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1. Introduction 

The analysis of bound states composed of heavy quarks and antiquarks has 

provided a window into the structure of the strong- interactions which has of- 

fered a view at the same time brilliantly clear and tauntingly ambiguous. These 

systems contain our best evidence that the quarks from which the hadrons are 

built are ordinary fermions which obey the Dirac equation and which couple to 

electromagnetism just as electrons do. The spectrum of bound states and the 

systematic3 of its quantum numbers make clear that the same basic principles 

that lead to the spectrum of the hydrogen atom or positronium also govern the 

behavior of quarks. However, the heavy-quark systems which have been studied 

to date, the systems of C-E and b-6 bound states, seem to be bound by forces 

which bear no obvious relation to the gluons which we expect are the funda- 

mental mediators of the strong interactions. The spectrum of bound states can 

be explained by insisting that the quark and antiquark interact through a phe- 

nomenologically determined potential. This phenomenological picture, however, 

seems very difficult to connect to an underlying description in terms of a color 

gauge theory. 

The essential difficulty in understanding this connection arises from the fact 

that the C-E and b-6 systems occupy an intermediate regime in the behavior 

of the gauge theory. At very small distances, comparable to those probed in 

deep inelastic scattering, the q-q potential is expected to become a Coulomb 

potential, directly reflecting one-gluon exchange. At very large distances, if the 

notion of quark confinement is a correct one, the potential should become simply 

proportional to the q-q separation, reflecting the formation of confining strings 

of color flux. To understand the transition region, however, a qualitative picture 

does not suffice; for a proper understanding, one would need to see precisely 

how the collective behavior of gluons modifies and alters single gluon effects. 

At the present time, we seem very far from such a detailed understanding. It is 

possible, however, to gain some insight into the nature of this intermediate regime 
. 



by considering the behavior of q-p systems from a broad perspective, assembling 

a variety of distinct aspects of these systems which are sensitive to the properties 

of gauge theories at intermediate distances. 

In these lectures, I will present the theory of three different facets of this be- 

havior by the use of a unified mathematical formalism. My goal will be to clarify 

the interrelation of these phenomena and, more importantly, their connection 

to the properties of an underlying gauge theory. The plan of these lectures is 

as follows: In 5 2, I will present some basic theoretical orientation, setting out 

the formalism which will be the basis of our discussion. I will also discuss the 

application of this formalism to the static potential; I will discuss the founda- 

tion of the static potential approximation and justify the general shape of the 

potential as emerging from a gauge theory. In 5 3, I will discuss the theory of 

spin-dependent forces in heavy-quark systems, presenting a connection of these 

forces to gauge-theory amplitudes discovered by Eichten and Feinberg.1’1 In 3 4, 

I will discuss the theory of hadronic transitions between q-q states, following the 

approach of Yan. l*l This discussion will not deal with detailed phenomenological 

theories or extensive comparison with experiment. My intent is, rather, to make 

clear what gauge theories have to say about these topics. My presentation will be 

somewhat formal, but, as is appropriate to a summer school, the formalism will 

be built from the ground up and kept as comprehensible as possible. I should 

also make clear that none of the work to be discussed is new; these are classic 

topics in the theory, but ones not sufficiently widely appreciated and so most 

deserving of review and explication. 

- 

In the remainder of this section, I will remind you of a few of the basic 

features of heavy quark meson spectroscopy. The spectrum of levels of the C-F 

and b-6 systems are generally well known, and are discussed in many reviews,lS1 

so I can be brief. Let me begin by simply presenting, in Fig. 1, the observed 

level spectrum of these heavy-quark systems, together with that of positronium. 

I use the notational convention, often used in q-q spectroscopy but unusual in 
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FIG. 1. The spectrum of observed levels of three anti-fermion bound-state sys- 

tems, the positronium (e+-e-),$ (C-E), and T (b-6) systems. 



atomic systems, of labelling the lowest-lying P states as ‘1P’. This difference 

in nomenclature emphasizes the only significant qualitative difference between 

the heavy-quark and atomic spectra: The degeneracy of states with the same 

principal quantum number, a special property of the Coulomb potential, is lost 

in the quark systems, to which this potential does not directly apply. 

The C-E and b-b level spectra shown in Fig. 1 are well known to be accurately 

described by a model in which the quarks are treated as nonrelativistic fermions 

interacting through a simple potential, if one allows the potential to be deter- 

mined phenomenologically. A typical procedure is to choose a potential with a 

small number of parameters which may be fit, for example, to the $, $!, and ‘I’ 

masses and the ratio of the tc, and $I’ leptonic widths. The merits of various fit- 

ting procedures are debated in References 4-S. A number of different functional 

forms for the potential have been used in the literature. Some typical forms are 

those of Eichten et. al., 1’1 who use a linear combination of a linear potential and a 

Coulomb potential, Richardson, la1 who uses the Fourier transform of a Coulomb 

potential with a running coupling constant 

V(r) = / dJ”q-‘[ $1 , P-1) 

and Martin,l’l who uses a simple power law V(r) - to-l for the shape of his 

potential. All of these potentials are quite successful; in the sense that they 

all give the locations of the T’,T”, T”‘, and the ~6 to within about 10 MeV. 

This striking convergence of predictions is easy to understand by plotting these 

potentials against one another, as is done in Fig. 2. Also plotted in this figure 

are the mean radii of the various 9 and T states. It is clear that our restricted 

experimental information-most especially, the insensitivity of accessible states 

to the short+distance behavior of the potential-leave many possibilities open. 

The discovery of the top quark and the associated t-f mesons should provide an 

important constraint on the phenomenological potential. Until this discovery 
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FIG. 2. A comparison of four different phenomenological q--~ potentials, from 

Ref. 5. The potentials represented are those proposed in (1) Ref. 7, (2) Ref. 5 

(a variant of that of Ref. 6), (3) Ref. 8, (4) Ref. 4. 
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arrives, we can learn more about heavy-quark interactions only by extending the 

theory which includes this potential, and applying it more widely. 

2. The Wilson Line and the Static Potential 

In order to argue precisely about the intricacies of heavy-quark behavior, we 

need a mathematical description of heavy-quark systems which is at the same 

time powerful and physically transparent. In this section, I would like to intro- 

duce you to such a formalism. I will explain how to represent the motion of 

heavy quarks directly in space-time, using the Feynman path integral approach 

to quantum mechanics. We will see that the static potential description of the 

q-q interaction emerges as an obvious first approximation to this exact represen- 

tation. This observation will allow us to discuss the conditions for the validity 

of the static potential picture, to understand when this description is valid, and 

to account which quantum effects are subsumed and which omitted by this ap- 

proach. I will also use this picture to explain what the gauge theories predict 

about the general shape of this potential. 

In fermion-antifermion systems bound by electrical forces, such as positro- 

nium, it is possible to discuss the applicability of the static potential picture, 

and the shape of this potential, without needing to rely on any special theo- 

retical tools. One needs only to expand systematically in powers of cy. This 

is, of course, not completely straightforward, because a large class of Feynman 

diagrams-the set, shown in Fig. 3, which one would normally associate with 

fermion-antifermion binding-all have values of order cr”. But one can showlo 

that the leading terms in these diagrams have the form of the solution to a non- 

relativistic Schrodinger equation. The various corrections to the static picture 

appear as successive powers of a are uncovered: For positronium, the fundamen- 

tal scale ‘is the reduced mass p = im. The binding energy is then R = &x2p. 

That the lowest bound state is nonrelativistic follows from the fact that o is 

small-the Bohr radius is equal to (a~)-’ and the fermion velocities are of order 
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FIG. 3. Graphs whose sum produces the nonrelativistic positronium spectrum. 
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a. The spin-orbit splittings in the spectrum appear in order CY’ . R; the Lamb 

shift appears in order o3 log(cu-‘) . R. 

In quark-antiquark systems, however, the situation is rather different. As 

long as the quark-antiquark binding forces remain constant in magnitude as the 

quark mass is increased, one will eventually reach a point at which the motion of 

quarks in their bound states is nonrelativistic. The phenomenological success of 

the potential models for the c-2 system tells us that this point has been reached 

already for the charmed quark. However, this certainly does not imply that 

the strong binding forces are described by a weak-coupling approximation. All 

that should actually be necessary is that the bound quarks should have masses 

much larger than the energy scale of quark-binding in the gauge theory. This 

observation, though, raises a question about one’s theoretical description of the 

heavy-quark system: We must describe the system in such a way that we can 

expand directly in the velocity of the quark and antiquark, without needing to 

make any additional approximation in describing the gauge-field dynamics. 

It is clear that such an approximation scheme requires an ability to visualize 

the motion of the quark and antiquark in space-time, as they participate in 

the bound state. Such a scheme of visualization would also be interesting and 

informative in its own right. Let me, then, set up such a description, based on 

Feynman’s description of quantum mechanics in terms of paths in space-time.l”l 

To begin, compare the structure of the SchrSdinger equation 

i; $=(-&V2+V(z))$ 
- 

to that of the diffusion equation: 

-g 9 = (-DV2 + V(z)) 4 . 

(2-l) 

(2.2) 

I have added to (2.2) a term which allows the diffusing particle to be destroyed 

with probability V(z), to make the analogy with (2.1) more precise. The process 
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of diffusion is apparently described by quantum mechanics, with the replacement 

it-M, (2.3) 

or 

e-iHt +e -Hz 
9 (2.4 

and by setting D = A. This relationship works also in the other direction. In 

principle, then, we can construct a precise representation of quantum mechanics 

by simulating the diffusion process and then reversing the transposition of Eq. 

(2.3). This program is actually quite easy to carry out in practice. 

Consider first carrying out the diffusion process over a small increment of 

time 6. The probability of diffusion from zi to 21 in time c is given by 

4(q; WI = (4T;+J,2 exp - 
1 

(X/ - 2;)2 
Qc - 6 v 

2; + x/ 

( )I 
2 * (2.5) 

The probability of diffusion from xi to ZJ in a finite time r can then be constructed 

by dividing the interval from 0 to I into a large number of intervals of size c and 

then integrating over the particle positions at these intermediate times: 

- 

We may then let c + 0; the points xn become a continuous path x(7) ;then the 

dq . . . dx,,--l 
~exp[-~{~(x’+l~-ri)Z+V(xi+l~xi))l. 

(m/27rc)(“-1) 5 i 
(2.6) 

expression (2.6) can be represented as follows: 

4(x/; xi; T, = 
J 

p.thr *omti D=w - ,,r d7 T i2t7) + vt~~i,,ll - (2.7) 
to ‘, [J 1 

Formally replacing r by it, we find a special case of Feynman’s formula for the 

quantum mechanical transition amplitude from 2; to x/ in time t: 

4(x/, xi; t, = J Dx e is dtL 
(2.8) 

. 
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where L is the classical Lagrangian. 

We will find it more useful, however, to apply Eq. (2.7) directly. To see 

why this is so, consider the visualization of this equation presented in Fig. 4. 

Consider the evolution in 7 induced by a potential of the shape shown on a wave 

function sharply peaked about x = 0. The waveform diffuses into an equilibrium 

shape, which then decreases exponentially in magnitude under the action of the 

term which includes V(x). Because r is related to physical time t through (2.4), 

this exponential decay must be of just the form 

#(xf, 7) = eDEOr . $~(q), (2.9) 

where Ee is the ground-state energy in the potential V(x). The equilibrium shape 

@(xl) is just the ground-state wave-function. Thus, the paths contributing to 

(2.7) for large r may be thought of as particle motions in the ground state of the 

Schrodinger equation. 

Let us now make this description relativistic. Instead of solving the Schr& 

dinger equation, we would like to represent the solution of the Klein-Gordon 

equation: 

(a2 + m2)$b(X) = bc4)( X - Xi) . (2.10) 

I have written explicitly a point source of $; this is implicit in our treatment of 

Eqs. (2.1) and (2.2). If we replace, as before, it = x0, this equation becomes 

(-8; - V2 + m2)2C) = 6(4)(Z - Xi) . (2.11) 

We may solve this equation by the trick of introducing a fictitious additional 

time T. Then we must solve 

( 1 & - f (8: + V2) - UJ2]) 4 = 6(4)(X - Xi)S( T) . (2.12) 
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FIG. 4. Evolution on an initial waveform into the ground-state wavefunction, BS 

the result of integrating Eq. (2.2). 

12 



But this is just a diffusion equation of the form (2.2), in 4 space dimensions, and 

so we can recognize immediately that the solution is 

&x,T)=J Dzexp[-/uTdi k(zZ+m2)]. (2.13) 

But now note that, if we have found a $(z, 7’) which solves (2.12), we can readily 

construct a $(zr) which solves (2.10) by writing 

w J x = cx3 dT ri](x, T). (2.14) 
0 

as one can see simply by integrating Eq. (2.12) over 2’. This gives us a path 

representation of the propagator for the Klein-Gordon equation of the following 

form: 

$(z/;x~)= JomdTJ Dzexp[-/o*&~(~2+m2)] . (2.15) 

The integral J Dx runs over paths z(r) which run through Cdimensional space 

in a fairly arbitrary way from z; to z/; a typical path is shown in Fig. 5. I 

might note parenthetically that if this integral over z(r) is replaced, as would be 

proper, by the solution to the diffusion equation, one finds 

e(xI; 2;) = JOm dT k5 exp[ -(” fjLTxiJ2 - 5 T] (2.16) 

which is actually a standard integral representation of the free Klein-Gordon 

propagator. 

We can extract the nonrelativistic limit of the Klein-Gordon theory directly 

from (2.15) in the following way: Let us choose limit points which are separated 

by a nonrelativistic trajectory: 

xi = (O,S), x/ = v/, 3, (2.17) 
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FIG. 5. A typical space-time trajectory included in the integral of Eq. (2.15). 
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-. 

and send t/ + 00. (To extract the propagation of a nonrelativistic antiparticle, 

for which the quantum numbers of tc, flow from x; to ~1, just reverse these 

assignments.) In this limit, the integral over z(rj- is dominated by the path 

which maximizes the integrand of (2.15) or which minimizes 

Setting &/&r(r) of the above equal to 0 yields the condition 

. . 
X/J =o + x(7) ‘(tj * f&i) . 

If we insert (2.19) into (2.18) this exponent becomes 

t2 
&+m2g. 

(2.18) 

(2.19) 

(2.20) 

The minimum with respect to T is found at 

T=!L x0 

m’ 
or T=-. 

m 
(2.21) 

Now examine the collection of paths near this joint minimum with respect to 

T and ~(7). We can recognize the following properties: First, in the vicinity of 

(2.19) and (2.21) the exponential of (2.18) becomes 

t1 
dt 

0 
[5i2])-mtf] (2.22) 

where now i represents the derivative of x with respect to t = 20. This is 

just (2.7) with an extra exponential decay representing the rest energy of the 

heavy particle. For an antiparticle, we would find the same result, but with 

the dominant paths formally running backwards in time. Secondly, paths longer 
. 
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than the minimal path length between Xi and xl are suppressed by the weighting 

factor 

e-mAs . (2.23) 

where As is the excess path length. This means, in particular, that paths which 

bend backwards in time, in the manner shown in Fig. 6, are suppressed by the 

factor 

J 

00 
dAte-2mA’ = & . (2.24) 

0 

By making a constanttime slice through Fig. 6, you may recognize that the 

back-bend represents a component of the state which contains an extra particle- 

antiparticle pair. The factor (2.24) is just the energy denominator associated 

with this higher-energy state. 

To couple the Klein-Gordon equation to electromagnetism, we need only 

generalize (2.10) by the replacement 

d, + D, = (a,, - igAp) ; (2.25) 

this prescription makes the Klein-Gordon equation properly gauge-invariant. Let 

us, for the moment, consider the motion of a Klein-Gordon particle in a fixed A 

field. We then need to solve 

1 
4% - igA,)2 + m2 ?,b = 6(4)(~ - 2;) . 1 

To solve this equation, we can again add a fictitious time: 

(2.26) 

(q- igAp) - m2 I) 9) = bt4)(X - Xi) e (2.27) 

The solution to (2.27) for propagation over a short time E can be found by taking 

A, approximately constant. Then one can check that 

$(X1; Xi; C) = 
tx/ - xi)2 

26 + ig(X/ -xi)*A-i m2 I (2.28) 

16 
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- 

by noting that 

D,(exponen t) = - 
( x/ - G)p 

tz 
(2.29) 

as before. Assembling the increments of time c into a finite time t, taking the 

limit of continuous paths as above, and then integrating over T, we find for the 

solution to (2.26): 

- 

$(x/;x;) = lowdT/ Dxexp[-/0Tdri[i2+m2]] exp[ig/ dri.A(x)] . 

(2.30) 

We have shown, then, that a charged particle is described by a sum over space- 

time paths in which each path P is assigned the phase factor 

W( x/, xi) = eig JP dz*A. (2.31) 

This is a famous phase factor, whose relevance to the study of gauge theories has 

~been emphasized by Schwinger, 1111 Mandelstam,1121 and Wilson,l131 among others. 

I will discuss its beautiful properties in a moment. First, however, I should 

indicate how Eq. (2.31) generalizes when the Klein-Gordon equation is coupled 

to a non-Abelian gauge theory. In this case, the number A, must be replaced by 

a matrix in the color space 

4 = A;t” (2.32) 

where t’ is a generator of the color gauge group. Then the various factors (2.28) 

which depend on A must be arranged and multiplied out in order. The ordered 

product of these phase factors may be written as follows: 

eig J, dr i(r)-A(o(r)) . (2.33) 
Increments A 

01 path 

This equation defines the path-ordering operator P. For antiparticles, since the 

path runs backward, the path-ordering also runs backwards in time, one finds 

(2.34) 

18 



In the same way that we saw (2.7) related to the classical action, we can recognize 

the exponent of the phase factor (2.31) as the classical action for the coupling of 

the electromagnetic field to a point particle: ~.. 

/ L d4x = / d4x jpAp = / d4x[ / drgi%(“)(x - +))]A&) . (2.35) 

Let us now discuss the properties of W(x, y). We should first note that W has 

a very simple transformation law under gauge transformations. Under a gauge 

transformation in electrodynamics, 

t/J(x) -+ P(Z) de) ; W(Xl Y) ---* eiaCz)W( x, y) e-iO(y) (2.36) 

so it is easy to build gauge-invariant quantities from W. In a non-Abelian gauge 

theory, W transforms as in (2.36) with the phase factor eia replaced by a unitary 

transformation in the color group. The second property of W(x, y) is that it 

depends on the path chosen to connect x to y. It is instructive to compare the 

values of W evaluated over two paths P and P’ which differ only by a small 

detour, as shown in Fig. 7. If the small square is taken to lie in the i - 2 plane 

and to have sides of length E, we can evaluate: 

w[P’] = w(x, z){(l- igeA&))(l- &Al(z + ~1,) 

- (1 + ige Az(z + d)) ( 1+ iv h(4)} Wk, Y) (2.37) 

= w(x, ,){I + ige2 &A2 - 32A1 - ig[Al, A2) 1, W(r, Y)- . 

19 
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Thus, 

W[P’] - W[P] = W(x, z) (igAop”F& W(z, y) (2.38) 

where F,, is the gauge field strength tensor, where AC?” is the increment of 

area by which P and P’ differ. We can use this relation to derive a formula for 

the derivative of W which will be useful to us in the next section. Let W(x, -00) 

represent the phase factor for a line which runs forward in the time direction 

from -oo and ends at x, as shown in Fig. 8. We can differentiate this quantity 

with respect to x by performing the motion indicated in Fig. 8 and breaking up 

the area between the two paths into small rectangles. This gives: 

d%,W( 2, -00) = J = d2kW(x,z)(igcBFu&))W(z,--03). (2.39) 
--oo 

It is thus quite natural that the effect of a gauge field on a charged or colored 

particle should be accounted by the phase factors (2.31) or (2.33). In a quark- 

antiquark system, the effect of a color gauge field on the quark-antiquark state is 

represented by including in the path sum (2.15) for the quark and the antiquark 

the phase factor 

(2.40) 

where xi,xf and yi,y/ are the initial and final positions of the quark and anti- 

quark, respectively, and ai,af and bi, 6~ are their initial and final colors. We can 

insist that (2.40) contains only color singlet initial and final states by bringing 2; 

and yi, xl and yf to the same point, as indicated in Fig. 9, and then summing 

over COlOrS ffi = bi, Uf = b/. This prescription associates to the evolving color 

singlet q-q state a factor 

trace Pexp tg [ (’ f/4] ’ (2.41) 

21 
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where the integral is taken over the closed curve C indicated in Fig. 9, on which 

the quark moves forward and the antiquark backward in time.The factor (2.41) 

is often referred to as the Wilson loop; I will refer to an individual amplitude 

(2.33) as a Wilson line. 

Now let us make the A field a dynamical entity also. According to Feynman’s 

path integral prescription, we can turn the expression (2.30)’ valid for a fixed A 

field, into a description of mutually interacting Klein-Gordon and gauge fields by 

simply integrating the expression (2.30)over possible A field configurations, with 

a weight given by the classical Lagrangian for the gauge field (or, rather, because 

of (2.3)’ its continuation to imaginary time.) If we call the proper expression with 

a fixed A field IV(A), then for a dynamical A field, we would write 

J DAW(A)exp[-/ f&x]. (2.42) 

For small values of A, the exponent of (2.42) is approximately a quadratic form 

in its components A$, so that (after fixing the gauge) we can rearrange it into 

the form 

(2.43) 

where Ap”(x, y) is the usual gauge field propagator 

AP”(x, y) = J -ik(z--y) g'" sP” 
k2 = 29(x - y)2 - 

(2.44) 

To understand what kind of forces the quark and antiquark experience as a 

result of their gauge interactions, it suffices to study the behavior of the Wilson 

loop (2.41) when averaged with the weight (2.42). To obtain an idea of how to 

treat these forces, let us evaluate the average of (2.41) in three model situations 

in which this average can be computed easily. 

24 



The simplest case in which to examine the behavior of the Wilson loop is 

that of pure electrodynamics. In that case, the expectation value of the Wilson 

loop is given exactly by 

(2.45) 

where 2 is the indicated Gaussian integral without the factor (2.41). The integral 

is readily evaluated by completing the square in the exponent; then the integral 

over A is an identical overall factor in numerator and denominator and cancels. 

The result is 

ew[ +& f dhi’(h)) (ig f dk$(tz)) A&(h) - x(h))] (2.46) 

where I have let tl and t2 be the time coordinates of points on the curve C and 

have written: 

dxp - = dtdxa(t) = dtip 
dt 

. (2.47) 

Note that 
dx” dtdt=dxo!$= dx”( 1, 3) 

0 
(2.48) 

so that (2.46) has precisely the form of the electromagnetic interaction of charges 

and currents. 

- 

Now consider the behavior of the exponent of (2.46) for nearby pieces of path 

with zero relative velocity. There are three contributions, shown in Fig. 10. The 

contributions (a) and (b) are independent of the particle-antiparticle separation; 

these contribute only to the particle self-energies and do not affect the potential. 

The contribution (c) is well approximated by 

-2*$ J-1 dtr J,m dt2 2?r2[(tl $2 + R21 = g2*(time of interaction):---& . 
(2.49) 
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But note also that the integral over relative times in (2.49) is highly convergent 

and so is insensitive to relative times much larger than the distance R between 

them. Thus, this formula is also approximately correct for slowly moving par- 

ticles, as long as the separation between the particles varies slowly compared to 

R. If we call this time-varying separation R(t), we can write 

(eigf dzoA) 21 exp[-/ dt(&)] ; (2.50) 

this result is illustrated by Fig. 11. 

Now consider what happens if we give the photon a mass ~1. This could 

be done, for example, through the Higgs mechanism, after the model of weak- 

interaction gauge theories. The expression (2.43) would be changed only by the 

replacement 

AP”(x - y) + J -ikjz-y) if” 
(IF2 + p2) ' 

(2.51) 

Then all of the manipulations which we carried out for the case of pure electro- 

dynamics go through here too, and we can derive for the case of static particles 

an expression of precisely the form of (2.49), with the replacement 

V(R)= - J O" -gze-tJf 
--co 

dx” A(x”, R) = 4XR . (2.52) 

In this case, the integral over relative times is even more convergent than before. 

As long as the time required to change R(t) significantly is much greater than 

either one of the two distance scales R, p-l, the expression 
- 

Ieigf d-4) cz exp[-/ dtV(R(t))] 

gives a good approximation to the expectation value of the Wilson loop. 

For my final example, let me consider again the situation of a photon field 

given a mass by the Higgs mechanism, but let me alter the Wilson loop slightly 
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FIG. Il. Calculation of the expectation value of the W&on loop for a slowly 

moving quark and antiquark, according to the approximation of $Eq. (2.50). 
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so that it describes the interaction not of electric charges but, rather, of magnetic 

monopoles. This can be done straightforwardly by rewriting the integral in (2.41) 

by a 2-dimensional integral over a surface S which--spans C: 

exp[ig/.&r-A] = exp[igJS&YFPV] (2.54) 

and then replacing electric by magnetic fields in (2.54); this is done relativistically 

by the replacement 

F - ,w + F,v 
1 

where F,, = -c 
2 Cc” 

ioFX” . (2.55) 

(Actually, one must make this replacement in the gauge field Lagrangian (2.43) 

I1’-la] by replacing 

J d*x + ( Fpv)2 = d2z ;(&)2 --* 

(2.56) 

the second term added allows F,,, to have sources and sinks. Multiplying out 

the square gives (2.54) with the replacement (2.55) (up to a factor of i), plus an 

extra singular term). 

Now we can integrate over A by completing the square as before; for a loop 

which lies in a plane, the result is: 

@g f, d-4) =exp[+$/ kg,/ d20~(~.~A(2--y)-6(~/(2_y))] ; 

(2.57) 

the delta function comes from the singular term identified above, This expression 

can be rearranged using the identity 

a a 
-A(z - y) = 

32 -. 
321 a, 

-~A(.-y)=(--02+~)A(2-y) 
I 

. (2.58) = ( -& * & + (-v2 + p2) - P2)A@ - Y) 
. 
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The term including ~/Z?ll . a/aJll can be integrated by parts to give just the 

result of the Higgs case above. The second term forms the equation for the 

massive A field and yields a delta function when acting on A(z - y); this cancels 

the singular term. The third term yields a term in the exponent of (2.57) 

For R >> p -I, this becomes 

(e’PfedzeA) - exp dR KS R(t) 1 
where 

(2.60) 

(2.61) 

If the Higgs field dynamics is treated more correctly, the lower limit of integra- 

tion becomes m$ss*. This behavior corresponds to a potential V(R) with the 

asymptotic form 

V(R) - KR; (2.62) 

the particle and antiparticle represented by the Wilson loop are permanently 

confined. As in the previous example, the static approximation to the potential 

is a good one as long as R changes slowly in time on the scale either of R or of 

I should note that it is not hard to understand in this case why the mag- 

netic charges ought to be permanently confined. When the A field acquires a 

mass through the Higgs mechanism, the homogeneous Maxwell equations are 

unchanged, but the inhomogeneous equations are changed by new p-dependent 

terms. Thus, we have 

. 
c3 = p2Ao but 9.8 =O. (2.63) 

30 



- 

The flux of 2 is no longer conserved. This allows the elect.ric field to disappear 

into the vacuum, and it does so in a distance p-’ from the charge (hence the 

form of (2.52)). Magnetic flux is still conserved. -However, correlations of the 

magnetic fields must still fall off in a distance ~1~‘. This is possible only if 

the magnetic field needs information only from within a distance p-l to tell it 

how to stay conserved. It must then form a configuration of the form of Fig. 

12, in which the magnetic field forms a tube of width ~1~’ which carries a flux 

corresponding to 1 unit of charge. lla-171 This mechanism has been shown to be 

the explanation for the permanent confinement of charge seen in the strong- 

coupling limit of lattice gauge theories, at least for the case of Abelian gauge 

groups. ~-‘~l Unfortunately, physical quark-antiquark systems are described, 

not by any of these idealized limiting cases, but rather by the SU(3) color gauge 

theory &CD. We do not know how to compute the Wilson loop expectation value 

- -in QCD except by rather cumbersome numerical methods which are only recently 

beginning to show results. 122-241 However, we do have some analytical control 

over the limiting behavior of the potential V(R). For small R, perturbative QCD 

is applicable, and the potential has been computed to the twoloop order. 12a-271 

The leading behavior for small R is just a Coulomb potential 

-4aJR) 
37rR, 

(2.64) 

with crB(R) the running QCD coupling constant. At large distances, our best 

informat,ion comes from a recent paper of Tomboulis,12*1 who has proven a bound 

on the Wilson loop expectation value in lattice gauge theories which implies that 

the behavior (2.62) is true for some value of K for any finite lattice spacing. 

Combining these two limiting cases, we might make a sketch of the potential 

in &CD; it has the general form shown in Fig. 13. The principal question 

which remains concerning this potential is that of what sets the scale ~1~’ which 

characterizes the scale over which the static gauge fields can be deformed. This 

quantity bears no obvious relation to the value of the constant K which appears 
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FIG. 12. Configuration of magnetic flux around a pair of magnetic sources in a 

superconductor. 
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FIG. 13. Sketch of the form of V(R) in &CD. 
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in the potential, as Eq. (2.61) makes clear. Presumably, this scale is a mass 

scale of the gluon sector. But, unfortunately, the gluon dynamics is the aspect 

of QCD which we understand least well how to connect with phenomenology. I 

believe it not unreasonable to assume that the effective value of p is of order 1 

GeV; however, we should really hope that the study of heavy-quark systems can 

give us more precise information on this size of this quantity. 

3. Spin-Dependent Forces 

In the previous section, we saw how to use the Feynman path integral formal- 

ism to visualize the dynamics of nonrelativistic particles in space-time. We de- 

rived theFormula(2.22) which confirmed our intuition that such particles could be 

viewed as travelling on space-time trajectories which were close to being straight 

lines in the time direction. We saw, further, that such particles could be coupled 

- -to gauge fields by associating a phase factor (2.33) with the trajectory. These 

two ingredients give us a complete picture of particle-antiparticle dynamics at 

the leading order of a nonrelativistic expansion. In this lecture, I would like 

to study the simplest relativistic corrections to this picture, the spin-dependent 

forces in fermion-antifermion bound states. As in our study of the static poten- 

tial, I will try as far as possible not to make any approximation other than the 

nonrelativistic limit, in order to clarify what structure for the spin-dependent 

forces follows directly from the gauge-theory structure of the underlying interac- 

tions. In taking this point of view, I follow the work of Eichten and Feinberg.1’1 

The bulk of my analysis in this section will be a derivation of a general formula 

- . for the spin-dependent forces first presented in their paper. 

Before we can do any detailed analysis, we must first recall that we performed 

the analysis leading to equation (2.22) only for the case of the Klein-Gordon 

equation. We must generalize this analysis to apply to the Dirac equation. This 

generalization was first presented by, Feynman 12’1 I learned of it from the pre- 

sentation of Halpern and Siegel.lSol 
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We need, then, to represent the solution to 

+‘($ - igA,) - m 1 $ = 6f4)(z - y) . (34 
Again, we will work with imaginary time (it = ~0); the appropriate Dirac ma- 

trices satisfy 

{qP, 7”) = 2&Y” . (3.2) 

It is convenient to choose the following representation of the gamma matrices: 

where 

up = (1, t-a), iv = (1,48) . (3.4 

In this basis, $ is diagonal 

and the spin matrices CPU take the form 

0 

t-1 -1 (3.5) 

where qaP” is a numerical tensor defined[s’l by 

Keeping this notation in mind, we can write the solution to (3.1) in the form 
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where G(z; y) is the solution to 

- . 

[q“D, - m] ($‘D, + m] G(z; y) =~c%(~)(z - y) . (-4 

Of course, it is not clear that this helps enormously: We now see that $J(z; y) can 

be written in the form 

$J(?Y) = (g--py G(Z9Y) - (3.10) 

But what is G? 

Actually, it is not hard to construct G explicitly using the set of tricks intro 

duced in the previous section. Using the identity 

(3.11) 

and (3.4), we can cast (3.9) into the form 

( D2 - m2+iV” 8, - igAP, d” - ;gA” 
i I) G(z; Y) 

(3.12) 

=- 
( 

-D2 + m2 - f C~“F,,) G(z; y) = S(z - Y) . 

This equation is of the same form as those we considered earlier, and so we may 

immediately write down a functional integral representation for G 

Note that, since the various components of C cl” do not commute with one another, 

we must path-order these matrices just as we path-order the A,. Since the CPU 

are block-diagonal in the basis we have chosen, G also falls into the block form 

(3.14) 
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Within each block, we may take the nonrelativistic limit as we did above for the 

Klein-Gordon propagator; for CR the result is 

The representation (3.15) differs from the corresponding expression (2.22) for 

the Klein-Gordon equation by the addition of the path-ordered factor containing 

the coupling of the spin to F,,. Written more explicitly, this new term has the 

form (-J dtAV), where 

AV= -+-$.(B-e,. (3.16) 

The first part of this expression is obviously the magnetic-moment interaction 

of the fermion; note that it has just the right magnitude. The second part 

looks rather more peculiar. To explain its presence, I must apologize for the one 

awkward feature of the formalism I use in these lectures: In order to consistently 

work with Euclidean time (~0 = it), we must also work with Euclidean fi fields. 

In particular, the I!! fields which appear in the expression (2.42) should, like ~0, 

be properly considered imaginary quantities analytically continued to real values. 

The same goes for the A0 and e fields in (3.13). If we introduce an external, 

physical e field, then, we must orient it properly relative to the fluctuating 3 by 

supplying a factor of i: 

@ ext = 43; 13,t = il; . (3.17) 

In the same way, if we try to connect Euclidean time derivatives to physical 

quark position operators, we again need to supply this factor: 

? . d2 
=‘mdzO- (3.18) 
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Using (X17), we can see that an external 6 field causes an exponential growth 

or decay in the magnitude of the wave function, indicating, through comparison 

with the form of (2.9), that the energy of the quantum state is shifted. An 

external 2 field, however, introduces only an inconsequential phase. Let me warn 

the reader to watch out (or not, as he prefers) for sly factors of i throughout the 

arguments of this section; fortunately, these factors are the only subtle feature 

of this formalism. 

- . 

In any event, we would like to use the Formula (3.13) (or, better, its non- 

relativistic reduction) to compute bound state energies in fermion-antifermion 

systems. Any such bound state energy shows up as a term in the functional 

integral which decays in amplitude as 

exp (-&x0); 

the lowest bound state (or the lowest such state with specified quantum numbers) 

dominates the functional integral expression as ze is taken large, as long as the 

initial conditions for the particle paths have overlap with this state. In part,icular, 

we might note that nonrelativistic fermions are approximately equal admixtures 

of 75 = +l and 7’ = -1 states, so that we can, if we wish, limit our attention 

to 75 = +l components of the Green’s function $(z; y) and still retain the full 

information available on bound state energies. Let us, then, disregard most of 

(3.10) and concentrate on the upper left-hand corner of this matrix. This element 

has the nonrelativistic expansion: 

- . 

J ~2 e-s dt 6 i2p eigI dz.A+I dt & a@-&) 

> 

. (3.20) 

We can learn whatever we might wish to know about the nonrelativistic fermion- 

antifermion spectrum by isolating the exponentially decaying amplitudes of the 

form of (3.19) contained in (3.20). 
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The explicitly spin-dependent term in the exponent of (3.20) contains a factor 

m-l and is therefore of higher order in a nonrelativistic expansion. As we will 

see in a moment, spin-dependent effects contribute-to the energy of the q-q state 

for the first time in order m-2 relative to the nonrelativistic binding energy. 

Since any such terms contain at least one power of the term involving 8, the 

corrections to (3.23) which are by themselves of order me2, do not contribute 

to this order. Let us now try to account the set of leading spin-dependent terms 

systematically. In order to do this, it will be convenient to introduce one more 

piece of notation. I will use brackets to denote the expectation value of gauge 

field operators on the quark trajectory and path-ordered along with the Wilson 

line. For example, 

w z+N = f J Dz DAe-j ‘e-J t”‘P e-l d=‘a~(,, z+) 
I 

. (3.21) 

In Eq. (3.21) 2 denotes the value of the indicated integral without the operator 

fi and z+ indicates the quark position; I will denote the antiquark position by 

z-. This expectation value is indicated graphically in Fig. 14. 

To warm up for this accounting, let us examine the various spin- dependent 

terms of order m- ‘. To this order, we should bring down from the exponent one 

factor containing 8; then we can ignore all other corrections to the static limit. 

In this approximation, the correction to the wavefunction is given by 

St,b = ( 
f ( 

dt &a.~-$ve), . (3.22) 

The piece involving 8. i) gives no contribution, since 

< B’(z+, t) >= 0 (3.23) 

by symmetry for a static q-q pair. The piece involving 8-a can be evaluated by 

noting that the only component of < E’ > which does not vanish by symmetry 
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FIG. 14. Graphical representation of the expectation value shown in Eq. (1.21). 
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is the component in the direction of the quark-antiquark separation R. This 

component can be evaluated by comparison with Eq. (2.39): 

dt gE’( t, z+)) = y 

*’ a i?=+; z-*-y 
Z c?R’ J 

dt 
(3.24) 

Exponentiated, this factor gives just a time-dependent phase and not an expo 

nential decay; thus, it does not contribute to the bound state energy. 

Now let us move on to the terms of order rnm2. These terms are of three 

types. The first arises from two insertions of 8 terms. We might, first, bring 

down two factors of 8. fi on the same quark line. This gives: 

&/I=(;/- dt&iC@t,z+)/ dt’&-&@t’,z+)) . (3.25) 

But this expression is symmetric in the two a’s, so we may use the identity 

oiai + deai = 26’3’ (3.26) 

to see that (3.25) is not in fact spin-dependent. We can also bring down factors 

of 8 -6 on both the quark and antiquark lines. This produces a change in the 

wavefunction of the form: 

S$ =( 
/ 

O” dt 
-CO 

& 8, - if(t, x+) 
J 

00 
dt’ 2 a- . &t’, z-)) . (3.27) 

-W 

I use 8, and 8, to represent the spin matrices acting on the quark and antiquark 

lines, respectively. The expectation value indicated in the second line of (3.27)is 

represented graphically in Fig. 15. In the models which I presented at the 

end of the previous section, the correlation function of two operators fi is short- 

ranged, so that the integral over f’ falls off rapidly if the separation of the two ?i 
. 
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FIG. 15. Graphical representation of the expectation value appearing in Eq. 

(1.27). 
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operators is greater than R or /.L -l. It is then appropriate to ignore the relative 

motion of the quark and antiquark during the time interval (t’- t) and represent 

this integral as some new type of static potential.--Since the expectation value 

contains two tensor structures, we can represent it in the form: 

2 I9 J dt ‘B’( t, z+)B’-( t’, z-)) = - f 6’i)vqR) + ; b’iV#2) . (3.28) 

Then Eq. (3.27) becomes 

w=-J dt~(~.a+P.a--5at.~-]V3+ga+.a_a). (3.29) 

It is appropriate to view this as the first term in the expansion of a factor 

ezp(- J dtAV); thus, Eq. (3.29) gives our first spin-dependent correction to 

the bound-state energy. The terms involving 8 . @  do not contribute to this 

order: The only term which is not a pure phase is the second-order term arising 

from the exponentiation of (3.24). 

The second type of contribution comes from bringing down one i3 term and 

then expanding to first order in the quark or antiquark velocity. For definitive- 

ness, let us consider first the case in which we bring down a 8 . B term on the 

quark line and consider the quark velocity to be nonzero. We can represent the 

term of first order in the quark velocity in the manner indicated in Fig. 1‘6, by 

considering it as displaced from a line aligned precisely in the time direction and 

expanding for small displacements as we did in Eq. (2.39). This procedure gives, 

for the term in &,!J of first order in the quark velocity, 

- . 

@ J( 
= dt f a - &t, z+) J dt’ig $ * (t’ - t) - Q t’, 2+)) 

= 
/ 

dt 
J 

dt’g2Bi(t, z+)t’ti(t + t’, z+)) 

(3.30) 

In the last line, we have used Eq. (3.18) to replace the line velocity by the quark 

momentum operator 3; this introduces a factor of i. The indicated expectation 
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value is again highly restricted by symmetry; we may represent it in the form: 

- . 

(J dt’# B’(t, z+)Ej(t’, z+)) = r,hk& VI(R) s 

Then (3.30) becomes 

a$ =- 
J 

dt 

(3.31) 

(3.32) 

where &+ denotes the angular momentum of the quark. The correction arising 

from a field insertion on a finite-velocity antiquark line is of almost the same 

form: 

(3.33) 

The change in sign comes from g + -9, or,equivalently, from the change in 

direction of the antiquark line. The corresponding terms in which 8.6 is inserted 

can be seen to yield only phases. 

In a similar way, we can reduce the term arising from an insertion on one 

line and finite velocity on the other to the form: 

S$=- 
J 

dt&(Li,-8+-i-); & V2, 

where we have represented 

2 I9 s dt’t’B’(t, z-)Ej(t + t’, z+))& V-2 . 

(3.34) 

(3.35) 

Actually, though, V2 is not independent of the potentials we have defined previ- 

ously. Consider the effect of taking the divergence of Eq. (3.35). We can take 

Ll/8Rk of this object by considering the derivative to act on the line with the 3 

insertion and using (2.39). There are two contributions, represented graphically 

in Fig. 17. The first contribution, in which the derivative acts on the Wilson 
. 
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FIG. 17. Representation of the two contributions to V*V2. 

-. 
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line, gives zero by the antisymmetry of the cijk symbol. In the second term, we 

can use the non-Abelian Maxwell equation 

bxiii=D& ~~- (3.36) 

and the relation for the path-ordering operator 

(D&(t)) = (3.37) 

to write this term as 

s2 -- 
2 J 

dt’f$,(B’(t, z-)Bj(t, t’, 2,)) = $ / dt’(B’(t, r-)Bj(t’, a~+)) . (3.38) 

Thus, we have the relation 

2V2V2(R) = Vi(R) . (3.39) 

The third type of term comes from introducing the correct relation between 

the spin matrices ?3 appearing in (3.20) and the quark and antiquark spins. The 

8 matrices are the matrix elements of WY; these are connected to the spin via 

the relation 

where < is a nonrelativistic spinor and u(p) is the corresponding Dirac spinor. 

If we correct 8 to ,!? in our evaluation of the order m-l terms, and use (3.18), 

we obtain a correction of order m- 2 which is real and contributes to the energy 

shift: 

(3.41) 
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This is precisely the classical spin-orbit contribution, familiar from first-year 

quantum mechanics. It is equally familiar that, since the spin has been referred 

to an accelerating frame of reference, this contribution to the energy must be 

decreased by half because of Thomas precession. A similar contribution arises 

from correcting the order ma1 term involving a-. 

Summing the various contributions of these three types, we find a general 

representation for the leading spin-dependent contributions to the q-q bound 

state energy. This expression, first, derived by Eichten and Feinberg,l’l is the 

following 

V 
3,.ii++&dk. 1 dV 

spin-dep = -- 
2m2 R dR 

( ~+&-+s-d+ 1 dV2 - 
m2 > 

-- 
R dR 

(3.42) 

The first three terms of (3.42) are spin-orbit interactions. The fourth is a hyper- 

fine interaction. The fifth is a tensor force. To evaluate the matrix elements of 

(3.42) for two-body q-p bound states, one should set 

In order to use Eq. (3.42), h owever, we need to know the form of the various 

potentials V; which appear in it. V, of course, is the same static potential used 

to represent the nonrelativistic bound state spectrum, but the other potentials 

are not otherwise accessible phenomenologically. We can get a first idea of their 

. 
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form by evaluating them in QED. In this case, the expectation value of two field 

operators in the presence of a Wilson loop is just equal to the same expectation 

value in free space; for example, 

(3.43) - 

One can easily show, from the definitions (3.28), (3.31), (3.35), that 

v=-- e2 Vl = 0 v e2 3e2 
47rR ’ 

2=- Q -- 
4nR ’ = 4i7R3 - 

(3.44) 

Inserting these 

the expression 

results into (3.42), we find for the spin-dependent forces in QED 

- -- V 2a s-d = 
fJ - (3+ + 3-) 3 CY 

-- m2 2 R3+ 3m2 3, - s- 4ns(R) 
(3.45) 

The corresponding formula in perturbative &CD, to leading order in perturbation 

theory, is obtained by replacing 

4 
a--,-cr, 

3 (3.46) 

- . 

in this equation. 

However, at least for the 9 and T systems, we need to deal-with real &CD, 

which does not stay entirely within the perturbative regime. The only way to 

proceed from here is to guess forms for the various functions Vi which have appro 

priate small-distance limits. These potentials should obey one general constraint 

which follows from the considerations at the end of the previous section. In the 

models we discussed there, one can readily show that gauge field correlations of 

. 
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the type involved in the definitions of the Vi fall off as RB3 (the QED result) in 

the massive gauge model for R < p -I, but then fall off much more rapidly, as 

2 
If_, -ctR 
R 

(3.47) 

for R > p-l. I expect a similar behavior to appear in confining gauge theories, 

since the flux tube which binds quark and antiquark cannot carry information. 

Let me remark again, however, that I do not know precisely what mass scale 

plays the role of p. In any event, if this is so, the first term of (3.42) gives rise 

to a long-ranged force, since it contains the factor 

1dV K --+- 
RdR R 

as R-00, (3-J@ 

but the other terms decrease exponentially. Perhaps it is, then, not unreasonable 
- -- - 

- . 

to approximate these terms by their perturbative values; this is the approxi- 

mation scheme chosen by Eichten and Feinberg.1’1 I should, however, note two 

minor difficulties with this hypothesis. The first is that V2V2 should contain an 

exponentially decaying term of the form of (3.47), whereas in leading order of 

perturbation theory it is completely local, proportional to s(R). The second is 

that Kogut and Parisi is21 have found a contribution to the tensor force of or- 

der ma4 which decays only algebraically (as RB5) as R --+ 00; thus (3.48) is not 

the only long-range spin-dependent effect in the theory. A better approximation 

might be to evaluate the complete expression (3.42) in an explicit model of con- 

finement such as the magnetic superconductor model of the previous section. A 

somewhat incomplete study of this approximation has been carried out by Banks 

and Spiegelglas.lSSl 

Despite the comment I have just made about the hyperfine interaction, it is 

certainly true that perturbation theory gives an extremely local interaction. It 

is tempting to compute this interaction more seriously in perturbative QCD and 

take seriously the corrections to the leading-order result. The hyperfine term in 
. 
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(3.42) does not contribute to the splittings of the P-wave q-q states, but it can 

be used to predict the splitting between the singlet and triplet S states. This 

calculation has been carried out by Buchmiiller, Ngand Tye,ls41 who computed 

the one-loop radiative correction to the expression for the hyperfine interaction 

obtained from (3.45) and (3.46). They find 

AE(3S -l S) = 73 ltj(0)12 WG) 1 + (0.563 + 0.375 ,,$,2 )=] . 
?r 

(3.49) 

This result is numerically quite reasonable; the 11) - r,re mass splitting of 120 MeV 

would correspond, using (3.49), to a value of Am of about 309 MeV. 

Let me now discuss briefly, and in very general terms, the application of Eq. 

(3.42) to the the splittings of the 3P states. In this case the hyperfine term does 

not contribute, so we must evaluate the matrix elements of 
_ --- 

c-3 and h.g+@.,$-. (3.50) 

This is easily done; let me provide you with a table of the relevant diagonal 

matrix elements of spin operators: 

3po 3pl 3p2 
(Z * $) -2 -1 +1 

(k.~+k*X) -f t !h (3.51) 

The mass splittings of the P states are most often characterized by the value of 

a parameter t, defined by 

M(3P2) - q3p11 
r = M(3Pl) - M(3Po)’ 

(3.52) 

Using the elements of theTable(3.51), one can see that, in the limits in which the 

spin-orbit and tensor terms, respectively, dominate the mass splitting, r takes 
. 
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the following values: 

spin-orbit dominance + r 2 = 

tensor dominance -+ ~--r = -0.4 

QED * r = 0.8 . 

The third value of r is that obtained from Eq. (3.45). The experimental values 

of r for the C-E and b-b systems are 

CE 13P 

bi; 13P 

b6 23P 

r = 0.48 

r - 1.0 

r - 0.9 . 

It is quite reasonable that these numbers indicate the approach of the spin- 

- --dependent potentials to their perturbative form. 

Clearly, there is much more that one could do to compare Eq. (3.42) to the 

experimental data on spin-dependent forces. One further application is given 

in Estia Eichten’s lecture in this volume. I do not have space in the scope of 

this review to survey the variety of forms which have been postulated for the 

potentials I$ and the experimental success of these forms. But recently RosnerlS61 

has compiled a detailed survey of such models; I recommend his review to the 

interested reader. 

- . 

Thus ends our formal discussion of spin-dependent forces, as they are de- 

scribed by gauge theories. What do we learn from this analysis? First of all, the 

spin-dependent interactions of heavy quarks can be analyzed systematically and 

represented in terms of more fundamental expectation values of the gauge fields. 

The classical spin-orbit interaction still appears, and this term is of long range 

in a confining theory. But the short-ranged part of the spin-dependent potential 

is a new object, a new probe of gauge field correlations in the region between 

confinement and perturbation theory. 
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4. Hadronic Transitions Between Heavy-Quark States 

In this section, I would like to examine another, more dynamical aspect of 

the behavior of heavy quark-antiquark systems, the theory of transitions between 

heavy q-q states mediated by the strong interactions. Again, our analysis will be 

guided by its use of the Feynman path formalism, and this discussion will provide 

another illustration of the power of this formalism in allowing one to visualize 

the basic processes of the gauge theory. To begin, let me pose the problem more 

precisely. The C-E and b-6 quark-antiquark bound states are observed to have 

very small widths for decay into ordinary hadrons and seem otherwise to be very 

weakly coupled to ordinary hadrons. Still, though, excited states of the tc) and 

T are observed to decay (albeit slowly) via: 

ff-) $+2x, ++q, . . . 

T’--) T +27r, . . . . (4.1) 

The fact that these transitions are slow should encourage us, if we remember the 

Golden Rule of Perturbative QCD: That which is small is calculable (especially 

if it is too small to be measured). Let us explore what QCD has to say about the 

mechanism and rates of these transitions. 

-. 

Before we enter our detailed analysis, let me pause to note that it is already 

remarkable that the processes (4.1) should be suppressed at all, given that they 

are mediated by the strong interactions acting at low momentum transfers and 

therefore, presumably, at full strength. Further, the observed suppression is 

much greater for the T’ than for the $J’. It was Gottfriedls*l who realized that 

these features of the hadronic transitions are quite naturally understood within a 

gauge theory of the strong interactions and, indeed, display clearly the nature of 

the fundamental strong-interaction coupling. To see this, think about the process 

obtained from (4.1) by crossing, the scattering of an ordinary hadron by a heavy 
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q-p state. This situation is shown, in a somewhat idealized fashion, in Fig. 18. 

The heavy bound state is very small in its spatial extent. If we imagine taking 

the radius of this state to zero, the color chargesof the quark and antiquark 

would overlap in space and precisely cancel; then this state would produce no 

gauge fields to interact with those of the larger light hadron. It therefore makes 

sense to compute the scattering amplitude as an expansion in the size of the 

heavy-quark system. In QED, such an expansion is well-known; it is just the 

multipole expansion of the charge density: 

I j@ = &A'(O)+;i-i!?(O)+... (4.2) 
J 

The first term is the only one independent of the size of the system. This van- 

ishes for a particle-antiparticle system; thus, the leading contribution must come 

from the dipole interaction. Please note that for a hypothetical scalar gluon, 

- the monopole term would be nonzero and the scattering amplitude would not 

decrease with the size of the heavy-quark system. Conversely, a gluon of spin 

greater than one would not couple to the dipole moment of the q-q state, but 

only to a higher multipole moment. Any indication we can find that the dipole 

interaction does dominate is evidence that the gluon is a part,icle of spin 1. 

- . 

Still, one must realize that QCD is more subtle than its Abelian counterpart. 

It is, unfortunately, not quite correct in QCD simply to write down the analogue 

of Eq. (4.2); one must perform some more careful analysis. Let me now lead 

you through this analysis in several stages. First, I will discuss the idealized 

situation of pure perturbative &CD. After studying this system in some detail, I 

will outline a phenomenological generalization of this discussion, due to Kuang 

and Yan, l”l to the intermediate regime of distances described by the potential 

models. Finally, I will briefly indicate how hadronic transitions are described in 

the magnetic superconductor model of confinement discussed at the end of 5 2. 

Let us, then, attempt to derive a multipole expansion for heavy q--p bound 

states in &CD. My discussion here follows the work of Yan.l*l At first sight, we 
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FIG. 18. Scattering of a light hadron from a heavy q-p bound state. 
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may produce this expansion simply by expanding the Feynman path representa- 

tion of the heavy-quark bound state about the limit of zero q-q separation. The 

resulting expression is indicated graphically in Fig.-19. Consider first the situa- 

tion in which the antiquark sits at fi = 0 and the quark moves freely. Using the 

method of Eq. (2.39), we can represent the excursions of the quark by insertions 

of field operators in a vertical Wilson line. In this way, we can expand: 

eag ‘f dz.A 2L P e’O ‘4 dz.A (o-(1+/ dtigfi+-a+;(/ dtigfi,.@) 

J 
R (4.3) 

+ 3+x + dt 2 4gii+- 
J 

where 

eig $ dz-A 
IO (4.4) 

- -- - 

represents a Wilson loop with the quark and antiquark at zero separation, and 

the P operator indicates that the whole expression is to be path-ordered together. 

The last term listed in (4.3) arises from the spin-dependent term in the exponent 

of (3.20) and not, strictly speaking, from the Wilson line itself. Assembling the 

contributions from both the quark and antiquark, we find for the expansion of 

the Wilson loop: 

eigJ &.A = p eigj dtig&& 
J 

dt (i+2;i-).gfJ+. . . II . (4.5) 

- . 
The two terms listed in the exponent are the color electric and magnetic dipole 

interactions. 

The expansion indicated in Eq. (4.5) has the general form of a series of local 

gauge field operators inserted into an 2 = 0 Wilson loop: 
- 

(4.6) 
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FIG. 19. Representation of the expansion of a typical quark trajectory about 
R = 0. 
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It is natural to try to use this expansion to represent the emission of ordinary 

hadrons from the heavy q-q system by considering the gauge-field operators 0i 

as gluon creation operators. Then, for example, theamplitude for the q-p system 

to radiate a single gluon would be given by 

< ppJ &A 
J 00 dlgR - &x,(t)] > - (4-V -00 

This formula looks innocuous, and perhaps even correct, but it contains some 

physics which is seriously wrong. The multipole operators of Eq. (4.6) will, in 

general, change the color of the q-q state, and the emitted gluons will carry 

off color. Something that we have left out must impose quark confinement and 

assure that the q-q state remains a color singlet. 

In principle, it might have been that we could see this color singlet restriction 
- -- - only by working through the physics of confinement in some detail. For this 

problem, however, this restriction can be found, and its effects can be studied, 

simply by performing QCD perturbation theory with more care. ls81 We must 

first realize that the formal manipulations of Eq. (4.3) omit an important effect 

of perturbation theory-the attractive Coulomb potential between the quark and 

antiquark. This effect, which arises from the class of Feynman graphs shown in 

Fig. 20(a). produces an contribution to the amplitude for a Wilson loop with 

small R of the form of Eq. (3.19): 

exp[-/ &(-$%)I . W) 

This Coulomb potential indicated in (4.8) is that for the attractive interaction of 

a quark and antiquark in a color singlet state. This contribution is nonanalytic 

and certainly not negligible as 2 -t 0. Now consider the class of diagrams shown 
- 

in Fig. 20(b). If the q-q system was in a color singlet state before the emission of 

the gluon, then afterwards it must be in a color octet state (to conserve color); 
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FIG. 20. Feynman graphs building up the Coulomb potential between a quark 

and an antiquark (a) for an undisturbed Wilson loop, (b) for a loop emitting one 

gluon, and (c) for a loop emitting two gluons. 

- . 

- 

. 

59 



the exponential factor is thus changed to the Coulomb potential appropriate to 

this state, which is smaller in magnitude and repulsive: 

exp[--J &(+%)I :- W) 

Eventually, this color octet state might radiate another gluon and return to a 

color singlet configuration (Fig. 20(c)). In this case, the exponential factor is 

modified only for the length of time for which the q-q system stayed a color 

octet. If the times of the two gluon emissions are labelled ti and tz, respectively, 

this factor is given by 

exp[-/ dt(-$)]exp[-(h- 1r,B,] . (4.10) 

The higher energy of the color octet configuration provides an exponentially 

decaying term which restricts the size of (t2 - tr) and thus binds together the - -- - 
two gluon emissions. This effect of the color Coulomb potential was first noticed 

by Appelquist, Dine, and Muzinich.lzel 

Let us now ask how this Coulomb term-and, especially, the exponentially de- 

caying factor displayed in Eq. (4.lO)Gnfluence the multipole expansion presented 

in Eq. (4.3). Clearly, it restricts the amount of time the heavy-quark system can 

be in a color octet state; thus it ties together two or more gluon creation oper- 

ators into a cluster of emissions which is an overall color singlet. The leading 

term in the expansion (4.5) for the process shown in Fig. 20 is then: 

exp[-/ &&j(R)]/ dttdt2iga.~(t2)e-(tz-‘1)(~~-~)~g~.~(tl) . (4.11) 

If we perform the integral over (t2 - ti) for radiated gluons of fixed energy, in- 

cluding as well (by hand) the quark kinetic energy, we find a transition amplitude 

proportional to - 

Rili) . (hadronsl $ tr E’dlO) (4.12) 
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where now Hq is the complete energy of the octet q - in system. This equation 

represents the leading term in the multipole expansion relevant for &CD, since 

it is the term of lowest order which allows the heavyyquark system to begin and 

end in a color singlet state. More careful derivations of this formula have been 

given by Voloshin lsQl and myself.1s8l 

The double-dipoleFormula(4.12) will be the starting point for my discussion 

of the phenomenology of hadronic transitions. Before beginning this discussion, 

however, I would like to discuss briefly two more theoretical topics. The first 

is to note that, whereas the Formula(4.11) for double gluon emission does arise 

quite readily from the Wilson line picture, it is not quite so straightforward to 

derive as a sum of Feynman diagrams. One might think that it is necessary only 

to sum diagrams of the form of Fig. 21(a); however, these diagrams alone give 

a result of the form 
- -- - 

g2(R’a’AO)e-(30,/2R)(tz-tl)(RjaiAo) (4.13) 

which is not gauge-invariant. One must remember that the integral over (t2 - tl), 

since its range is controlled by the exponential factor in Eq. (4.10) has an extent 

of order o, -l. This means that diagrams which are apparently of different orders 

in o8 can be comparable in size if they receive a large weight from this integral. 

This actually happens in the diagrams of Fig. 21(b) and (c). The diagrams of 

the form of Fig. 21(b) pick up one extra factor of cr,-r and yield the result 

-. 
(-Ri~oAi)e-(3Q,/2~)(t2-tl)(Rj~iAO) + (R’a’AO)e-(3”,/2R)(‘2-tl)(_RjaOAj) , 

(4.14) 

the diagrams of Fig. 21(c) yield 

(R’aOAi)e-(3*‘/2R)(‘2-~l ,(RjaOAi) . (4.15) 

The sum of these contributions is, of course, the gauge-invariant Formula(4.11). 
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(b) 

FIG. 21. Feynman diagrams contributing to the double-dipole fbrmula for gluon 

emission from a heavy q-p state. 
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I would also like to give a first illustration of the physics of the Formula 

(4.12) in a context which is relatively simple, though somewhat artificial. Let 

me discuss the long-ranged interaction of two heavy-quark bound states, and, in 

particular, the question of the existence of hadronic van der Waals forces.l4ol I will 

argue toward this point by presenting three pictures of increasing sophistication. 

These three viewpoints are illustrated in Fig. 22. Figure 22(a) shows the most 

naive picture, a dipole-dipole interaction based on the static potential V(R). For 

a confining potential, this gives a long-ranged potential between heavy hadrons 

of the form 

h-h - (4.16) 

We can make a slightly more sophisticated picture by representing the strong- 

interaction fields connecting the two hadrons as gluons and using the double- 

dipole vertex to describe the coupling of the gluons to the heavy state. This - -- - 
picture, represented in Fig. 22(b), leads to a potential 

- . 

This picture, with photons substituted for gluons, is actually the correct one for 

the very long range interactions of atoms; the Formula(4.17) is the color analogue 

of the Casimir-Polder effect14’~Ql . In &CD, however, one should properly replace 

the gluons in the intermediate state by the various color-singlet hadron states 

created by the operator tr(E’Ej), as indicated in Fig. 22(c). The lightest such 

state dominates the long-range behavior. In a pure color gauge theory, this would 

be some glueball state; in a realistic version of &CD, it is the 2-pion state. Thus, 

we find at last the expression 

V,,-h - I(GltrE’Ejj 0)~2e-MGlR-“l . (4.18) 
- 

Let us now move on from these idealized considerations toward the problem 

of computing the rates of hadronic transitions. We would like to perform this 
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FIG. 22. Three pictures of the long-ranged interactions of two he&y-quark bound 

states. 
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computation by the direct use of the double-dipole Formula (4.12). However, 

perturbative QCD does not give us a precise understanding of two elements which 

enter into this formula-the spectrum of levels of the.I-Iamiltonian H8 describing a 

q-p pair in a relative color octet configuration, and the effective value of cr, with 

which the two emitted soft gluons couple. It would be valuable, then, to identify 

tests of this formula which are relatively independent of these two ingredients. 

One such test was suggested by Gottfried in his original paper.lsel Gottfried noted 

that the spectrum of low-lying energy levels is almost exactly the same in the $ 

and T systems; in particular, the excitation energies of the +’ and T’ are almost 

identical: 

m(T’) - m(T) = 560 MeV N m(Plf’) - m($) = 585 MeV . (4.19) 

Thus, the hadronic systems created in the hadronic transitions from +’ to T,!J and 
_ -- - 

from T’ to T are the same. It is now unreasonable that the low-lying spectrum 

of H8 should also be the same in these two systems. But then, the only difference 

in the amplitude for the hadronic transition in these two systems comes from 

the dependence of the matrix element (4.12) on the size of the q-q bound states. 

Specifically, one should expect that these amplitudes are in the ratio 

- . 

M($ -+ $J + hadrons) 
M(T’ -+ T + hadrons) 

(R2)4 - 3 
=IR2)T- 

so that the decay rates should be in the ratio 

I-($ + $ + n+R-) 
Iyr’ + Y + 7r+7r-) 

- 10 . 

The experimental values of these rates are 

r($’ * 9 -I- T+T-) = 71 f 14 keV 

(4.20) 

(4.21) 

(4.22) 
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their ratio is in quite reasonable agreement with (4.21). Let me recall that, if the 

gluon were a spin zero object, the ratio of these rates should be 1. The results 

(4.22) should thus put to rest all doubts about thespin of the gluon. 

A second such scaling law has been proposed by Yan121 for hadronic transi- 

tions producing a single q. Since the q is a pseudoscalar, the matrix element for 

the process $’ -+ $J + t,~ must have the form 

- 

M - W) x W) - i;(9), (4.23) 

where the t’s denote the polarization vectors of the $J mesons and g(q) is the 

momentum of the produced q. The spin-dependence indicated in (4.23) is not 

present in the leading-order double-dipole formula; to find such spin-dependence, 

it is necessary to go to the double-magnetic-dipole and electric dipole-magnetic 

_ quadrupole terms. In either case, one finds 

where m is the mass of the heavy quark. Thus, Yan expects 

(4.24) 

(4.25) 

R is the ratio of phase space, which is a large factor (m 6) for this process. 

Unfortunately, the decay T’ -+ T + q has not yet been observed. The scaling 

law (4.25) would predict 
- . 

BR(T'-,T+q)=SX W4. (4.26) 

In order to go beyond these scaling laws to make more detailed predictions, it 

is necessary to make more dynamical assumptions; in particular,one must explic- 

itly resolve the two issues I had noted at the start of our discussion of scaling. The 

66 



most complete attempt to give a detailed evaluation of the rates of hadronic tran- 

sitions within this formalism has been made by Kuang and Yanls71. These 

authors resolve the question of the value of o, appropriate to Eq. (4.12) in the 

most straightforward way, by simply taking this coupling constant, times the 

amplitude for the two gluons to materialize as two pions, as a parameter and 

fixing it from the rate for +!J’ ---) tj + 2~. The question of how to represent the 

spectrum of H8 is considerably more puzzling. Kuang and Yan chose to identify 

the spectrum of color octet pq states with the spectrum of q-q states in the 

potential corresponding to a vibrational excitation of the confining flux tube, a 

set of states which Giles and Tye l42l have insisted should occur in heavy quark- 

antiquark systems. I should note that the lowest such vibrational state has been 

searched for unsuccessfully in the b-6 system, lrsl though one should keep in mind 

that this search assumed a substantial coupling of this state to a single photon. 

In any event, Kuang and Yan have predicted a substantial number of rates for - -- - 
hadronic transitions in the ‘I’ system. Let me present their predictions for the 

branching ratios of these transitions and compare them, where possible, to ex- 

perimental results: 

p& theory expt.(CLEO, Ref.441 

T’ + Tn?r 25 - 29% 32&l% 

T” + Tnn 2-S% 7&l% 

T” + T’nn 2-3% 

23Po -+ 13Ponn 0.05 - 0.06% 

23Pl 4 13Pl AA 0.3% 

23P2 --) 13P27rR 0.2% 

23P2 4 13PpT?T 0.01 - 0.02% 

The predictions for the rates of the 23P --+ 13P transitions are small, but 

these transitions are particularly interesting in displaying additional symmetry 
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constraints following from the doubledipole form of the amplitude (4.12). Yan121 

has noted that there are more 23P 4 13P transitions than there are independent 

invariant amplitudes in (4.12). To see this explicitly,.note that the double-dipole 

operator 

. 1 
R’Hg -A?& 

Rj (4.27) 

transforms under spatial rotations as a reducible tensor; it can be decomposed 

into spin 0, spin 1, and spin 2 components. We may associate with each of these 

components, taken between 23P and 13P states, a single invariant matrix ele- 

ment. The transition amplitude from a given 23P state to a given 13P state may 

be found in terms of these invariant matrix elements through some accomplished 

Clebsch-ology. One finds 
--- 

-&((JYS) + (JLS) + 274 = (2J + 1) &({ s” fJLI}TA, (4.28) 
A% 

where the expression in brackets is the 6-j symbol. M,, denotes the invariant 

mass of the two-pion system. As Eq. (4.28) indicates, this symmetry decomposi- 

tion holds for each fixed value of M,,. To express the relations between various 

transition rates, I will use the notation: 

-. 

dry’ -+ J) = .-&(23P, -+ 13PJ). 
d&r 

(4.29) 

Since there are 9 such transition rates and only 3 invariant amplitudes, there 

must be 6 symmetry relations, obtainable by eliminating the Ak from among the 
. 
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formulae (4.28). Yan thus finds the relations: 

dr(0 -+ 1) =3dr(l-+O) 

dI’(0 + 2) = SdI-(2 --+ 0) 

3dIyl --+ 2) = Sfl(2 --) 1) 

dry1 + 1) = dry0 --+ 0) + +zr(O + 1) + ; dry0 3 2) (4.30) 

dry1 ---) 2) = ; dry0 --* 1) + 5 dr(0 --* 2) 

dr(2 + 2) = dr(0 + 0) + 4 3 dr(0 + 1)+ $ dry0 --+ 2) . 

Yan notes, further, that the transition rates dI’(0 --* 1) and &r(l + 0) should be 

small because of a soft-pion suppression; ignoring these quantities, (4.30) is a set 

of 5 relations among 7 small but finite rates. --- 

To complete this discussion of hadronic transitions, I would like to look at the 

computation of such transition amplitudes from a somewhat different perspective, 

that of the magnetic superconductor model of confinement introduced at the end 

of 5 2. This model contains an explicit mechanism of quark confinement, but it 

also replaces the gluons by a phenomenological massive gauge field. In terms of 

this new gauge field, the dipole operator is given by 

(4.31) 

There is no color in this phenomenological model, so the emission of a single 

one of the new gauge bosons is not forbidden by symmetry. However, there is 

no light axial-vector boson in the hadronic spectrum (especially if it is required 

to be mostly glueball). Thus, for a realistic value of the mass p of this state, 

,the decay of $J’ to $J plus one of these bosons should be forbidden by energetics. 

The simplest process allowing a hadronic transition from $’ t,o 11, is one in which 

two gauge bosons are produced, and these two bosons recombine into two pions, 
. 
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as indicated in Fig. 23. This amplitude for this process still involves a heavy- 

quark matrix element of the double-dipole form, so that the scaling laws and 

Clebsch-ology discussed above apply equally well to-this model. 

In this model, we might also try to understand the properties of the %pion 

state produced in the hadronic transition. To do this, of course, we must assume 

some form for the 2 gauge boson + 2 pion transition amplitude. However, this 

amplitude is restricted by the requirement from current algebra that it vanish at 

zero pion momentum. The simplest amplitude consistent with this requirement 

is 

-. 

6L = ; (a Q&Y‘~i(FXa)2 + ba,ni~,x’F”Fux) . (4.32) 

If one uses this expression to evaluate the amplitude of Fig. 23, one must obtain 

a result containing one power of each pion’s momentum. Thus, the amplitude of 

Fig. 23 must be of the form --- 

M(nS -+ n’s + 28) - (4$22, + Bq3&. (4.W 

This restriction from current algebra is of course more general than the specific 

model we consider here; it was first pointed out some time ago by Brown and 

Cahn14al and was applied also in the analysis of Yan.121 

-. 

As a simple way of approaching the process of Fig. 23, let me approximate the 

amplitude shown by considering the intermediate two-vector state to be replaced 

by a set of bound states; this approximation is indicated diagrammatically in 

Fig. 24. These bound states should have the quantum numbers of a pair of axial 

vectors combined symmetrically; that is, they should be scalars and tensors. The 

simplest case is the one in which the only intermediate state is a scalar with a 

large mass or a large width: In this case, the amplitude M has just the form of 

(4.33) with B = 0. This limit yields a decay spectrum of the form: 

dr 
d&r 

- k - (Mz, - 4rni)i . (~2,~ - 2mz)2 (4.34) 
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FIG. 23. The dominant process mediating hadronic transitions between heavy- 

quark states in the magnetic superconductor model of quark confinement. 
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FIG. 24. An approximation to the amplitude shown in Fig. 23. 

-. 

. 
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where k is the recoil 3-momentum of the final q-q state. This expression peaks for 

large values of M,,. This shape for the 2-pion mass spectrum agrees strikingly 

with that observed in the hadronic transitions from the T/J’ and T’. The agreement 

for the T’ transition is shown in Fig. 25(a); Eq. (4.34), represented by the dashed 

curve, is compared there to recent results of the CLEO experiment.l46l Figure 

25(b), however, indicates that this simple picture is not at all in agreement with 

the spectrum obtained in the transition from the ‘I’” to the ‘I’. 

To understand this discrepancy, let us write a slightly more sophisticated 

rendering of Fig. 24. Let me included both spin-0 and spin-2 bound states, each 

coupling to a double-dipole heavy-quark matrix element. These bound states are 

closely analogous to glueball states, and I encourage you to think of them in that 

way. One should represent these states with the following propagators: 
. 

- -- _ spin - 0 A(p) = ’ 

spin - 2 Al“‘M = f gPx - PpPx 
xd 

9 
vu 

* 4 
G  

2 -- 
3g ( lJu PpPu PXPU -- WG gxu >( 

-- flG -A(P) 
)I 

(4.35) 

The horrible spin factor in the second line arises in the following way: The 

polarization of the spin-2 state is characterized by the values of pair of indices 

(PY). The propagator must contain projectors so that, first, p and u can take 

only space-like values when the meson is on shell and at rest (p = (MG, a)), and, 

second, that the spacespace components of in this frame form a traceless tensor. 

The latter condition can be written: 

(4.36) 

where i,i run over spatial indices only. These two conditions give the projector 

in (4.35) uniquely; the second condition produces the factor 3 in the last line. 
. 
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FIG. 25. Distribution of events containing hadronic transitions between T states 

according to the mass Mnlr of the 2-pion system, for (a) T’ --* T + 2n and (b) 

TN 3 T + 2n. The data are taken from Refs. 46 and 44, respectively. The 

dashed curve is the prediction of Eq. (4.34); the solid curve corresponds to Eq. 

(4.37) with the parameters given in the text. The overall normalization of each 

curve is arbitrary, and adjusted. 
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Using these propagators, we can write the amplitude of Fig. 24 as 

(4.37) 

where Q = q1 + q2. 

From Eq. (4.37), it is straightforward to generate an expression for the dipion 

spectrum; the formula of Yan given in Footnote 6 of Ref. 44 is useful in per- 

forming this calculation. The resulting formula has enough parameters that one 

has wide latitude in curve-fitting, but it is still not trivial that, using the same 

amplitude, one can produce pions in the low mass region for the T” transition 

but not for the 7”. The solid curves in Fig. 25 show a reasonable fit: In order 

to obtain the right behavior from the spin projectors in (4.35), it is necessary to 

take MG to be very low (600 MeV). One must then insist that these states are 

- very wide; 1 have set rG = MG. The remaining parameter is given by (Y = -2. 

It is amusing that this simple model requires a set of glueball states which are at 

very low mass but, at the same time, are too broad to show themselves clearly 

as 7rl resonances. 

In this section, then, we have seen that the Feynman path formalism leads 

directly to multipole expansions for the interaction of heavy q-q states with ex- 

ternal probes or with ordinary hadrons. The systematics of the rates of hadronic 

transitions between q-q states seems to accord well with this picture. But again, 

as with the topics treated earlier in these lectures, the imperfections in our knowl- 

edge of the transition region between gluons and hadrons eventually catches up 

with us. Can we, eventually, understand quantitatively what goes on in this in- 

termediate regime, where perturbative &CD no longer applies but confinement is 

not yet an absolute constraint? I hope I have enticed you to ponder this problem 

&and, perhaps, to find a way to solve it. 
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