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Introduction 

Within the last few years, many models have been proposed in which N = 1 

supersymmetry is spontaneously broken at some mass scale A41 less than the Planck 

mass Mp [I.]. It is natural to ask whether these models can arise from a theory 

with extended supersymmetry, where the extra supersymmetries are first broken to 

N = 1 at some new mass scale M2 > MI. A model-independent way to investigate 

this question is through the use of nonlinear realizations. In this paper I shall describe 

some recent work performed in collaboration with Julius Wess. We have used nonlinear 

realizations to show that any N = 1 supersymmetric theory (with chiral and vector 

superfields) may be obtained as the “low energy” limit of a corresponding N = 2 

theory [2]. 

_. 

Nonlinear realizations and effective Lagrangians have played an important role in 

understanding spontaneously broken symmetries (31. They were first discussed in the 

context of chiral dynamics and the phenomenology of the strong interactions [4,5]. 

They were later used to investigate the consequences of technicolor theories [6] and 

spontaneously broken supersymmetry [7,8]. The work described here is a natural ex- 

tension of these ideas to the case of partially broken extended supersymmetry. Before - 
turning to our work, I will briefly review the relationship between nonlinear realiza- 

tions and spontaneously broken symmetries. Readers familiar with the subject might 

prefer to skip this section and pass immediately to the next, where we discuss nonlinear 

realizations of supersymmetric theories. 

To illustrate the role of nonlinear realizations, I shall return for a moment to the 

original sigma model of Gell-Mann and Levy [4]. In its most simple form, this model 

contains four fields, three pions 7r’ and one scalar 6. The ri and o form a vector 

17’ = (n’, a) of SO(4) N SU(2) X SU(2). The sigma model Lagrangian 

is constructed to be invariant under rigid Sum x Sum transformations 

The potential V is arranged such that Q acquires a vacuum expectation value V, 
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V(l7 * IT) = f [(T’ + a2) - zJ212 ) 

and SO(4) is spontaneously broken to SO(3) N SU(2). Expanding c around its vacuum 

expectation value, d = d - u, one finds that the pions are the massless Goldstone 

bosons arising from the symmetry breaking, and that the field d acquires the mass 2~. 

_. 

The Gell-Mann - Levy model is instructive because it lets one understand the 

physics of spontaneous symmetry breaking at different energy scales. At energies 

E >> 2r, both ?r and d appear massless, and the SO(4) symmetry is manifest. At 

energies E much less than V, the d field is so heavy that it freezes out, and only 

the Goldstone modes are excited. As shown in Figure 1, the low-energy dynamics are 

constrained to a three-sphere of radius u, CT~ + 7r2 = u2. 

This example illustrates how linear models reduce to nonlinear models at energies 

far below the scale of spontaneous symmetry breaking. When E > u, the model is 

symmetric and the transformations (2) are linear. When E << w, the u field is frozen 
--- 

out, and the pions lie on the coset space (SU(2) X SU(2))/SU(2) N- S3. The low-energy 

_ Lagrangian is given by 

L = 1 ( Ti8mTi)’ - f a,&p$- - _ 
2 (l+ 7r - 7r) ’ 

and the transformation laws are as follows, 

(4 

(5) 

From (5) we see that the pions transform linearly under the unbroken SU(2) gener- 

ators, and nonlinearly under the broken ones. Nonlinear realizations and effective 

Lagrangians provide a convenient framework with which to analyze the low-energy 

dynamics of Goldstone bosons. 

The formalism of nonlinear realizations is much more general than the SU(2) case 

discussed above [S]. In the spontaneously broken regime, the interactions of Goldstone 

bosons are described by nonlinear models. For example, the strong interactions realize 

an SU(3) X SU(3) chiral symmetry in the limit of massless quarks. This symmetry 

is spontaneously broken to the diagonal SU(3) subgroup. The octet of pseudoscalar 
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mesons contains the Goldstone bosons associated with the symmetry breaking. The 

spontaneously broken theory is described by an effective Lagrangian where the Gold- 

stone bosons lie on the coset space (SU(3) X SU(3))/SU(3) N SU(3). 

The general case of a theory in which a group cis spontaneously broken to a 

subgroup H was analyzed in two elegant papers by Callan, Coleman, Wess and Zumino 

[9]. They showed that the Goldstone bosons which arise from breaking G to H must 

lie on the coset space G/H, and that one can always find a coordinate system on 

G/H such that the Goldstone bosons transform linearly under generators in H, but 

nonlinearly under those generators in G that are not in H. This is the general picture 

which we wish to carry over into our study of spontaneously broken supersymmetry. 

- . 

Nonlinear Realizations of Supersymmetry 

In the spirit of the preceeding discussion, we shall treat spontaneously broken 

supersymmetry from a coset space approach. In this case G is the supergroup generated 

by the full supersymmetry algebra, --- 

{QJ’,&bM) = 2uzPrn SL, [Pm,Q,Ll = 0 

{Q,L,Qj? = G@-(~~ [Pm,X(LM)] = 0, 

and H is either the usual Poincard group or the supergroup generated by the unbroken 

supersymmetry algebra. In Eq. (6), the dotted and undotted Greek indices denote two- 

component spinors, and the capital letters A,B, . . . run from 1 to N and count the 

number of supersymmetry generators. * 

Instead of Goldstone bosons, the spontaneous breaking of rigid supersymmetry 

gives rise to Goldstone fermions. The Goldstone fermions transform nonlinearly under 

the broken supersymmetry generators, and linearly under the Poincard and unbroken 

supersymmetry generators. The first nonlinear realization of N =. 1 supersymmetry 

was found by Akulov and Volkov [11,12]. Their transformation law for the Goldstone 

spinor is given by 

6& = (7) 

* I shall follow the notation of Ref. [lo]. 
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The coefficient k -: denotes the scale of supersymmetry breaking. It is not hard to 

show that this transformation closes into the supersymmetry algebra, 

A somewhat simpler transformation law was used in Refs. [14,15]: 

. (9) 

This transformation also closes into the supersymmetry algebra. The fields X and x 

are related through a field redefinition, 

W) = L(Y) , (10) 

where 

--- ym= xm- ik2 (11) 

_ This implicit redefinition may be rendered explicit by expanding (and inverting) 

Eq. (10) 1141: 

+ Vna,Ve aeVrn + f VnVe fYndpm 1 8mA, 

1 
- - VnVm 3, dmX, , 
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where tirn =k2irrmiandvm = k2Xom x. In Eq. (12), all fields are functions of xm. 

The transformations (7) and (9) nonlinearly realize the N = 1 supersymmetry 

algebra. They describe N = 1 supersymmetry spontaneously broken to I”? = 0. The 

relation between these nonlinear realizations and the superfield formalism has been 

worked out in detail [M-15]. As with the ordinary sigma model, one finds that linear 

representations become nonlinear realizations at energies below the scale of supersym- 

metry breaking. The nonlinear formalism may be used to explore the phenomenological 

consequences of spontaneously broken supersymmetry. Some of these consequences are 

described by Stuart Samuel in his contribution to this volume [16]. 

-. 

Nonlinear realizations of extended supersymmetry have been invest.igated in 

Ref. (171. In these papers all the supersymmetries are realized nonlinearly. This 

corresponds to completely broken extended supersymmetry. In what follows, I shall 

describe partially broken extended supersymmetry. In this case, the unbroken su- 

persymmetries are represented linearly, and the broken supersymmetries are realized 

nonlinearly. For simplicity I shall restrict myself to N = 2 supersymmetry, sponta- --- 
neously broken to N = 1. The method presented here may be trivially extended to 

_ higher N as well. 

Partial Breaking of Extended Supersymmetry 

We are now ready to examine the partial breaking of extended supersymmetry. We 

will start by deriving transformation laws and Lagrangians for the generalized N = 2 

Akulov-Volkov Goldstone field. Since there is an unbroken N = 1 supersymmetry, we 

will find that the Akulov-Volkov field belongs to an entire N = 1 supermultiplet. We 

will also discover that the Akulov-Volkov Lagrangians contain ghost fields. We will 

analyze the Fock space and show that the N = 2 ghost states may be collected into 

N = 1 supermultiplets. In the next section, we will demonstrate how the transforma- 

tion laws for N = 1 chiral and vector multiplets may be extended to N = 2 with the 

help of the Akulov-Volkov multiplet. Finally, we will conclude by giving the N = 2 

generalization of an arbitrary N = 1 supersymmetric Lagrangian. 

The appearance of ghost fields in the “low energy” effective Lagrangian is no sur- 

prise in extended supersymmetry. Ghosts are expected because of a general argument 
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based on the supersymmetry algebra [18]. Heuristically, the argument proceeds as 

follows. Imagine that one has two supersymmetries, generated by the supercharges 

QP and QA2). Suppose that &A’) * 1s unbroken and that Qj2) is broken. Then &A’) 

annihilates the vacuum Q~‘)lO) = 0 and Qi”) 

’ 
7 carries the vacuum into another state, 

Qcj2’10) = IGa). B ecause of the supersymmetry algebra, the state IGa) has zero norm, - . 

II IGd II = II Q~2’10) II = I] Qt'lo) 11 = 0 . (13) 

From this we see that partially broken supersymmetry gives rise to ghost states of 

zero norm. The presence of ghosts forces one to conclude that in flat space the partial 

breaking of rigid supersymmetry is unphysical. 

This need not be the case for local supersymmetry in curved space. We shall see 
that the fermionic ghosts are precisely the Akulov-Volkov fields associated with the 

N = 2 supersymmetry breaking. When gravity is included, one combination of the 

Akulov-Volkov fields will be absorbed by the second gravitino. Because of the unbroken 

N = 1 supersymmetry, the supersymmetric partners of the Akulov-Volkov ghost will --- 
also be eliminated. The massless ( i, 1) gravitino multiplet will eat an entire (1, i) ghost 

_ multiple& forming one massive ($, 1,s) gravitino multiplet. Our hope is that a.11 the 
ghosts may be eliminated in this way [19]. 

It is easy to find transformation laws for the Akulov-Volkov field associated with 

breaking N = 2 supersymmetry down to N = 1. One simply recalls the transforma- 

tions (7) and (9). If A, and i, are promoted to N = 1 superfields A, and &, and & 

is replaced by & (2), the transformation laws (7) and (9) realize the N = 2 supersym- 

metry algebra (without a central charge). The superfields A, and A, are Goldstone 

superfields - because of the unbroken supersymmetry, the Goldstone spinors A, and 

i, are members of N = 1 supermultiplets. 

An advant.age of the transformation law (9) is that the N = 1 superfield A, may 

be constrained to either be chiral DA = 0 or antichiral DA = 0. To distinguish the 

two cases, we shall call the antichiral superfield Xcr, DX = 0. 
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To derive Lagrangians for Aa and Xa, we follow the method of Ref. [l4]. We first 

construct the N = 2 superfields associated with the transformation laws (7) and (9) 
[14,20]: 

A, x, &“, a(‘), ot2’, fit’) = exp [68(2)] x A, (x, 19(l), 8(l)) . (14) 

x, 
( 

2, (q(l), fj(l’ ) &2’, $2’ 
1 

= exp [68(2)] X Xa (x, O(l), g(l)) 

These superfields may also be defined through constraints: 

Db t2’ A, 
. 

= 2ik (am A)p am Aa 
(15) --- Dp (2)x0, = l k w Da 0) x/g = 0 

Db (2)& 
. 

= 2ik (a”X)P 3,X, . 

The constraints for & may be worked out with the help of Eq. (12) [14]. The 
constraints (15) are consistent with the N = 2 D-algebra [21], 

{ 
D, tA), Dp tB) 

1 
= -2i )jAB urn. 3, 

4 
(16) 
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From these superfields we can construct manifestly N = 2 invariant Lagrangians for 

the Akulov-Volkov field: 

d4xd46d’ 8AA;i;i = 
/ 

d4xd2&‘)d2 8(‘) ’ - iAarn8m A + . . . 
-34s I 

(17~) 

ik2/ -- d4xd+161 8xXxX = 
/ 

d4xd2&“d2 a(” X+. . . 1 (17b) 

‘k2 -- 
2 / 

d4xd48d2 8(2’Mgx + h .c. = 
/ 

d4xd2&‘) - $ -illam am X 
[ 

(174 
+ . . . 1 + h.c. 

The triple dots (. . .) stand for nonrenormalizable interactions, suppressed by powers 

of L. Note that the last Lagrangian is N = 1 chiral. The integral over &6(‘)d2 8’) 

annihilates the constants, so there is no N = 1 supersymmetry breaking for any of 
the three cases. --- 

Before exhibiting the ghost structure, we first expand the N = 1 superfields A, 

and Xa in terms of component fields, 

Aa(y, a(‘)) = X,(y) + Fa B(y) e8 0’ + qsa(y) e(“e(l’ 

x, (y, B(Q) = xiy (y) + l&(y) ea 0) UI& + ij& (y) e(‘)e(” 
(18) 

, 

where ym = xm + ie(l) &l). The fields X, and R;, are the Goldstone spinors. In 
terms of components, the Lagrangians (17~) - (17~) become 

/ 1 &X --i4urnam $ - iXumamCIi; - f F* ’ p arnP’ dma,Fg a~~h + . . .] (194 

-i$umam I$ - iXurnarnOR - VG Im - 2dm13 * V 1 1 + . . . W) 

/ 1 &X -i4urnam R - i+urndm X - ~~~~~~~~~ VnamFp a + . . .] + h.c. (194 
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The first two Lagrangians have higher derivatives. Third is off-diagional. All three 

contain ghosts. 

The Lagrangians (19a) - (19c) are invariant under two sets of supersymmetry trans- 

formations. The first set are nonlinear. They follow from Eq. (9): 

1 
&-Xa = z rla - 2ik (Aurn Q)amXa 

s,Fi = - 2ik (fj am F)‘amha - 2ik (km fj)amFi 

+$a = - 2ik (Aurn Q)dm4a - 2ik (g5um q)amAa 

+ ik cpt.,(q Csi” F)‘amFz 
(20) 

--- 

&Xa = k %I a - 2ik (xorn ij)amXa 

S&n = - 2ik (~0” q)amVn + ik (q am UP in amx)Vp 

&$a = - 2ik (xum q)am+a - 2ik ($um Q)amXa 

- ik (q urn un bp t)aVnamVp . 

The second set of supersymmetry transformations are linear. They follow from the 

fact that Aa and Xa are N = 1 superfields: 

(21) 

These transformations (20) and (21) also act on the states. Because of the super- 

symmetry algebra, the unbroken transformations (21) commute with the Hamiltonian. 
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They map physical states into physical states, and ghosts into ghosts. This is easiest 

to see for Lagrangian (19~). We shall examine it first. 

To untangle the ghost structure, we canonically quantize the fields in (19c). The 

momentum conjugate to Fa b is - i(u” ““)a a V,, while -i(&r”)b and -i($u”) . 

-P 
P 

are conjugate to xLY and X . These lead to the following equal-time commutation 
relations: 

[V”(Z) t), Fa ‘(y, t)] = - (u” P)a ’ d3)(t - J) 

{IT& (2 9 t), 4atY t 1)) = - u& bt3’(t - 1) (22) 

All other commutation relations vanish. As usual, the relations (22) can be extended 

to any two spacetime points, 

--- [v"(z), Fa "(Y)]= - (bman)a ' am A(x-Y) 

{R& (X), da(Y)} = - a:& am A(x - Y) (23) 

(i,& (x), $a(Y)} = - u:& am A(x - Y) - 

Here A(S) is the usual Lorentz-invariant commutator function normalized such that 

(a/ax”) A(x) = S(3)(~). The Fock space is constructed by expanding the fields in 

plane-wave solutions 

Fa “(x) = / & [Ga B(p)eiPz + HL p(p)e-‘P”] 

V”(X) = J & [Un(p)eipn + W”t(p)e-iP”] 

MX) = / ~$$jg~&)eip” + BjJp)e-ipr] 

(24 

Xa(X) = / & [C&)eiP’ + Di(p)emiPz] , 

11 



and similarly for Xa and $a. The operator relations 

(Aa(P)7 c; (PI} = f@(p), D, (q)} = f ~7;~ pm E-1 @)(p _ a) 
(25) 

allow us to recover the commutators (23). They also permit us to identify the daggered 

and undaggered quantities as creation and annihilation operators, respectively. From 

(25) we see that the Fock space is off-diagonal. The one-particle states have zero norm, 

and nonvanishing matrix elements with each ot.her. To exhibit the ghost structure, we 

diagonalize the space of one-particle states. Without loss of generality, we consider 

positive helicity states moving along the +Z axis, pm = (E, O,O, E). 

The following linear combinations 

A (*t) = & (Al f E Cl) 

B (*I = & (Bl f EDl) 

q, (*:) = $ (U” + U3 =F HI ‘) 

q (*I = -$ (U” + iU2 F HI 2, 
(26) 

wj, (*’ = 5 (W” + W3 f G1 ‘) 

WI (*’ = 5 (W’ - iW2 f G1 2, 

diagonalize the one particle states. The superscripts (k) denote positive and negative 

norm states, as may be seen from the following commutation relations: 

[ q (*’ (P), q (*‘+ te)] = [q (*’ (p), w (*‘t (q)] = f a($ - q) 11 

[ v_L (*’ (PI9 v_L (*I+ (‘I)] = [Wl (*I (p), Wl (*It (q)] = f d3)(p -q) (27) 

1 A(*) (P), A(*)+ (s)} = k(*) (p), B(*)t (e)} = f s(~)(~ - q) . 
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It is not hard to show that the supersymmetry transformations (21) preserve the norms 

of the states. They map physical states into physical states and ghosts into ghosts.The 

physical states and the ghosts form multiplets under the unbroken N = 1 supersym- 

metry algebra. 

The Lagrangians with higher derivatives can be reduced to Lagrangians with first 

and second order derivatives through the introduction of auxiliary fields. This can be 

done in terms of component fields or in terms of N = 1 superfields. The quadratic 

piece of the Lagrangian (176) is reproduced with two extra superfields: 

rumdmX + uIIV + bWW + cIT 1 +h.c. (28) 
Here ra and Wa are N = 1 auxiliary superfields, subject to the following constraints: 

D, (1’ qg = D, (1) wp = 0 
(29) 

D(” $jJ = D(l) W . 
--- 

The Lagrangian (28) gives rise to the following superfield equations of motion: 

-i(Urnam JQa + UWa +2cra = 0 (30) 

2bD(‘)W+2b*D(‘)~+aD(1)r+a*~(1)~=o . 

Eliminating Wa and ra, and imposing the relation u2 = 8c Re(b), we find the superfield 

equation for X, 

u;“& 8, D(l’D(l) x iy = 0 : (31) 

In terms of component fields, Eq. (31) takes the following form: 

urn BmUx=O 

0 vn - 2ana-v = 0 . 

(32) 
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These equations are the same as those which follow from Lagrangian (19b). Their 

ghost structure may be analyzed as before. In this case, the positive and negative 

norm (one-particle) states are not eigenstates of the Hamiltonian, so the norm is 

not preserved under supersymmetry transformations. Instead, one finds that the 

one-particle states may be grouped into two physical N = 1 supermultiplets, and 

one unphysical N = 1 dipole ghost supermultiplet [22]. This is similar to the ghost 

structure of conformal supergravity, first analyzed by Ferrara and Zumino [23]. 

The third Lagrangian, (Isa), can be analyzed in terms of component fields, leading 

to analogous results. We have not, however, been able to find a formulation in terms 

of N = 1 superfields. 

Matter Couplings to Broken Supersymmetry 

The formalism of nonlinear realizations can be extended to describe the low-energy 
interactions of matter fields with Goldstone bosons. In the sigma model of Gell-Mann 

and--L+vy, one introduces spinors $L and $R which transform under chiral Sum x 

sum. At low energies, where the chiral symmetry is strongly broken to diagonal 

SU(2), the model describes the effective interaction between nucleons and pions. The 

fields $L and $R represent the unbroken SU(2), and together with the pions, they 

nonlinearly realize the full chiral symmetry. 

-. 

In the general case G/H, the spinors II, become spectator fields 9. Spectator fields 

transform linearly under the unbroken group H. Their coupling to the Goldstone 

bosons in G/H was considered by Callan, Coleman, Wess and Zumino, who showed 

that it is always possible to extend a representation of H to a realization of G. They 

gave a prescription for generalizing any Lagrangian invariant under H to a new La- 

grangian invariant under G. The new Lagrangian contains the spectator fields !P and 

the Goldstone bosons of G/H. It describes the low-energy interactions of Goldstone 

bosons with other matter. 

The same procedure may be followed for the case of spontaneously broken 

supersymmetry. Any Lorentz-invariant Lagrangian may be made invariant under 

N = 1 supersymmetry with the help of the Goldstone fermion. The supersymmetric 

Lagrangian describes the low-energy interactions of the Goldstone fermion with the 
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spectator fields. In the remainder of this paper we shall generalize this work to show 

that any N = 1 supersymmetric Lagrangian (with chiral and vector superlields) may 

be extended to N = 2 with the help of the Goldstone superfield. 

We start by extending the transformation law of an N = 1 chiral superfield to 

N = 2, - . 

$(2) @  = - 2ik A urn tt2) 3, @  . (33) 

This transformation law preserves the N = 1 chirality constraint bo (l) @  = 0. As 

before, it may be used to construct an N = 2 superfield 6, 

4 

x 
7 

63 (11, $lJ, e(2), 8f2) ) = exp [$,,,I x @(x, e(l), S(l)) . (34 

The superfield # obeys the following constraints: 

--- 
g (2’ # = 2ik(bmA)P am+ . @Fib) 

These constraints are consistent with the N = 2 D-algebra (16). 

We proceed analogously for the N = 1 vector superfield V. Its N = 2 transfor- 

mation law is given by 

b{(2) v = -ik burnt - &“>)amV , (36) 

where Aa is expressed in terms of Aa as in Eq. (12). This preserves the N = 1 

constraint V = V+ . The N = 2 superfield e obeys the following constraints: 

q = *+ (374 

Daf2)~=ika’&duamV . WV 

These constraints are also consistent with the N = 2 D-algebra. 
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To generalize the concept of a gauge transformation, we first consider the trans- 

formation law of a matter multiplet 

@’ = exp (ix) 9 . (38) 

The gauge parameter C must satisfy the same constraints as #. In analogy to N = 1, 
one might expect the transformation on d to be compensated by a transformation on 

V: 

V’ = V + i(I=+ - C) . (39) 

However, this does not preserve the constraints (37). To circumvent this difficulty, we 

must discard (39), and find a function V(*, A) whose constraints are also satisfied 

by C. There exists a general procedure for converting a superfield p, which satisfies 

a constraint of type (37b), into a new superfield V, a function of Aa and v, which 

satisfies a constraint of type (35b). One first performs the N = 2 chiral projection 

--- vo = - ; k2 Dt2’ bt2’ aa j? , (40) 

and then constructs the superfield Y: 

v v” = -k A” Dat2) V” _ ;k2MD(2)D@’ V” . (41) 

The superfield V obeys the constraint (35b). Its lowest component is the same as the 

lowest component of e. Equations (40) and (41) illustrate the general procedure for 

decomposing a chiral superfield into a standard form [ 141. Armed with the superfield V, 

we can now construct a gauge transformation which preserves the N = 2 constraints. 

If we take 

v --+ V-iC , 

then 

@+ exp( i(V+V+))O 

(42) 

is both gauge invariant and N = 2 symmetric. 
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For A, = 0, fja (2) = 8;, (2) = 0, these expressions reduce to the usual N = 1 gauge 

invariant expressions used in supersymmetric gauge theories. 

TheN= 2 generalization of the gauge invariant N = 1 superfield Wa is given by 

wa = 2 2 w2 &W (V + Jr+) . (44) -. 

The N = 2 superfield Wa is both chiral and gauge invariant. The above construction 

can be immediately generalized to nonabelian gauge groups. 

Having constructed the N = 2 superfields corresponding to N = 1 chiral and 

vector superfields, we now proceed to construct an N = 2 Lagrangian which reduces 

to the appropriate N = 1 Lagrangian when A, = Xa = 0. We follow the general 

procedure given in Ref. [14]. This procedure takes advantage of the fact that the 
fj (2)e (2) $2) g(2) components of AAla, XXxx and MXX all contain a constant 

term. Therefore, these objects pick out the et21 = 8’) = 0 components of anything 

the multiply. This is just what we need to construct invariant Lagrangians with the 

correct low energy limits. Since we wish to preserve N = 1 chirality properties, we 

use AAxi3 for N = 1 F-terms. For simplicity, we also use it for N = 1 D-terms. 

Thus an N = 2 extension of the N = 1 Lagrangian 

1 
5 I 

d2fJ fl) d2 a(‘) @+ exp (V)@ + i J d2&‘) MM’ + / d2 19~‘) f(G) + h.c. (45) 

is given by 

+;k4/ d48 d48 AAxx @+ exp i(V +V+))O 
( 

+ ;k4/ d48 d2 6’) AAxx WW 

+ k4 J 
d4B d2 fit’) AAXX f(e) + kc. 

(46) 
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Equation (46) reduces to (45) when A, = Xa = 0. It gives the low energy coupling 

of the N = 2 goldstino to the N = 1 effective theory. As discussed earlier, the 

Lagrangian (46) contains ghost fields. How many of these become gauge degrees of 

freedom when (46) is coupled to N = 2 supergravity is currently under investigation. 
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Figure Caption 

1. a) The potential V as a function of the radial field IL!j. The minimum is at v. 
b) The potential V resealed by a factor of 100. At low energies the fields are 
constrained to lie on the sphere 172 = 7r2 + u2 = v2. 
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