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1. Introdnction 

Supersymmetry (SUSY) is a very interesting and aesthetically beautiful theoretical 

concept which is playing an important role in constructing realistic models in particle 

physics [l]. It is hoped that it might provide for solutions to outstanding problems, 

for example naturalness and gauge hierarchy because it provides a natural mechanism 

for cancelling divergences. 

-. 

However despite these appealing features, SUSY must be broken in nature since 

we do not observe any bosonic partners of fermions [2]. 

If it is incorporated in the framework of Grand Unified Theories (SUSY GUT’s) it 

is necessary to understand the effect of finite temperature in this theories. 

The behavior of regular symmetries at finite temperatures is by now fairly well 

understood [3]. While most symmetries - with few exceptions [4] - if broken at zero 

temperature are restored at sufficiently high temperature, if has been realized that 

SUSY behaves differently: unbroken SUSY at T = 0 breaks at high temperature [5]. 

In a more recent article, Girardello et al. [6] have studied some aspects of SUSY 

at finite temperature and concluded that its breaking is a natural consequence of 

the fact that bosons and fermions have different quantum statistics. This can be 

understood from the following argument: one of the consequences of unbroken SUSY 

is that fermions and bosons belonging to the same multiplet have the same mass. 

At finite temperature, particules move in a plasma of excitations the heat bath with 

an “effective mass” resulting from the interactions of the particles with the medium. 

However bosons and fermions are treated differently by the heat-bath (due to different 

statistics) and therefore they will not be related as they would if SUSY were unbroken. 

In zero temperature field theory symmetry breaking is generally catalogued in two 

classes: explicit or spontaneous. In the first case there is a term in the Hamiltonian 
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that describes the system that is not invariant under the symmetry transformation. 

In the second case, the Hamiltonian is invariant under this symmetry transformation 

but the lowest energy state is not. It is possible to show that in the second case there 

is a massless particle in the spectrum of the theory that carries the same quantum 

numbers as the charges that generate this symmetry (Goldstone excitation). In the 

case of SUSY this particle is a fermion: the Goldstone Fermion [l,7]. 

We have argued above that at finite temperature SUSY is broken in the sense 

that physical properties of bosons and fermions are no longer related. However, this 

breaking cannot be explicit, there is no term in the Hamiltonian that can break SUSY 

explicitly. Rather it is the interaction of the particles with the heat-bath the respon- 

sible for SUSY breaking. Can it be spontaneous? This question has been investigated 

in ref. [6] were it was concluded that there is no Goldstone Fermion in the spectrum, 

however these authors used a non-covariant formalism. 
--- 

Van Hove [8] has recently argued that there is a subtlety in the definition of the 

-thermal averages of variations of operators under a SUSY transformation. Several 

authors have investigated this point further and they conclude that a “graded” thermal 

average has to be introduced [S,lO,ll]. However in this formalism bosons and fermions 

obey the same quantum statistics leading to the conclusion that if SUSY is unbroken 

at zero temperature it stays unbroken at any finite ,temperature. Since bosons and 

fermions have unphysical statistics in this formalism nothing can be said about the 

physical spectrum of excitations using these arguments. 

In this article we attempt to understand the nature of SUSY breaking at finite 
-. 

temperature and whether or not there is a Goldstone Fermion associated with this 

phenomenon. 

Unlike ref. [6] we will use a manifestly Lorentz covariant formalism to study the 

theories in consideration, this is necessary to fully expose the dynamical properties of 
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physical observables [12]. It will be shown that in this way a Goldstone excitation is 

found as a consequence of the breaking at finite temperature, an it will become clear 

how this excitation decouples at zero temperature. The rest of the article is devoted 

to the technical details of the investigation and is divided as follows: in section 2 

the standard Ward identities at zero temperature are briefly reviewed. In section 3 

the finite temperature formalisms are reviewed exposing the differences between the 

covariant (real time) and non-covariant (imaginary-time) formulations. The results of 

section 2 will be extended to finite temperature in the covariant approach. 

Section 4 is devoted to the computation of the fermion thermal Green’s functions 

exposing the mechanism that gives rise to the Goldstone pole and the way it decouples 

at zero temperature. Some conclusions are summarized at the end of the article. 

2. Zero Temperature Ward Identities _ -- - 

The phenomenology of symmetry breaking is usually understood by means of 

certain identities among Greens’s functions of these fields, the Ward identities, that 

stem from the invariance properties of the Lagrangian. Here we will review these 

identities and their relation to well known results in current algebra and Goldstone’s 

theorem. 

In the theories to be considered there is a supermultiplet (4, $, F) of spinless bosons, 

Majorana fermions and auxiliary fields. 

The SUSY transformations are written as: 
6qqz) = 6 z q!(z) (2.la) 

y(z) = I-i 84(4 - JI416~. (2.lb) 

m(z) = 6 z i fl$(z) (2.lc) 

where SE is a constant Grassman (Majorana) parameter. These relations can be gener- 

alized to more complicated theories. Under the transformations (2.la)-(2.lc) the action 
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changes by a total derivative. 

S 
/ 

ddz L = 
/ 

& a,S,,(z)ddz (2.2) 

where SP(z) is the super current. The broken symmetry Ward identities can be ob- 

tained as a response to a SUSY transformation with 6((z) a space-time dependent 

parameter. Define 

_. 

(&l) . . . $o&))J 2 DR3 - * * Pl(zl) - * * (Pnt2rt) exP (I ddz[t[lpl + JiPil) 
(Same for Ji = 0) 

t2 3~ . 

where pa(zi) stands for either bosonic of fermionic fields. The transformation (2.la)- 

(2.1~) in the numerator of (2.3) amounts to a change of variables in the functional 

integral under which it is invariant, therefore 

-!- (cpl(~l~ * * cPt&I))J = 0 Sz(z) -_- 

writing &i(Z) = (dpi/aE)Sc(Z), eq. (2.4) reads 

-. 

This is the most general form of the Ward identities [13]. Consider the case tz = 1, 

~pr = $J and Ji = 0 in eq. (2.4). This gives 

4&j&) $ (4) + wz -+yqL--F)=O (2.6) 

or 

/ dd% 4Jz (W) G (4 = (f? 
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where we have assumed that 4 and F can acquire position independent vacuum ex- 

pectation values. 

The current algebra relation (2.7) implies that if (F) # 0 there is a Goldstone 

fermion in the spectrum. Another interesting relation- can be derived. Consider eq. 

(2.4) with n = 0 but Ji # 0. 

%k%+ + J&)(%+)b + (i i’+) - F(~)J J&, + J& $$J(z))J = 0 (2.8) 

Perform a Legendre transformation and integrate over Z, this leads to 

(2.9) 

In this expression take the functional derivative 6/6$(z) and set the sources to zero 

es-W5 (4) ,z, VT IF) ,-. f we find 

o= w[f’, 41 
I w 4 

= f SC’ (pp = 0) (2.10) 

where V[F,+] is the effective potential as a function of F,# and Sgl(pll = 0) is the 

inverse of the full fermion propagator at zero momentum. Therefore if f # 0 there is 

a pole at zero momentum in the fermion propagator, the Goldstone pole. 

3. Finite Temperature Formalisms 

-. A. Imaginary time (Matsubara) 

In this formalism the quantum theory is studied in Euclidean time with the (imag- 

inary) time variable restricted to the internal 0 5 7 2 /3 = l/T (T = temperature). 

This formalism is not Lorentz covariant, momenta are continous but frequencies are 

discrete variables: (2n + 1)nT for fermions and 2nnT for bosons. At finite temperature 
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the fields must obey periodic (antiperiodic) boundary conditions for boscns (fermions) 

in imaginary time [3,12,14]. 

4(B, 2) = a4 3 bosons 

WA 2) = -9m 21 fermions 
(3.1) 

Since SUSY is deeply related to Lorentz covariance, and the Matsubara formalism 

is not covariant, it is not suited to the study of SUSY at finite T. 

-. 

B. Real Time 

Although at finite temperature a field theory looses its Lorentz invariance because 

the heat-bath defines a reference frame (its center-of-mass), the theory can &ill be 

quantized in a fully covariant fashion [15]. 

A covariant density matrix operator 2~ can be defined and thermal averages of 

physical operators are written as (0) = (Tr 0 ic)/Tr,!?~. In the rest frame of the 

heat-bath --- 
1 

ZG = Tre -BH 

The Minkowski space propagator is 

D(z,f) = Tr{e-BH T $((z,t) $(x,0)} 
Tr e-@H (3.4 

where $J (z, t) = eiHt cp(z, 0) eWiHt is the Heisenberg operator. 

The Matsubara formalism is best suited for the study of the perturbative expansion 

of the theory. However to study the response of the system to external perturbations 

and dynamical quantities in general one has to examine the real-time linear response 

functions [12,16]. This fact and the explicit Lorentz covariance of the real time ap- 

proach indicate that the study of finite temperature SUSY should be done using this 
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formalism. The real-time (Minkowski space) propagator D(Z) t) is the analytical con- 

tinuation of the imaginary-time (Euclidean) propagator P(Z?, 7) to -co 5 t = in < 

+oo. As has been pointed out in refs. 13, 12, 14, 16) the Fourier transform D(kO, z) is 

not the continuation of D(ur,, i). 

D(w,, E) has to be continued to arbitrary Euclidean energy w (this continuation is 

unique) [14, 161, D(w,@- is analytic in the right and left complex w plane with possible 

discontinuities across the imaginary axis that yield the spectral density 

- . 

p(k,,;)= D(ik, - c,z)- D(ik,+ c,i) (3.5) 

and finally 

D(k,,i) = D(i (ko+ k), i) + P PO, lk) 
(eBko - 1) (3.6) 

Expression (3.6) is written in the rest frame of the heat-bath. The poles of D(k,, z) 
--- 

define the energy of excitations of momentum z in a definite reference frame. 

With eq. (3.6) the fields are guaranteed to fullfil the conditions (3.1) in imaginary 

time (KuboMartin-Schwinger condition). The real-time free propagators (in the heat- 

bath rest frame) read [3, 151: 

Dp (k) = k2 _ ;2 + ic + 2w ’ $i-;*’ (bosons) 

s/9 (k) = 6(k2 - m2) 
;+jr-21i(/C+m) ejjE+l (fermions) P-7) 

P- 

E = (i2 + m2)lj2 

In order to perform calculations we need an expression for the density matrix. This 

is given in Euclidean time as a functional integral 1121. 

zG= D&..exp / [-/ ‘d,/ 
0 

~~~~P(~J)I] (3.8) 
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where the fields obey the condition (3.1) the result of the calculation can then be 

continued to real-time as indicated above. We want to extend the results of section 2 

to finite temperature. It has been recognized by Girardello et al. [6]. that the SUSY 

transformations (2.la)-(2.lc) with constant 6~ are incompatible with the conditions 

(3.1) therefore one must impose 

&(7=0) = -tk(T=B) (3.9) 

The transformations (2.la)-(2.lc) are generalized with &(?J, 7) satisfying (3.9). The 

thermal Green functions in Euclidean time are defined as 

(cplh 71) * - * $%&a, Gd$ = 
/ DP~‘PI...(o~ exp (-J!dr dz (L + Jipi)) 

(Same with Ji = 0) 
(3.10) 

The steps leading to eqs. (2.6) and (2.9) and can be followed leading to: 

-~j,l,,(s,(~,~) $ (&~‘))a + ~(S-~)~(P-~‘)(~~~(~,~)-F(Z,Z))~ =o (3.11) 

In this expression we can continue analytically to real-time and integrate over t and t 

leading to 

/ d%dt %,,t ( Sk t) 6 (2, t’) )a = (F)p (3.12) 

and by the same token the finite T version of eq. (2.10) reads 

a@ [F, 41 
I w /” = f SF; (k, = 0, x = 0) (3.13) - 

where we assumed (0)~ = v, (F)p = f and VP is the temperature dependent effective 

potential [3]. Therefore if f # 0 a long wavelength fermionic excitation can be created 

with zero energy, this is the extension of Goldstone’s theorem. 

It should be mentioned in passing t,hat there is another formalism close in spirit to 

the real-time approach [l7]. It allows to avoid ambiquities in high order calculations 
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in perturbation theory with the real-time propagators, in this formalism the same set 

of identities can be found [18]. The content of the last two sections is formal, in the 

next section calculations in specific models will be carried out in real-time approach. 

4. Explicit Computations 
- . 

We have learned in the last section that the criteria for SUSY breaking is the same 

one a3 T = 0, namely that f # 0 and that this implies the existence of a Goldstone 

fermion. In this section we will compute the effective potential for the scalar fields and 

the real-time fermion propagator in some models and relations (3.12) and (3.13) will 

be checked. We study examples where SUSY is unbroken at T = 0. 

A. Wess-Zumino in D = 4 [19] 

The model is defined by the supermultiplet @ = (Z,$, U) where 2 = 3( l2 A + iB), 

rl) a Majorana spinor and U = 3( l2 3 + i 5) an auxiliary field. A and 3 are scalar and 
- - -~ 

B and 5 pseudoscalar fields. The Lagrangian is 

where r* = $(I f 75) and P(Z) = 42 + f X3 with f and g positive constants. The - 
effective potential is calculated as usual [3], shifting the fields A = #+A, 3 = 3’+F, 

the induced masses for the particles are 

m4 = 9 ( 9~2~F 
lb4 > 

2 
mB = 9 .-!L&+F 

( lb& > 

m+ gA 
=z 

(4.2a) 

(4.26) 

(4.2~) 
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Following the methods of Dolan and Jackiw (31 the one loop effective potential can be 

written as V,JJ = V&o + Vg where 

v&o [A, J-1 = &reek F] + f / $$ (ell[k2 + mb] + tn[k2 + m&l - 2tn[k2 + mal) 

vtree[A F] = - ; F2-& F[;A2-t] 

(4.3) 

and 

Ei = (k2 + rnT)li2 

To check eq. (3.13) we need s. From (4.3) and (4.4) we find 

a ve/l 
-= -Fme+Fmtl$/ &~(k*+m?q;(k2+m$)~(k*+mBf(li”+m~~ ’ C9A 
--- 

1 2 
-l)+EB(e~E~-l)+E+(e~Eti +l) 

(4.5) 
It is interesting to notice that the first two terms (the T = 0 contributions) vanish 

for F = 0, thus there is a supersymmetric solution at T = 0, this is in agreement 

with no-renormalization results. However the finite temperature contribution [third 

term in (4.5)] d oes not vanish at F = 0, therefore’ there is no solution for the set 

of equations i?Vejl/8A = 0 and c3Ve~~/i9F = 0 with F = 0 at T # 0. This result 

can be traced back to the fact that bosons and fermions obey different statistics in 

agreement with conclusions of Girardello et al. [6]. The solution of BV,/I/~A = 0 

gives rise to F - Cg where C,g is the finite temperature contribution to (4.5) at very 

low temperatures we find (T < m) 

eDmlT (4.6) 
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where m is the common mass of the multiplet at T = 0. We also need to compute the 

real-time inverse fermion propagator at p. = 0 , jI = 0 

S%) = s,-‘b-4 - %-4 

s,-‘(P) = 
(4-7) 

-4d- m+) - . 
using the real-time propagators quoted in eq. (3.7), the one-loop self-energy is C = 

1 1 
(k2 + mi)(k2 + m$,) - (k2 + mi)(k2 + m$J 

where we have used the relations (4.2a)-(4.2c). Comparing (4.5) and (4.8) we find that 
--- 

indeed: 
I - 

a%I -= F 
3A 

is;;(p,=O, j3=0) =0 (4.9) 

Therefore since F # 0 [see eq. (4.6)], Si.(po = 0, 3 = 0) = 0, thus there is a pole 

at p. =o, j= 0 in the fermion propagator. Although we have not mentioned the 

renormalization procedure for this theory, it will not.affect our results since’renormal- 

ization can be performed at T = 0 with wavefunction renormalization for F as usual, 

the finite temperature corrections are finite. This analysis can be carried out in some 

-. other models with similiar results [20]. 

i 
At this point two interesting questions arise: How is it that at T = 0 SUSY is 

1 

i - explicit and the fermion is massive and at T # 0 this fermion acquires a massless 

pole? The second question is: How is the current algebra relation (3.12) realized? To 

i answer these questions we will study a simple model in D = 2. 

. 
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The Lagrangian is 

L = :[(a,)~~ + $ i 3 + + F2 - 2mF(+2 - 6) - 2rn#$ $1 (4.10) 

To calculate the effective potential we shift the fields 4-3 q5+cp, F 4 F+f. Folhvhg 

the same steps as above we find 

(4.11) 

where at low temperatures 

FE - mtl, e-m+/T X (powers of T/rnti) ; m+, = 2m(p (4.12) 

Since the inverse propagator vanishes at p. = 0, jI = 0, it can be written at small po, 

ji as: 

s-’ N -i #A(p2 =0)- iropoBg - i=# Dg (4.13) 

where BP (Da) is the derivative of the finite temperature correction to the self-energy 

with respect to p. (3) evaluated at p. = 0, 3 = 0. Since at T # 0 there is no Lorentz 

invariance Ba # D,g. Calculating the one-loop self-energy in real-time we find at 

a=0 

Ba NN em+/T X (powers of T/m+) (4.14) 

Therefore we see that as T -+ 0 this term dominates over the T = 0 contribution to 

-. S-l (p), hence 

emm+lT 
s (PO t a = 0) go rope = & x (Powers of m$J/T) (4.15) 

T-4 

This expression indicates that the residue of the Goldstone pole vanishes as T + 0 

(and it is positive) cleary exposing the fact that the Goldstone contribution should 
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vanish as T -+ 0. A straightforward calculation indicates that the imaginary part of 

the finite T contribution to the self-energy vanishes at p. = 0, 3 = 0 1211, this fact is 

crucial and necessary to check the Ward identities (there is no imaginary contribution 

to t3Ve,~/&b) and indicates that this massless excitation does not decay on mass-shell. 

Although we call this massless pole a Goldstone excitation, we have to show that 

it couples to the supercurrent, namely that the Ward identity (3.12) is satisfied. The 

supercurrent of the model defined by (4.10) is 

Sp = ($4 + iF)rp$ + if qp+ (4.16) 

where we have shifted the fields. Since ($ +)is proportional to e -9 IT as T, po --* 0 

the second term in (4.16) contributes to higher order in eBm+iT. The first term gives: 

(4.17) 

- up to one loop we use the linearized equation of motion for F 

F=m&+... (4.18) 

and adding and substracting the mass terms for 4 and ?,!J rn$ and rn$ respectively and 

using 

rni-m$=2mf 

-. eq. (3.12) can be written as: 

I(P) = - 2im/ ~{t-2mf)-tk2_,B)f(P+m,)td+P-m~)} 

D/G) WP + k) x S(P) 6(P) 

(4.19) 

(4.20) 

where Dg and Sa are the real-time boson and fermion propagators respectively. 
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After some tedious but straightforward algebra it can be shown that the pP inde- 

pendent contribution cancels out and as p. -+ 0 (i, = 0), T + 0 [20] 

I(P) = -po’iz o f ?iopoB,j S(p) = f (4.21) 

where we have used the.relations (4.13) and (4.14). Therefore this excitation couples -. 

to the current in the way predicted by the Ward .identities and corresponds to the 

Goldstone fermion. This Goldstone fermion appears in the spectrum as a fermion- 

boson bound state and is similar in nature to the “plasmon” excitation in gauge 

theories [12]. Its interpretation is simple: at very low temperatures the only states that 

contribute to the partition function are the ground state and the first excited states 

corresponding to a boson and a fermion of common mass m [22] this states appear 

in the heat-bath with probability e -m/T (thus the residue is proportional to e -m/T) . 

The Goldstone fermion thus appears as a fermion-boson oscilation that couples to --- 
, the current. Since the imaginary part of the self energy vanishes on mass-shell, this 

I - 
oscilation is not damped. 

Although we have not calculated the full structure of the fermion propagator, 

we expect at low temperatures that besides the Goldstone pole at pLc = 0 there is 

another pole close to p2 = m2 (with corrections of order eBmlT). Therefore we expect 

exponential fall-off of the fermionic correlation functions for distances 2 << l/T and 

algebraic decay (long range) for distances x 2 l/T. 

15 



5. Conclusions 

In this article we have shown that in theories with unbroken SUSY at T = 0, the 

symmetry is broken at any T # 0 due to different statistics for bosons and fermions. 

Furthermore looking at the real-time thermal Green’s functions it was established that 

the breaking of SUSY is associated to a massless fermionic particle that couples to the 

super-current in the way predicted by the current algebra relations. This Goldstone 

mode arises as a fermion-boson oscilation with probability proportional to emrniT where 

m is the common mass of the supermultiplet at T = 0, this translates to the fact that 

the residue of the Goldstone pole is proportional to eernjT and therefore vanishes as 

T + 0. It is argued that fermionic correlation functions should fall-off exponentially 

at distances x << /T while they should decay algebraically for x 2 l/T. 
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