differentials. Therefore, we may obtain 
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Substituting (3.17) into (3.21) it follows that 

Comparing (3.22) to (3.20), we get 

wXAB(&A hB + &A #/LB) = 0 (3.23) 

Multiplying the both sides of (3.23) by 4; #k, we can immediately obtain 

wXEF + WXFE = 0 (3.24) 

that is a proof of (3.19). It is usually assumed in nonriemannian geometry that the 

total covariant derivatives of vielbein fjPA are identically zero, i.e., 

--- D/L ‘?bA = 0 (3.25) 

Using this basic assumption, from (3.20) and (3.21), we have 

VA S/A” = 4, gpu = 0 (3.26) 

and also 

VA !lP” = 4, gP” = 0 (3.27) 

Based on the definition of D ,J t,b V~, from (3.25) we may also obtain two important 

relations among fjPA, wllm and r;, as 

which shows that there are only two independent quantities among ~$cIA, w,,~ and 

rpv, each of them can be determined from the other two. 
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Since vielbein $@A has two different indices p and A which do not belong to same 

space, we may use vielbein $5 or #,,A and metric tensor gPv or 9 cl* to raise or lower 

the indices A, B, . . . and p, u, . . . respectively. By this procedure, for instance, we may 

define - . 

$“A = r;, hA 
x 

, wP” = “@.I3 41 &B (3.29) 

From (3.28), it follows that 

r/wA = D, &A 1 W;v = & v, &A (3.30) 

where rPvA and wb,, are also called the affine and gauge connections respectively. 

As indicated in (3.5) with the gauge transformation the gauge connection obeys 

the transformation law 
- _-~ 

w:AB = sAC SBD “pCD + @, sAC)sCB (3.31) 

However, under the coordinate transformation (2.14), wPm is transformed as a vector 

wblB = xP 5 “/LAB (3.32) 

Therefore, from (3.31) and 93.32) we see that under the combined transformation 

(2.25), the gauge connection wPm is transformed as 

w;rm = x;‘lsAC SBD “pCD + a~ sAC SBC] (3.33) 

Since all three indices of I” Pv have no dependence on A, it is not difficult to prove 

from (2.28) and (3.31) that under the gauge transformation (2.20) the affine connection 

I’;, remains unchanged, i.e., 

rrx P” = r-i, (3.34) 
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But with the coordinate transformation (2.14) the affine connection is transformed by 

(3.35) 

where xx PlvI are the second derivatives of xx with respect to xd and x ‘. Combining - 

(3.34) and (3.35), we obtain 

(3.36) 

which means that with the combined transformation (2.25) the transformation of the 

affinity I is the same as given in (3.35). 

4. Torsion, Curvature and Their Relation with Plastic Imperfections 

- Innonriemannian geometry, torsion and curvature play a central role in describing 

structure of the space. It was a essential discovery that these two tensors can be directly - 

related to dislocations and disclinations so that defect continuum physics was laid on 

a sound mathematical basis. In the section, we shall apply the gauge theory to define 

these two tensors by means of the two connections introduced in the previous section. 

From (3.28) we may see that the affinity I’;, is, in general, not symmetric in the 

indices p and u. However, recalling Eq. (3.35) we can use the affine connection to 

form a tensor as 

T$, = rhvr = (4.1) 

in the nonriemannian geometry. This tensor is called torsion. From (3.35) and (3.36), 

we conclude that with the combined transformation, torsion is transformed as 

(4.2) 
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Using (3.28) and (3.12), the torsion T can be decomposed into 

where - . 

x wpv = & “‘/JAB &B (4.4 

We call Bbv and 0;” the pure vielbein part and gauge part of torsion TLv respectively. 

By using the rule of raising or lowering indices A, B or p, u in the SO(3) group space, 

the mixed torsion can be obtained in terms of Tkv, for instance, we have 

T cl*A = T;v +XA = BpvA- f-$wA 
--- 

(4.5a) 

(4.5b) 

where 

With the combined transformation (2.24) the mixed torsion is transformed as 

In dislocation continuum theory, the torsion tensor is responsible for dislocation. 

Since TLv is antisymmetric in its lower indices ~1 and u, therefore, there are only nine 

independent components for the torsion tensor T, and the dislocation density cry* of 

the second order in the Lagrangian form can be defined by T as 

18 



where (g)Expv is the permutation symbol divided by ,/j, and g = det(gp,). Using the 

rule of raising or lowering indices, the second order mixed dislocation density o$ is 

defined as 

CY; = d”$bvA = (g)&pXa a[x &]A - f-+,aA (4.9) -. 

Obviously, the dislocation density a p” keeps its covariance under the combined trans- 

formation, i.e., 

(g P’“’ d J = xc1 X” i2 P” 
(4.10) 

JCL” = (y/J” 

According to (2.10), the vielbein $PA is considered as mapping which carries an 

element from the r-state to the n-state as 

- _-~ &%A = &A dx’L (4.11) 

where zA are anholonomic coordinates, thus, Eq. (4.11) is not integrable. The small 

volume elements taken from the d-state do not fit together to form a continuous body 

after releasing. In this situation, the true Burgers vector of all dislocations enclosed 

by a small circuit c in the d-state is given by 

ABA = 62~ = 
f f c 4aAdYa (4.12~) 

C 

If c is the canterpart of the circuit C in the r-state, (4.12a) can be also expressed by 

-. 
ABA = 

f c 4pAdxcC 

By using stokes’ theorem, from (4.12) we obtain 

ABA = a[p &]A dSp” 
s 

(4.12b) 

(4.13) 
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If the closed contour C is sufficiently small and we let the small area AS of the surface 

bounded by C tend to zero, from (4.13), we get 

(4.14) 

Comparing (4.14) with (4.6), we find that pure vielbein part Bpv~ of the torsion tensor 

T PVA simply represents the Burgers vector density. Using (4.9), we have 

- . 

a; = (g)&pxu Bha~ - flxaA (4.15) 

Thus, the dislocation density (rs is decomposed into two parts, of which the first part 

called Burgers vector density is fully due to the vielbein, and the second part is due 

to gauge potential. If the space is flat, the dislocation density is indentical to Burgers 

vector density. It should be noted that such decomposition could not be obtained by 

intr%ducing the affine connection only. 

Let us turn to the discussion of curvature tensor and its relation with disclinations. 

The mixed curvature tensor F can be obtained by substituting B,, = w,, into (3.8) 

and then written in their component form 

F cL”M = 8, WVAB - d”WpAB - WpAC%CB + WvACwpCB (4.16) 

From this expression and (2.19), it is easily seen that the curvature Fpvm is antisym- 

metric in both the former indices ~1, u and in the latter indices A, B, i.e., 

F ~VAB = -&L~B = -FpvBA = FvpBA (4.17) 

Substituting the second expression of (3.28) into (4.16) and through some straight 

forward algebra, we obtain 

(4.18) 
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where 

is just the Riemann-Christoffel curvature tensor based on the affine connection I$,. 

Equation (4.18) can also be written as 
- . 

q&4 = - F/wlB hB 6 (4.20) 

By making use of (3.31) we may prove that with the gauge transformation (2.21) 

FPVm is transformed to 

F’ Pm = SAC SBD &CD (4.21) 

therefore, Fpvm is a tensor in the Lie algebra space with an SO(3) group associated 

with the latter indices A and B. Substitution of (4.21) into (4.20) leads to 

(4.22) 

which means that the curvature R is invariant for the gauge transformation. Further- 

more, with the combined transformation (2.25) and (4.21) becomes 

F’ ‘l’v’ AB = S S x’ xv F AC BD ,/ v’ pvCD (4.23) 

Substituting (4.23) into (4.20) again and using (2.21) and (2.22) we have 

It asserts that the curvature R is transformed as a tensor in the nonriemannian ge- 

ometry with the combined transformation. Therefore, we can use f$PA or gPV to raise 
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or lower the indices of R or F to obtain the mixed curvature as we did for the torsion 

tensor, for instance, we have 

(4.25) 
= - Fp~AB hB ‘?bA - . 

From (4.17) the above equation can be rewritten as 

R puXa = &.AB hA hB (4.26) 

and 

R pvXa = - &A, = -&A = &a~ (4.27) 

This means that the curvature tensor RpvhQ is antisymmetric in both former two and 

thelatter two indices /.L, u and X, u. Therefore, among Rp,~,, only nine non-vanishing 

independent components are left, they are 

R1212, R1213, R1312 7 R1313, R1223 7 R1323 1 R2312, R2313 7 R2323 

To replace the curvature tensor, we may define a second order tensor as 

ePv = (g)&PXO(!J)&Va@ RXaaa (4.28) 

where Pv is called the disclination density tensor. Substituting (4.26) into (4.28) we 

can express epv in terms of the vielbein (bPA and gauge potential wclm as 

pv = (g)&pxo (g)&Vap Fxam &A d/jB (4.29) 

We may prove that with the combined transformation (2.24) Vu is transformed to 

&L’Y’ = x&’ x;’ pJ (4.30) 
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On the other hand, the curvature tensor F or R is responsible for disclination, that 

is, it can be directly related to the disclination density. As known in nonriemannian 

geometry, the geometric significance of the curvature tensor is seen by a transplanta- 

tion of a vector VP along a small closed curve in the material manifold until it returns 

to the starting point. The disclination density defined in (4.28) is equivalent to the 

difference between the final value and the initial value of the vector VP considered. 

In a separate paper, we shall to present its geometrical interpretation in some detail 

when the closed curve is not small. 

Following the method introduced by Kriiner and Seeger18, the generalized equa- 

tions of strain imcompability can be derived from (4.28). In fact, when the curvature 

does not vanish, through some straightforward algebra, Eq. (4.28) can be written as 

Jpv = ?l W + qPY + eclv (4.31) 

in - -- using the Lagrangian coordinate system xl’. In (4.31) J? is called the Lagrangian 

- incompatibility tensor. qpv, which depends only on the dislocation density, represents 

the symmetric tensor of the incompatibility. q cl’ stands for the nonlinear terms con- 

(PI sisting of the plastic strain tensor EPv and the dislocation density. They are expressed 

bY 

rpv = - & gxu Eo”P7 Or) Vb”’ Ei7 

tl PV =- &PA0 vy’ aI 0 (4.32) 

qw = 1 EPA0 &lp7 gap (KxrS - 2 E$ (Kapa - 2 E&J 2 O 
where Vr) PA0 means a covariant derivatives based on the metric h,,, and E. is the 

permutation symbol divided by ,/i& where go (PI - = del(h&,), Ecly B the plastic strain 

tensor defined by 

(4.33) 

. 
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and 

(4.34) 

Kxpv = Txjw + Tpxv - Tvxp 
where TX,, is given in (4.6). 

5. Basic Governing Equations For f, 411~ and “Pm 

Generally speaking, a material body containing a large number of moving disloca- 

tions and disclinations could not possibly be considered as a conservative system. When 

macroscopic plastic deformation due to the motion of dislocations and disclinations 

exists inside the body, the irreversible effects not only due to the plastic deformation 

but also due to heat conduction and other viscous dissipation should be involved in the 

problem. Sedov and Berditchevski7 gave a detail description in constructing the basic 

equations for dislocation continuum based on a general variational principle by taking 

into account all the irreversible phenomena just mentioned. However if the plastic 

deformation is not large so that all the irreversible effects can be ignored, and the ma- 

terial body can be treated as a elastic dislocation and disclination continuum. Based 

on this assumption, we construct the governing equations for the fields considered. 

For a complete description of motion and deformation of materials with disloca- 

tions and disclinations, we have to deal with twenty one determining parameters: ya, 

4PA as well as wclm, which are the unknown functions of xp and t. The basic gov- 

erning equations for them are usually constructed based on a variational principle. In 

the Lagrangian description method, the corresponding action integral is supposed to 

take the following form 

(54 
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where L represents the Lagrangian function given in the r-state and go = det (hi,). In 

order to obtain the corresponding Euler equation, it is necessary to choose the explicit 

form of L, that is, to decide how it depends on these determining parameters and their 

derivatives with respect to t and x J‘. For simplicity, let us consider the stationary 

problem in which the internal energy no longer depends on time. Therefore, the 

Lagrangian L can be written as 

L = $ e,b fja Gb - w(#; Ya, J;, &A, 4pAv, “‘pIt3, “&WV) (5.2) 

with the notations 

where P,. is the mass density of material in the r-state, ia = ay’/at is velocity and W 

is th-rinternal energy per unit volume. Substituting (5.2) into (5.3), the action integral 

_ (54 can be written as 

I= jL/[ $ cab y” yb - w(x’; Yap $7 &A, &Am WpAB, “+ABv) 1 &i d32’ (s-3) 
t1 &4 

The Euler equations which follow from 61= 0 with the fixed boundary conditions are 

Vf)O” - fa a = Pr #a 

vpgy - fP = 0 A 

vpp - fh = 0 AB 

(5.4 

where Or) represents the covariant derivatives based on the metric h&, which performs 

only on the indices p, u, . . ., and the stress tensors and force densities are expressed by 

(5.5) 
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and 

(5.6) - 

respectively. This system of Eq. (5.4) represents the linear momentum equations, the 

“dislocation balance,, equations and the “disclination balance,, equations respectively. 

To determine the specific form of W, we have kept it in mind that the real physical 

quantities which appear in the Lagrangian function must keep their covariance for 

the combined transformation. This is, of course, of major importance to establish the 

specific forms of the basic governing equations. In the previous sections, it is proved 
- - -~ 

that E$,, c#’ and WV are three proper quantities of this sort, because all of them are 

- covariant with the combined transformation. Thus, the internal energy W is given by 

W = W(xp, Ee L1”’ d”, ey (5.7) 

According to (2.17) (4.9) and (4.29) we write 

Ee ’ teab Ji Ji - $pA 4vA) P” = 2 

aC”” = (‘I &pxO 4% tal, &]A - W[k+4) 

p” = (9) &da (d&“d &A +B @[A ‘Ja]AB - fwh w&lB) 

(5.8) 
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w4 

a e@ 
aw,,= 

2 (g)&aX~(g)EB"~u~(~,W,~~ - ~OAWXEB) 

a e&B 

aW'L4B" = 
- 2 (d&W” (!d&B~* qjTA qjuB 

--- 
Substituting (5.9) into (5.5) and (5.6) and using the chain rule of differentials, we obtain 

- 
,ypa = J; f3W 

aE(ev) 9 4” = 
- 2 (g&w +B .!!!?L 

A aa@ 

u$+ -2 M&W” (B)E@ (p7A&B 2 (5.10) 

f; = -@“A$ - 2 cI’~(~ (bi’ + (g)~aAp#~ WXBA 
[ I 

$+2e%p!$!f!- 
asap 

&j = - 2 (g’~ap” $h$ &B 2 

+ 2(g)&aXp(g)&Bu” hE (BoBW~EA-OOA(~EBI$$~ 

From (5.10), we may see that the stresses uy are antisymmetric in the indices p, u 

and a!& are also antisymmetric in both p, u and A, B, that is, 

UY”) = 0 1 J$ = #” 
(AB)=O (5.11) 

. 
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Substitution of (5.10) into the basic governing equations (5.4) leads to the following 

expressions 

Di’)ryh - $-i = 0 (5.12) 

D~‘)u~B - FiB = 0 

(0) where the operator Dp acting on stress fields upa, ur and CT% represents the total 

covariant differentials with respect to all three different indices p, a and A therefore 

$$$’ = vb’)o$” - WUAB ujy 
Di”tyrB = Vl”)u$“B - w”/iE u& - wvBJ3 6% 

- and 

F’=- B 3W 
2 (g)&ap” $A &,B m = 

(5.13) 

Because it has been proved that Eiu, cP” and P” are invariant for the gauge transfor- 

mation and are transformed as a conventional tensor with the coordinate transforma- 

tion, the system of Eq. (5.11) is seen to be covariant for the combined transformation. 

We should also notice that if the Lagrangian function is taken from the n-state instead 

of the r-state, the variational calculus done above still hold true, therefore, instead of 

(5.11) the Euler equations can be written in the covariant form by using the total co- 

variant derivative defined based on the christoffel of gPu for the practical application, 

the form given in (5.11) appears more useful. 
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In the following, we shall deal with, as an example, the small deformation theory, 

in which the internal energy W is taken to be only a quadratic form as 

+ C;‘,” E;” 8 x0 l + z Dpuxu a P” ,,A* 

+ G’l”Xl7 cl cl” eX* + f KcluXu 8”” ex* 

where A@‘*, -. -, Kpulu are the material constants, thus we have 

3W 

aE;U 
= ApuXa Eg,, + Bf; &’ + C;; f+’ 

dW -= 
al+” B;,” E,* + D jl”XU cY Xa + GpuAu eX* 

(5.14) - 

(5.15) 

--- 
dW -= Xu dell” C;y” E,* + G X0/l” Q + Kpuxu exe 

Substituting (5.14) into (5.10), we obtain the stress-strain -relations in a useful 

form. Furthermore, if the material body is assumed to be macroscopically istropic, 

the internal energy depends only on the first and second principal invariants of the 

tensors Ee, ou and 0, and takes the form 

W=AIg + BIIE + CIZ + DIILy + EI; + FI.6 + GIEIa 
(5.16) 

+HIEI~ + FIaIe 

where A, B, . . . , F are the material constants, and IE, . . . ,110 are the principal invari- 

ants of E, o and 8 and are given by 

IE =trEe , &=f (tr Ee)’ - tr (E’)] 

I a = tr Q , Ha = f [(tr cd2 - tr a”] 

4 =t,e , II*=: 
[ 
(tr ej2 - tr e2 I 

(5.17) 
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After the material constants in (5.14) or (5.15) are determined, we substitute (5.13) or 

(5.15) into (5.10), then (5.11) the basic governing equation for y’, tipA and WEB could 

be solved assuming certain boundary conditions. 

Finally, we should notice that the derivation is based on the assumption that the 

internal energy has no dependence on the time derivatives of #~l,j and wcIm. If these 

time derivatives do exist, the dislocation and disclination currents must be introduced. 

It is not difficult to generalize the method to this case and will be discussed in some 

detail in a separate paper. 
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