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The CERN UAl and UA2 collaborations have recently reported [l] that they made 

the observations of weak boson candidates through the analysis of large transverse _ - 

momentum electrons and muons. The masses reported by UAl and UA2 [l] are, 

respectively, 

Mw= 81f5GeV , 80 +10 -6 GeV . (1) 

After that, the UAl and UA2 reported [2] that they found also the high mass dimuon 

events which may come from the 2 boson. The reported dimuon masses by UAl and 

UA2 [2] are, respectively, 

MZ = 95.2 f 2.5 GeV , 91.9 f 1.3f1.4 GeV . (2) 

Both of these are very similar with the predicted masses [3]. The data recorded at 

the CERN SPS proton-antiproton collider show also that the topology as well as the 

number of events fit well the hypothesis that these leptons with the large transverse 

momentum are produced through the process pp + W(Z) +X and W- + ~~ ~(2 --+ 

jj CL). Here the estimate of the cross sections for pfj -+ W(Z) + X has been given 

theoretically [4] by using the Drell-Yan model [5]. 

The present authors would like to study the cross sections of the weak boson 

prod&on with the hadrons in electron-positron collisions from the Z-pole to the 

threshold of region for W-pair productions. 

There are several articles [6-81 in which the authors studied single weak boson 

production in electron-positron scatterings in the Weinberg-Salam gauge theory [3]. 

However, in almost all of these studies, neither the angular and energy distributions 

of the weak boson have been given, nor the contributions of all the Feynman diagrams 

h%ve been calculated. It is clear that the trace of the gauge invariance disappears if 

we neglect even one of the Feynman diagrams as will be discussed below. Neufeld [9] 
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has presented the extensive calculations of the single weak boson production with the 

leptons in electron-positron scatterings. Then we would like to report on our studies of _ - 
the single weak boson production with the hadrons which seem to be complementary 

to the studies published by Neufeld [9]. H ere it is assumed that these cross sections 

in the energy range discussed in this paper could be estimated by the cross sections 

for the weak boson production with the free u, d and c, 8 massless quarks which are 

hadronized with the probability one. 

If the massless quarks are assumed, you may deduce that there is no difference 

between e+e- --) W+ ziLc p and e+e- -+ W+ ad, because u and d quarks are assigned 

to the Sum doublet as the neutrino and muon. You may understand, however, that 

it seems to be too optimistic to deduce so, if you look at the U(1) quantum numbers, or 

the electric charge of these particles. For example, the diagrams Dl and D2 in Fig. 1 

lead to the amplitudes for these processes in the different way, although the diagrams 

Cl and C2 lead to the same amplitude for these processes. 

We have used the REDUCE [lo] program for the trace calculations and the VEGAS 

[llj program for the phase space integrations. * We have checked the results obtained 

by Neufeld [9] and others [7,8], who used the SCHOONSHIP (121 program for the trace 

calculation. 

Defining g2 and g1 as the SU(2)h coupling and U(1) coupling, respectively, and the 

polarization vector ~6 for the weak boson, we write the matrix element as follows: 

l/e2 zs 119; + l/9? * (4 

* VEGAS is employed by choosing 5000 random- points (NCALL=5999) and per- 
forming 10 iterations (ITh4X=lO) in this paper. 
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Here, 0;‘s and Ci’s are defined as 

@ ’ s (W + 2U + 2D)6gaB + 2Wpg6a - 2Wag@ 
[(U + D)2 - M& + iMwrw](& + P)2 , 

X VL PhavLV)l FL V%pUL(&)l 

cy G  9 aB 
[(U + D)2 - M$ + iMwI’w)(W - P)2 

(7) 

(8) 
X PL (DhVL(W1 FL (QY6( P - P%$JL(&)l 9 

and Dk’s, C~‘s are defined similarly if we replace [oL(P)...uL(Q)] by [fj~(P)...u~(&)], 

where notations P, &, W, U and D represent the momentum of initial positron and 

electron, final weak boson u quark and d quark, respectively. 

The coefficients dL’s, dR’S, CL’S and CR’s are represented in Table I, where s E 

(P + &)2. These are obtained by dictating the Feynman diagrams Dl, 02, Cl and C2 

as shown in Fig. 1, respectively. As the reference, we list the d coefficients also for 

the process e+e- + W+ plr /.L, where U and D should be regarded as the momentum 

for the neutrino and muon. It is needless to say that there is no difference in the 

coefficients c’s between our amplitude and the amplitude for e+e- + W+ D, p as we 

discussed above, and we have to take account into the color degree of freedoms for 

the process e+e- + W+ tid when we estimate the cross sections for e+e- + W+ + 

hadrons. 

- Noti we would like to give a comment on the gauge invariance. The gauge invari- 

ance is broken spontaneously, however, it should be recovered at the high energy so 
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that the weak boson mass may be neglected. As a trace of the gauge invariance, we 
---- 

can see - 

at M&/S + 0, if we shoot a glance at the coefficients in Table I. 

Finally, the total cross section versus the center of mass energy is shown in Fig. 2. 

Figure 3 represents the angular 8~ distributions at several energies, where 0~ is the 

angle between the initial electron (positron) and the produced weak boson W-(W+). 

The weak boson energy distributions are shown at several energies in Fig. 4. The 

parameters used here are as follows: 

Mw = 80.0 GeV , Mz = 92.0 GeV , (10) 

rw = 2.69 GeV , rz =2.74 GeV , (11) 

tan2ew = 129po . (12) 

For the decay widths of W and 2 bosons, we have used the following formula; 

rw = 4n GF M$/(~T I& , (13) -~ 

rz = [I - tan26w (1 - 8sin20w/3)] I’w/cos& . (14 

Here n is the number of generations (n = 3), 

Although our calculated cross sections are small as the previous authors [6-8] have 

pointed out, we could refer some supports for our studies as follows: (1) We can assert 

safely that our cross sections are regarded as two times of the upper bounds for the 

processes e+e- --+ W%r~,Wfp? . . ) as shown in the right titles of Fig. 2 and 3. 



-- - 

(2) Our result seems to be useful in e+e- collider experiments of the next generations. 

(3) The recent works on the weak boson decays into the supersymmetric gauge particle _ - 

[l3] seem to require more analysis on the weak boson production processes. 

We thank Professor M. Kobayashi for useful discussions. And one of the authors 

(M.K.) would like to express his sincere thanks to Professor S. Drell for hospitality. 
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Table I 

e+e- + W+ ti d 

L 

c+1+ -3+;(E)” 
[ 

cpj+f $f 0 
2 

e+e- + W+ iPup 
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Figure Captions 

Figure 1 Feynman diagrams contributing to the process e+e=-+ W- + hadrons. 

Figure 2 %t&+e-- + W* + hadrons) versus center of mass energy, q’Z. The 

upper bound of the total cross section for e+e- ---) W*rSf, W*pT is 

shown in the right title. 

Figure 3 do(e+e- -t W* + hadrons)/d(cosew) at fi = 92, 125,150, 200 GeV. 

The upper bounds of the differential cross sections for e+e- ---) W*rT, 

WfpT are shown in the right title. 

Figure 4 da(e+e- + W*+ hadrons)/dEw at J;(; = 92,125, 150, 200 Gev. Note 

that the cross section at fi = 125 GeV is below IO-38cm2/GeV. 
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