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ABSTRACT 

The interactions of fermions with a non-abelian monopole is studied without 

adopting the point-like monopole limit. The fermion is second quantized in a Prasad- 

Sommerfield background and the absence of dyon solutions is demonstrated. Canon- 

ical quantization of the “charge rotator” degree of freedom of the monopole is carried 

out and gauge invariance elucidated with particular attention to electric charge con- 

servation. Finally, non-conservation of the axial vector charge is demonstrated. A 

conserved, gauge-dependent axial charge is constructed and the standard anomalous 

commutator with electric charge found. 
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1. Introduction 

The interaction of fermions with a non-abelian gauge theory monopole evidently 

produces some startling effects. In the field theoretic models of the system solved 

by Callan [1,2] and Rubakov [3], the fermion vacuum exhibits considerable structure 

and radically alters the monopole-dyon spectrum of the pure gauge theory. Further- 

more, the ability of the vacuum to “store” quantum numbers in extended fermion 

condensates leads, in Grand Unified Models such as minimal SU(5), to baryon number 

non-conserving reactions at strong interaction rates. 

These phenomena have their source in the axial vector anomaly supported by 

the radial magnetic field of the monopole, and in the fact that the fermionic charge to 

which the monopole couples is not well defined in the vicinity of the monopole [4,5,6,7]. 

This latter property in subsumed, in the soluble models, by a charge non-conserving 

boundary condition on the fermions in the limit that the region of ill-defined charge 

shrinks to zero, i.e., in the limit of a point-like, abelian monopole. Though there 

appears to be no reason to challenge the validity of either the limit or the boundary 

condition, it is interesting to dispense with them and attempt to recover features of 

- the point-like limit. 

In this paper we study the interaction of J = 0 [1,2,3,8], massless fermions with 

a non-abelian, finite-sized, monopole in the Prasad-Sommerfield limit 191. We restrict 

our attention to an SU(2) gauge theory and one isodoublet Dirac fermion. Although 

this system is not soluble, it’s possible, at least, to verify a number features of the 

point-like model. 

The plan of the paper is as follows. In the next section the J = 0 fermion-monopole 

system is formulated in the standard way and reduced to an effective two-dimensional 

field theory. Pertinent aspects of the point-like approximation are briefly reviewed, 

but rather than adopt this limit, we continue to treat the monopole as an extended 

object. 

In section 3, the fermion eigenmodes in the field of a Prasad-Sommerfield monopole 

are introduced and normalized. Completeness and orthogonolity are demonstrated 

and the fermion propagator is derived and compared with that of the point-like limit. 

With this propagator, we examine a “charged” fermion condensate and discover a 

. 
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short-distance singularity not present in the point-like approximation. 

The “charge rotator” degree of freedom of the monopole is turned on in section 4, 

and we search for a solution to the coupled system with a long range, static field, i.e., 

a dyon. This problem can be solved exactly and we find that no such solution exists, 

as did Callan in the point-like limit. 

In section 5, the “charge rotator” is quantized, with special attention paid the gauge 

properties of the system. We adopt a canonical, Hamiltonian approach to quantization 

which leads, trivally, to charge superselection. In particular, the “charged9 condensate 

discussed in section 3 is not present (or, more accurately, not charged) when gauge 

invariance is properly taken into account. In addition, we rederive, for the case of 

fermions in the presence of an extended monopole, the charge quantization results of 

Witten [lo] and Callan [2]. Finally, the anomalous non-conservation of axial vector 

charge in the monopole field is demonstrated. A conserved, gauge dependent charge is 

constructed and its anomalous commutator with the electric charge operator found. 

A recapitulation and brief concluding remarks are offered in the final section. 

2. Formulation 

Consider an SU(2) 1 ocal gauge theory, spontaneously broken to U(1) by an adjoint 

multiplet of scalars, and coupled to an isodoublet massless Dirac fermion. The action 

functional is 

+ i %’ qp(d, - iA,) ‘I’ 1 
where D,cP = 6$/D - i[A,, Q]. 0 ur matrix notation is A, = C”,=, A; $, Q, = 

C @a $, Fpv = C Fiv $ = 8, Av - d,A, - i[A,,A,] with 2% raib = 2bab. 
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The classical monopole configuration is characterized by values of the gauge and scalar 

fields which solve thier classical equations of motion with !P = 0 and make a finite 

contribution to S. In a non-singular, static gauge, 

(1) - 

The functions K(r) and H(r) satisfy K(0) = 1, H(0) = 0 and tend exponentially to 

the limiting values 

K(r) + 0 r-w 

H(r) -+ h r-m 

where h is the expectation value of the Higgs field in the vacuum sector. 

The fields, (l), are treated as a fixed background into which quantum fluctuations 

are introduced. In addition to the fermionic excitations, the gauge field can fluctuate 

- in the space of degenerate configurations reached by performing time independent, 

spherically symmetric gauge transformations which leave the scalar field expectation 

value invariant. This “charge rotator” degree of freedom is conveniently parameterized 

by a collective coordinate X(r, t): 

with U), = ezp iX(r,t)i-G , X(O,t)= 0. 

(2) 

Note that the gauge field fluctuations are restricted to the -unbroken, residual 

abelian direction of SU(2). The broken gauge and Higgs field degrees of freedom have 

large masses and are consequently frozen in the configuration of eq. (1). 

The fermion field can be expanded in partial waves of total angular momentum 

1 = i + ,? + 1, which is conserved in the monopole background. As usual, we will 

consider only J = 0 excitations which evidently account for much of the interesting 
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physics of the system [1,2,3,]: 

with 

+I 
Acu =&, [ [9*(r, 4 - i P&, t) i * +qaa * (4 -. 

In (3) and (4) A an d Q are, respectively, spin and isospin indices taking on the values 

1, 2, and r5*(*) = &%(*). 

Inserting eqs. (l), (2) (3) and (4) into the action functional, we obtain 

s[x,x,-y] = /m dt Tdr {$[(i’)2 +2$i2] 
--co 0 

where x = &A, X’ = drX and 

x(*)(r, t) = (,“,=‘;;“‘,,) . , (f-9 
We have also introduced the two dimensional Dirac matrices qp, p = 0, 1, 75 = q” 71 

which satisfy { rp, r”} = 2 9”; thus, 3 = 7’8, + q1 8,. 

To round out the reduction to eq. (5) and the variables X and x(*), we give 
here several important observables in terms of these variables. First, various fermion 

bilinears are easily obtained from eqs. (3), (4) and (6): 

o( J=O) yO ra \k(J=O) _ ia _ -&(+I “r’ ,(+I - ,(-I ijl ,(-I 
> 

\~r( J=O) + p qA J=O) = & { i i p {x(+1 70 ,(+I _ -#--)~O xH)} + (+a _ +’ ;a) 

x 
( 

,(+I ,(-1-J - ,(--I ,H )+ir’J+(+)75X(+) + xH75xH)} 

m 
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$(J=O) 70r5 *(J=O) -(+I 70 ,(+I - ,(-I 70 ,(-I 
)-&(p+-P-) 

= 

(74 

q,( J=O) . (7d) -’ 

We have also taken the opportunity to define the radial electric and axial charge 

densities, p5 and p respectively. Note that p5 is also the radial axial vector current 

density and p the radial electric current. 

In addition, from eq. (2) and the definition of the gauge invariant electromagnetic 

field tensor [II], we obtain the radial electric field 

E,=i’ . (8) 

The gauge properties of the system are quite transparent in terms of X and x(*). 

From eq. (l), th e residual gauge symmetry consists of abelian, time-independent trans- 

formations of the form 

where Va = exp k(r) i -5, a(O) = 0. In terms of X and x(*), these are simply 

X(r, t) + A(r, t) + a(r) 

,(*I --) e*ia(r)h5x(+-) 
(9) 

where the fermionic transformation law is most easily read off from eq. (7a). Returning 

to eq. (5), it’s straightforward to verify the gauge invariance of the reduced action. 

Briefly, now, the standard approach to the theory described by eq. (5) is to take 

the point-like, or, equivalently, infinitely massive, monopole limit. This amounts to 

setting K(r) equal to zero, its limiting value far from the monopole core [1,2,3]. Since 

6 



this procedure leads to a non-hermitian hamiltonian, a boundary condition is imposed 

on the fermion to define the theory. The resulting model is exactly soluble along the 

lines of the massless Schwinger Model [12]. Subsequently, we will refer to this approach 

as the point-like limit, approximation or model. 

Several authors have pointed out that much of the physics uncovered in this model 

is dependent on the boundary condition [4,5,7], a somewhat unfamiliar and unsatis- 

factory circumstance when dealing with an extended system. We propose to investi- 

gate the theory without making the point-like approximation. Instead, wherever it’s 

convenient or instructive to have a specific form for K(r), we will adopt the Prasad- 

Sommerfield approximation, in which [9] 

- . 

K(r) = 8rirr . 
W 

Here rnw sets the scale of the monopole’s mass, and m,’ the radius of the “core”, in 

which non-abelian effects are significant. In general, it should be self-evident that our 

results depend only minimally, and never crucially, on this approximation. Finally, 

wherever interesting, we will attempt to compare our results and method to those of 

the soluble model. 

3. Fermions in a Prasad-Sommerfield Background 

In this section we examine the “free field” theory of fermions in a Prasad-Sommer- 

field background. Since this system is tractable, it provides a “free-field” limit for the 

theory described by eq. (5) and, in addition, is straightforwardly generalized to the 

case where an additional static, long range electric field is present. The field X(r, t) 

will be turned on in sections 4 and 5, first as a static background and then as a fully 

dynamical degree of freedom. Furthermore, it is interesting to compare the free field 

system with m, finite, with that which forms the basis of the point-like approximation 

PI. 
The “free” Dirac equation for the J = 0 state described by eqs. (3), (4) and (6) is 

{ ii;lOar + i+ 3, + j w-) -5 (*) -p-7 1 x0 (0) = 0 (11) 
with K(r) = mwr/shmwr. The two solutions have been obtained by Marciano and 

Muzinich (141. In a basis in which 7’ = diag (1, -I), the physically acceptable positive 
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frequency modes are 

eBiEt uE(r) = e- jEt C(E) 
th y cosEr + $$sin Er 

cth y sinEr - $cos Er 
(12) 

where C(E) is a normalization constant yet to be determined. Note that, since both 

components of uE(r) vanish as r approaches zero, these solutions are square integrable 

at the origin.* 

The second solution diverges at r = 0 and must consequently be rejected as 

unphysical: 

,-iEt 
thy sinEr - $$ cos Er 

.cth ‘“;“’ cos Er + E sin Er 

This winnowed solution is the finite m, counterpart of the mode eliminated by the 

charge non-conserving boundary condition of the point-like model. 

Now, C(E) can be fixed by the condition of orthonormality. We regularize the 
normalization integral at spatial infinity by introducting a box of length L and find 

L 

j$nrn i / dr u& (r) u,y( r) 
0 

=;;% C*(E) C(E’) [( I+ z) ‘y-;$)’ * 

2 L 
-- 

mwL 
thy cosErcosE’r+cth~sinErsinE’r 

0 

Equivalently, adiabatic regularization gives 
co 

E-b J dre-““uk(r)u&r) = lilioC*(E)C(E’)( 1 + z) ,2 + (,” E,)2 . 
- 

0 W 

*That the lower component of U,IJ vanishes faster than the upper by a power of r is 

the motivation for the boundary condition adopted in the point-like (mw -+ 00) limit: 

(1 - qO)x(f) Ir=o = 0. 

. 
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Recognizing the standard representations 

6~,~1 = lim 
sin(E - E’)L 

L-CO (E - E’)L 

6(E-I??)= lim 1 
a 

a-co ?r (~2 + (E - E’)2 

we conclude that, modulo an arbitrary phase, 

C(E) = [ 1 + (3”1-’ 

(13) 

(14) 

with a density of states n-l. 

We can also find the completeness relation obeyed by our wave functions. Intro- 

ducting the negative energy solutions to (ll), 

we find 

vE( r) = u-E(r) = 7’ uE(r) , 

0 
UE (r) UE+ (g) + vE (r) 2.‘~’ (r/)1 

- ?‘cosE (r+r’) 1 
Co 

J 
dE mw(r - g) 

--co 1+ (2mGp 
cos E(r - r’) cth 

2 

X cthm,r’ 
[ 

- cthm,r + ~‘(cshm,r - cshm,r’) 
I 

+ cos E(r + r’)cth mw(r + ‘) 2 
[ 
-cshm 

W 
r - cshm,r’ + =j’(cthm,r + cthm,r/) 

I 

2E -- 
mw 

cthmwr - cthm,# - q’(cshm,r - cshm,r’) 
I 

- g sin E(r + #)[cshm,r + cshm,+ - q’(cthm,r + cthmwr’)]} 

=S(r-r’)-q”6(r+r’) . (15) 
. 
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Note that this result is independent of mw. It is interesting, though probably in- 

consequential, that eq. (15) differs from the completeness relation for free fermions 

satisfying the charge non-conserving boundary condition of the point-like model: 

loo - 
7r / 

dEwE(r)wL(r’) = s(r - r)’ + 7’ 6(r + r’) (16) - 
--oo 

where 

(17) 

Other basic properties of the wave functions uE(r), notably as scattering states, 

have been explored elsewhere [P4]. Here we will note only that they are eigenstates 

of neither the radial momentum operator -iar nor of electric charge, q5, but, are, 

instead, energy and position dependent linear combinations of incoming i;i5 = -1 and 

outgoing ij5 = +1 states. This is particularly transparent for mwr >> 1 where 

‘I1Et”) --) 
cos (Er - R(E)) 

> 
2E 

sin(Er - Cl(E)) ’ tunSt(E) = G . (18) 

We propose, now, to second quantize the fermion field and derive its two-point 

function. Our field operator is 

xbf’(r, t) = /m$ [ b,q*) “&)e-iEt -6- d&) vk(r)e’B] 
0 

With tbE(+ b&(*) } = {dE(*),dL,(*)} = 6(E - E’) and eq. (15), we obtain the 

standard anti-commutation relation (note that r,g 2 0) 

{x~)(r,t),#+(J, t)} = b(r-+)-~06(r+rl) 

Defining the vacuum state, as usual, by 

bE(*) lo >= dE(*)l 0 >=0 
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we obtain the two-point function 

d’)(r, t; r’t’) =(olxbf’(r, t) xp’ (r’, t’)lo) = rFuE(r) aE (r’)e-iE(t-t’) 
0 

1 q”(t-t) + +(r-f) 1 (t-t) - q5(r+r’) 
=- -- 

27ri (t - t’)2 - (r - r’)2 2wi (t - t’)2 - (r + r’)2 

mw q” chmw(r - r’)/2 - chmw(r + r’)/2 --- 
47ri chm,(r - I-‘) - chmw( r + TI) 

X 
{ [ 

c?+ y(r - r’),? (t - t’)] - &+[T(r + r’), y(t - t’)] 

- 27ri0(r + r’ - It - t’l)e(lt - t’l - Ir - r’l)shmwlt - t’l/2} 

m, q1 shm,(r - f)/2 + q5 shm,(r + r’)/2 -- 
47ri chmw(r - r’) - chm,(r + r’) 

X &- y(r -r/),7 
{ [ 

(t - t’)] - &-[F(r + r’),T(t - t’)] Y 

- 27ri e(r + J- It - t’l)e(lt - iI- If - r’l)c(t - t’)chmw(t - t’)/2} 

(19) 

with 

[(‘(,y’>{elYI[E1(lx + yl) + El((1: - YI)] f e-Iy~IEi(lx+ 4) + Wb-- ~111) 
for IYI > I4 

et(2)Y[El(lx + y() - Ei((x - y() F e-‘(“)Y[E1(/x - YO - Wlx + YDI) 
for I4 > Id 

-. El and Ei are the exponential integrals [15] 

El(x) = i$dt 7 (x > 0) 
z 

Ei(z) = i :dt . 
-CXJ 
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In comparing eq. (19) with the free progator of the point-like limit some care must 
be exercised. In fact, the manifestly mW independent terms in S(O) do not match up 

at all with the mw = 00 model. It is straightforward, however, to explicity evaluate 

S(O)(r, t; r’, t’) 
1 qO(t- t')+$ (r-r’) 

- 
mwzcm 27ri 

1 (t-t’)-T5(r+$) 
(t - t’)2 - (r - #)2 

-- 
2ni (t - t’)2 - (r + #)2 

mw t-” 
----,e 

qRa( - 
mw (r+W2)( -2emw(r+r')/2) 2 

m, (t - t’)2 - ir + r’)2 

mw -5 4niy (e- mw(r+r’)/2)(2emw(r+l)/2) 2 r+f 
(20) 

-- 
m, (t - t’)2 - (r + r’)2 

1 T”(t-t’)++(r--r’) =----- 
2wi (t - t’)2 - (r - r’)2 

+ L (t-t’) - q5(r + r’) 
27ri (t-t’)2-(r+r’)2 

where asymptotic properties of the exponential integrals have been freely employed. 

Equation (20) is precisely the propagator associated with the normal modes of eq. (17). 

This result might be considered a good check of eq. (19) the derivation of which, 

- though basically trivial, involves extensive algebra and manipulation of integrals. 

Now consider the two-point function at equal times. It is perhaps not suprising, 

and is in fact presaged by the discrepency between eqs. (15) and (16) that this limit 

does not commute with m, + 00. Using eq. (13) and properties of the exponential 
integrals, we find 

S(O)(r, t; a-‘, t) = ;6(r- r’)q” -i6(r+r’)-$(F/1&+q5-&) 

im, q5 shm,(r + r’)/2 + q1 shm,(r - r’)/2 
m,(r+r$Q (21) 

+- 2a shmwrshmwr’ /- 
dt$ . 

mw lr--fll/2 

Of course, the completeness relation (15) corresponds to {S(O)(r, t; r’, t), ~~1. 

The last term in (21) contains a logarithmic short-distance singularity as r + r’, 

which contributes to the familiar “charge-violating” condensate found in the point-like 

. 
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model [13,16,17,18): 

(0 I$’ “15 #‘(rt)10) = tr S(O)@, t; r, t) q5 

mwr .~ 

I dt $ 
0 

(22) 

where the finite term is the m, = 00 contribution. The divergence is proportional 

to the two-dimensional “mass”, K(r)/ r, and doesn’t contribute in the point-like limit. 

In the soluble model, when the monopole’s dyon degree of freedom is activated, this 

condensate (or, more accurately, its gauge invariant counterpart) aquires a supression 

factor (e2mw)-l as mw + co [16,17,18]. The suppression is supposed to reflect the 
high energy cost of exciting the dyon, which maintains charge conservation [17]. It will 

not, however, kill the singularity in eq. (22), which suggests that the present models 

are not correctly describing the short-distance behavior of the system. Of course, this 

is not suprising, since we have frozen several degrees of freedom with masses greater 

than or of order of mw. In the point-like model, the fermion modes are effectively 

cut-off at mw as well, so that the singularity in (22) does not appear. 

To conclude, in this section we have examined several aspects of fermions coupled 

to a Prasad-Sommerfield monopole. The new results presented here are eqs. (14), (15), 

(19), and (22). In the next section, we conduct a search for the Prasad-Sommerfield 

dyon. 

4. The Disappearing Prasad-Sommerfield Dyon 

We proceed, now, to demonstrate that the theory described by eq. (5) admits 

no static, long range coulomb field solutions, or dyons. But first, as a reference, the 

Prasad-Sommerfield dyon will be derived in the absence of fermions. 

The pure gauge action is 

S[X] = 7 dt/mdrF[(&iJ2 + F(i)“] 
-co 0 
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Varying with respect to X while fixing 6X(t = &o) = SX(r = 0) = 0, we obtain the 

equation of motion 

with the boundary condition 

as well as A(’ = 0) = 0. The condition, (24), has a simple physical interpretation, 

following from eq. (8) for the radial electric field: 4nr2& >; IrzW is clearly the total 

electric charge of the state and (24) expresses its conservation. 

Equation (23) can be integrated once, but the integration constant is required, 

by gauge invariance, to vanish. To see this, note that Q, = 6L/S >; is canonically 

conjugate to X. Then, since the gauge symmetry is X(r, t) -+ X(r, t) + a(r), 

G[a] = /mdr a(r) II,(r) 
0 

is the generator of gauge transformations and must vanish for physical, gauge invariant 

states. Noting that a(r) is arbitrary [up to a(O) = 01, we have 

(25) 

Of course, recalling that we are working in An = 0 gauge, eq. (25) should simply be 

Coulomb’s law and it is, indeed, straightforward to work out the covariant divergence 

of the non-abelian electric field:* 

ai F(X)oia + c abc Ab)b F(+ic 

*It is well known that Coulomb’s law does not follow from the variational principle in 

A0 = 0 gauge. 
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[It is also worth noting that (25) is the equation of motion obtained by varying S with 

respect to the gauge invariant variable >;; however, the “global” gauge invariance of 

this procedure causes us to miss eq. (24).] 

Finally, with K(r) given by (lo), the two solutions to eq. (25) are 

A = rg(r) = cthmwr and r>; = rf(r) = m,r cthm,r- 1 . (26) -. 

The condition X(r = 0) = 0 eliminates the first of these, while f(r) is, in fact, the 

Prasad-Sommerfield dyon potential. The static radial electric field is 

&&1;2K2 -+ + . 
r-+00 f 

When X is quantized in section 5, we will return to and expand upon the gauge structure 

briefly touched on above. 

Replacing the fermions, we have the coupled equations of motion 

(27) 

where p5 is defined in eq. (78). In addition, eq. (24) is generalized to 

4n 
2;2 r2& $=oo = 2 $I . 

I r=co 
(29) 

Recalling eq. (7b) and the subsequent discussion, (29) is clearly the statement of charge 

conservation when fermions are present. 

Similarly, (28) is the generalization of the time-derivative of Gauss’s law, and must 

be replaced by its first integral 

Now, consider a solution representing a static coulomb field, i.e., a solution with 

i = 0. The essential point for our proof is that, with this constraint, the Dirac 

equation is soluble. Writing 

(31) 
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(f) we find that xx solves the “free particle” equation, 

i 
( 

a+75 Q-J 
r > 

xp=* (32) 
of the previous section. 

To find the charge density induced by the field A, we make the usual gauge invari- 

ant, point split definition [12], 

where S(*) is the two-point function for x(*) and we have used (31) to write (33) in 

terms of S(O), given in eqs. (19) and (21). [If the second equality in (33) appears to 
(4 * be gauge dependent, note that xx is a gauge invariant operator.] Carrying out the 

limit in (33), using eq. (21), we obtain 

or 

b5 b-7 9X = - i X(r) . (34 

In deriving this result, we have treated X as an arbitrary, externally imposed, 

classical field. We now ask that it be a self-supporting solution of the system. Self 

consistency then requires that X satisfy 

(a?-FJri+ 
e2 

&(p5)A = (6$-~--sT;ZF2)ri =O . (35) 
Now, physically acceptable solutions to (35) must vanish at the origin and describe 

electromagnetic fields which vanish at least as fast as rs2 at spatial infinity. Solving 

(35) in these asymptotic regions, its easy to show that the allowed solution must obey 

r>; + r(2+a/3) 
t-0 

rX -b r+ 
r-co 
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with Q = e2/8n2. But this behavior implies that the function rx has an inflection 

point at some P # 0: 

and it’s easy to convince oneself that the right hand side of (36) is positive definite for 

P # 0. We therefore conclude that, in the presence of massless fermions, the Prasad- 

Sommerfield dyon disappears. 

What has become of the dyon? The solution corresponding to the classical dyon 

field behaves like >; - ra as r + 00 and, as cr + o, coincides with j(r) in eq. (26). 

However, the transition is non-analytic: for any finite Q, the dyon state is pushed off 

to infinite mass [Er ,r;;so rcuV1 + 0(rs2)]. As h as b een previously noted, this is a 

consequence of the ability of the fermions to totally screen the dyon’s electric field in 

the infinite volume limit [1,19].* 

*A derivation of the “disappearing dyon” has been given by Sonoda which is similiar to 

this one in that the point-like approximation is not adopted [20]. However, the author 

assumes the anomalous non-conservation of the axial vector current and adopts it as 

a classical equation of motion. 

. 
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5. Canonical Quantization 

To quantize the theory of eq. (5), it is convenient to introduce the decomposition 

Jdl-7 t) = m(t) 
f(r) 
m, + i b-9 t) (37) 

- 

where f(r) is given in eq. (26)) and 

i (r, t) lr=m = 0 

X(r, t) lr=m = 0(t) 

Using eq. (25), we find that (37) diagonalizes the gauge action; we have 

A 
S[X ) a, x(*)1 =~ldt~+ldt~dr{~~r(aZ-~)r~ 

0 

(38) + i ,(+) 3 x’ -0 -gK -iXq5 -iyq -by re 

+ ;,(-I 

from which follow the equations of motion 

e2mW &=----- 
47r [I 

COdr/(F)l .5 1 --p-J + p Jr=00 
W 

] = ~~&-[f$$+($ikJJ . (41) 
0 0 

To obtain the last equality in eq. (40), we have used the partial conservation law, 

which can be derived from the Dirac equation, (39), 

. 
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where jp = j$+) qp x(+) - j$-) +jp x(-). Equation (42) expresses the near conservation 

of what would normally be identified as, and in the point-like limit is, the abelian 

fermionic electromagnetic current, rpVjy [cf. eqs. (7a) and (7b)]. The right hand 

side is significantly different from zero only in the vicinity of the monopole (r 2 mE1) 

where the physics is genuinely non-abelian and the fermionic charge is not well-defined. 

This is not to say that the theory doesn’t possess a “global” gauge symmetry, only 

that we must be careful to account for its underlying non-abelian nature. At this 

point, we will digress a bit to consider the true conservation laws following from the 

gauge symmetry, eq. (9). We must distinguish two kinds of transformation. These are 

shifts of X by time-independent functions which, in one case, vanish at spatial infinity 

and, in the other, tend to a non-zero constant. Evidently, these can be represented by 

i (r, t) --t i (r, t) + 6 i(r) (43) 

c-Y(t) ---, Cl(t) + &I . (44 
It will become clear that these transformations correspond, respectively, to the local 

and global gauge symmetries of the theory. 

Application of Noether’s construction for (43) leads to the “charge density” 

(45) 

while, for (44) we obtain the current 

JQ = -f(r) l ml, 5 P5 +& k &($r2arf) 

Jl= -f(dP 
m,2 * 

(46) 

Conservation of K(r) and of the current JP is clearly ensured by the equations of motion 

(40) and (41). Thus these equations are merely statements of the gauge symmetry and 

are consequently constraints, rather than true dynamical equations. It’s plain that 

&tot =foDOdr~O should be interpreted as the conserved electric charge of the theory 

and that 

J: =-$,,"jv 
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is the fermionic electromagnetic current. Note that this identification is in agreement 

with the considerations of the previous section [cf. eq. (29)]: 

= -J’I; +I _ 
r-00 

where (40) and (25) h ave been used. Furthermore, 47rci /e2mw is clearly the charge 

lodged on the monopole core. [In this connection, it should be recalled that f(r)m,’ 

is appreciably different from zero only for r 2 rnz’ and tends to unity exponentially 

in that region.] 

Finally, we note that CI plays the role of an angle variable in the following sense: 

shifts of Q by integral multiples of 2~ are equivalent, as far as the action, eq. (38), is 

concerned, to shifts of >; by 2rn[l- f (r)m,’ 1. The consequence of this is that physical 

states which are locally gauge invariant must also evince periodicity in Q. 

Before discussing K(r) and eq. (45), we proceed to construct the Hamiltonian and 

_ quantization rules. From (38), we find the canonical momenta 

(47) 

(48) 

To invert >; in terms of the momenta, we need the Green function, D(r, r’), satisfying 

-r(f$?-ZJrD(r,r’)=b(r-r’) 

D(o,1J) = D(r, 0) = D(r, r') II or 9 = 0 . 
=oO 

D( r, #) is readily constructed from the functions f(T) and g(r): 

1 
D(r, r’) = - 

g(r)f(g) for r > PJ 
mw i g(#)f(r) for r’ > r * 
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Thus, 

e2 O” 
J&t) = -&a(t)f(r) + G/dr’D(r, *)n, (r’, t), 

and the Hamiltonian is 

fj = &s+ in- + i x(+)ti(+) +x(-)ti(-) 
e x 

00 
= 

/ { 
dr -iX(+)teiAT5/2 75 8, + 71 K 

r 
e-iXT5/2x(+) 

0 

_ iX(-)te-iX75/2 75 8, + ijJ K 
( 

eiM5/2x(-) 
r 1 1 

(49) 

e2 O” 
+ q:(t)%+ G/ drdr’ IIi(r, t)D(r, f)IIi(r, t) . 

0 

The penultimate term, here, clearly accounts for the coulomb self-energy of the charge 

lodged on the monopole core. The last contribution is also an instantaneous coulomb 

interaction, but of the extended charge distribution beyond the core. The interac- 

tion energy between between these charges is hidden in the exponential factors of the 

fermionic part of H. 

To quantize, impose the canonical equal-time commutation relations 

[II&r, t), i (r’, t)] = -icY(r - 4) 

[&v,, a(t)] = -i 

{x(*)+(r,t) , x(*)(#,t)} = 6(r- f) 

with all other equal-time brackets vanishing. Hamilton’s equations simply reproduce 

the Euler-Lagrange system; we can write them in the form 

d 
dt 

,FiXT5/fJx(*) eTiV5/2x(*) (50) 

(51) 
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W  

&, = -e 
I 

dra,J; . (52) 
0 

Equation (51) can immediately be integrated to give the conservation law, (45) 

I-q-;p5=‘i, ic=o . 

Now we can identify K(r) as the generator of gauge transformations which vanish at 

infinity. By forming 

G[a] = /mdr a(r) n(r) 
0 

with a(O) = a(oo) = 0, and, using the commutat ion relations, we have 

exp (iG[a])h(r, t)exp(-iG[a]) = X(r, t) + a(r) 

exp (i G[a])#)( r, t) exp( -4 G[al) = exp( *tia(r) $)x(*)(r, t) . 

As usual, though indicated by the gauge invariance, we cannot set tc(r) = 0 as an 

operator identity without upsetting the commutat ion relations. Instead, we must 
impose 

G-w4 =o (53) 
as a subsidiary condit ion on physical states. 

The content of eq. (52) is, again, evidently charge conservation. In addition, the 

operator 

generates “global” gauge transformations, as in eq. (44): 

ei6@ieX(r, t)evi60Qle = X(r, t) + b--- f(r) 
mw 

ei’aQ/ex(*)( r, t)e-iM?le = exp 
( 

fi& fkYl$ 
mw > 

x(‘)(r, t) . 
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Not suprisingly, the fermions carry a position dependent charge which tends quickly 

to &l/2 beyond the monopole’s core. 

Now, to help realize the constraint, (53), we perform a canonical transformation 

to a gauge invariant fermion operator: 

x(*) 4 e WV5/2X(f) , ,(*)t -+ X(f)t&iX75/2 

L-A , II~+15~K 

a+--, 7 n--w-&F=& . 

It is easily verified that the commutation relations are invariant under this trans- 

formation. The new fermion operator is not only locally gauge invariant ([K, x(*)1 = 

0) but carries zero electric charge ([Q, x(*)1 = 0). In terms of the new variables, the 

Hamiltonian is cyclic in CY and & 

(r,t)+g/96rdf$(r,t)b(r,f)$f,t) 
0 

whereb(r,r’)=D(r,r’)+m,lf(r)f(r’)and, in view of (53) several terms of the form 

G[a] have been dropped. The equations of motion have been reduced to 

$4 = - {q5&+~1~*~75[Qf(r)+e~dr’b(r,f)$(r’,t)]}~(*) 
0 

It’s clear now that the physical states, those on which (53) is satisfied, are generated 

by the locally gauge invariant operators x(*), Q and efia. This last operator is 

included pursuant to the comment, above, on periodicity in ty. That is, since Q + 
a + 27r is equivalent to a local gauge transformation, only this function of Q is gauge- 

invariant .* 

*Put another way: we do not insist on global gauge invariance, but instead “allow” 
only those global transformations which go to the identity at spatial infinity and thus 
have no effect on locally gauge invariant states. We will somewhat relax this constraint 
below. 
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Using the formalism developed thus far, we propose to investigate two familiar 

aspects of the point-like model. The first of these is the spectrum of Q, the existance 

of charge superselection and the consequent absence of a charged fermion conden- 

sate around the monopole (17,181. The second is the chiral anomaly, specifically the 

anomalous commutation relation of electric and chiral charge [19,21,22]. 

Since we have constructed a conserved operator, Q, and identified it as the total 

electric charge of the system, charge superselection is assured. However, we would 

like to demonstrate this property explicitly by finding the specturm of Q and, in the 

process, rederive the charge quantization results of Witten [lo] and Callan [2]. 

Charge quantization follows trivially from the inclusion of efia in the gauge in- 

variant algebra. Since 

le *‘*,Q/e] = F efia , 

repeated application of e *LX to any eigenstate of Q generates a tower of eigenstates 

obeying A& = fe. The initial value of Q is arbitrary, so we obtain the spectrum 

&- ( 
I9 

-e n+- 
27r 1 

, n=O, fl, f2, . . . (54 

where 0 4 0 < 2n, but is otherwise undetermined. 

We can construct the eigenstates of Q by introducing states I&,x >, where the 

symbol x in the ket denotes the fermionic content of the state, and 

4%x > =&I&,, > 

< G ) x pi’ ) x’ > = 6(& - b’)sx,x’ . 

States with different CE are clearly degenerate in energy; consider the linear combination 

2(m+l)a 

lw%X >=-& 2mn J d&e-‘q’lti,x > . (55) 

The states ]q, m, x > and ]a, m f 1, x > are connected by the “topologically non- 

trivial”, global gauge transformations 

eG2rQ/e (56) 
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which simply shift Q by f 27r. Thus, there is a one-paremeter family of states stable 

under (56), 

lq,fl >=C eimslij, m > . (57) 
m 

Evidently, we have - 

&IV > =e ij+& lZj,fl> , ij= ( > 0, f 1, f2, . . . ) (58) 

which ensures that 

eFi‘JnQ/e lq, ,g >= ,W Iq 8 , 9 

The result (54) or (58) is just that of Witten [lo]. The vacuum angle, 0, is the usual 

one, here appearing as the phase aquired by the states under topologically non-trivial 

gauge transformations, rather than as a parameter in the Lagrangian. Of course, since 

our theory contains massless fermions, it should be possible to rotate 0 away, though 

at this point, it is unclear how this is to be done. 

Charge superselection is now explicit in the fact that any charge carrying operator 

must contain factors of efia which act as ladder operators on the physical states 
Ip, 6 >. Thus, the expectation value of any charged operator vanishes. In particular, 

consider the charged fermion condensate discussed in section 3. As explained below, 

the relevant operator is 

,(;I 75 ,(;I c C 
= COSQ #) 75 ,w (59) 

where the subscript “A” denotes a fermion carrying the global U(1) charge, as is 

defined in eq. (60). Working to zeroeth order in e, we have 

x < L? Ix(*) T5 ,(*)I n > 

where R denotes the fermion vacuum. The last factor is given by eq. (22), but the 

first evidently vanishes. In view of the definition, (55), this result can be thought of 

as a consequence of averaging the operator over gauge equivalent field configurations. 
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The vanishing of the expectation value, eq. (22), when the dyon degree of freedom 

is turned on has sometimes been attributed to “radiative corrections” (51. Here we 

see that this choice of words is somewhat misleading. The disappearance of the con- 

densate is independent of the coupling constant and is-a consequence only of correctly 

accounting for gauge invariance. 

Now, the spectrum (58) is incomplete since it cannot account for the possible 

presence of an odd number of charge &l/2 fermions. The reason for this is clear: 

strictly speaking such a state is not gauge invariant. A transformation which rotates 

the fields through 27r at infinity will not leave the charged fermion invariant, owing to 

the fact that it’s an SU(2) doublet. 

The field operator for a fermion carrying a half unit of the global U(1) charge is 

x$‘=e fiafi5X(f) , (60) 

which satisfies 

[Q &'I = &eq5,&) . 7 2 

This operator is obviously locally gauge invariant, but under the topologically non- 

trivial transformation, (56), it changes sign.* Evidently, we must relax, slightly, the 

gauge invariance constraint, and add eficui2 and -efiai2 to the gauge invariant algebra 

in order to account for the fermions. Pursuant to the charge quantization argument 

above, this yields the required spectrum 

&- ( 
e -e !Y+- 

2 27r > 
, n = 0, fl, f2, . . . . 

(4 * *Note, however, that e*4niQle leaves xCh invariant, in agreement with the underlying 

SU( 2) structure. 
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In the way of a recapitulation, we can note that all this is fami1ia.r from the 

Schwinger model [12]. As discussed by Rothe and Swieca 12.31, one constructs a Fock 

space representation for the algebra of that model by considering only local gauge 

transformations which vanish at spatial infinity. By relaxing this constraint to al- 

low transformations which tend to the identify at infinity, a family of inequivalent 

representations is discovered, each built on a diIferent vacuum. These representa- 

tions correspond to our different charge sectors satisfying A& = fe. The underlying 

fermionic structure of the Schwinger model is only manifested when the constraint is 

further relaxed to allow transformations which tend to -1 at infinity. This step is 

completely analogous to the inclusion of the operators fe *ia/ in the algebra which 

generates the spectrum, (61), consistent with the presence of arbitrary numbers of 

charge &l/2 fermions. 

Thus far, we have concentrated on the gauge symmetry of the monopole-fermion 

system. Also important for understanding the dynamics of this interaction is the global 

axial vector symmetry generated, in the J = 0 sector, by the current (7~) and (7d). At 

the level of the classical equations of motion, this current is conserved. But quantum 

effects produce an anomalous source term in the continuity equation [21]; 

(62) 

where FPv = 2c 1 pvaaF ap is the dual of the gauge field strength tensor. This equation 

implies that, in the presence of long range, parallel electric and magnetic fields, the 

axial charge 

Q5 = 1 d3? $!=o, 

is not conserved. In the radial fi field of a monopole which fluctuates within its internal 

charge space and, thus, into configurations with a non-vanishing radial electric field, 

the anomaly is obviously important. 

Equation (62) is a very familiar feature of the physics of the vacuum sector of gauge 

theories. Since we are not working in the vacuum sector, rather than simply render 

(62) in terms of our canonical variables, we’ll draw on previous results to demonstrate 

the non-conservation of Q5 in the presence of the monopole and, in effect, derive 

the anomaly equation. Our result will suggest an obvious definition of a conserved, 
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but gauge dependent, axial charge, and lead us naturally to the standard anomalous 

commutator of the axial and electric charges. This commutator is immediate in, and 

is responsible for much of the non-trivial dynamics of, the point-like model (191; our 

derivation, of course, will make no use of that approximation. 

Now, from eqs. (63) and (7), we have 
W 

<B’>=~dr<P>=-/dra,<PS>=-<<‘>Ir=w. 
0 0 

For the expectation value of p5, we simply use the result of section 4, eq. (34). In so 

doing, we are assuming that, for present purposes, we can make an adiabatic approx- 

imation for the field X and neglect its time dependence. We obtain 

<&5>=;il 
r=m 

=; . 
Strictly speaking, this result in exact only for & = 0, which, in view of the conclusions 

of section 4, is not possible. However, eq. (64) should correspond, in general, to the 

usual one-loop, “triangle-graph” calculation, since it is also exact to lowest order in 

e [i.e., & = O(e2)].* In fact, this result is identical to that 
anomaly equation, (62). 

Equation (64) leads us to define a new axial charge, 

(jj5sQ5-; . 

obtained by assuming the 

(65) 

Though conserved, s5 is clearly gauge dependent; under the transformation (56) it 

obeys Aa5 = f2, a result familiar from anomaly physics in the vacuum sector [25]. 

Consequently, a5 has the anomalous commutator with the electric charge, 

[Q, 05] = [Q, -a/~] = ; . (66) 

*The one-loop non-abelian calculation actually involves higher order contributions [24], 

but the quantity we are computing depends only on the fields at infinity where the 

physics is essentially abelian. This explains a “non-abelian” discrepancy between the 

local versions of (64) ), = i >;I, and eq. (62). 
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This equation has also been obtained by Balachandran and Schecter, but only after 

taking the point-like limit and by adopting an effective Hamiltonian which included 

an anomaly term [19]. 

Note that conservation of Q5 depends on the masslessness of the fermions and 

that, as a symmetry generator, it allows us to rotate away the vacuum angle, 8. We 

have, from eqs. (55) and (57) 
-I 

e-ireG5/2’ Iq, e > = Iq - eph, 6 >=I q,e = 0 > (67) 

where the second equality follows from the fact that only the combination q + 6/2n is 

measurable. 

As emphasized in reference [19], the real significance of eq. (66) is that the operator 

ewireQ5 generates a dyonic state, with charge 8, from the pure monopole ground state, 
-5 

and which is degenerate with the ground state by virtue of Q = i[Q5, H] = 0. 

Unfortunately, though the formalism adopted here is well suited to the limited 

analysis above, the dynamical consequences of the anomaly, particularly for the struc- 

-- ture of the fermion vacuum, which are readily obtained in the point-like limit, are, at 

present, beyond our ability to explicitly exhibit in this model. This is because these 

effects are genuinely radiative and, thus, intractable in our, basically, tree-level inves- 

tigation of the extended monopole problem. It’s possible that an effective Hamiltonian 

approach, akin to that adopted in reference (191 for the point-like model, would allow 

a more complete description, but for the present, we’ll not pursue this possibility. 

Nevertheless, it’s clear that the monopole-fermion ground state is an eigenstate 

of neither Q5 nor Q5. Thus, it’s not suprising that an operator like X(+)X(-) should 

develop a vacuum expectation value, as it does in the point-like model [1,3]. 

6. Conclusion 

In this report, we have attempted to study the interaction of massless fermions with 

a non-abelian magnetic monopole, without resorting to the point-like monopole limit. 

Exact, second quantized solutions were given, in sections 3 and 4, to the problem of 

fermions in the background field of a Prasad-Sommerfield monopole and dyon. In the 
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latter case, we have verified the absence of dyon solutions in the presence of massless 

fermions. 

In section 5, the “charge rotator” was canonically quantized. This system is not 

soluble for a finitesized monopole. However, it was possible to rederive and elucidate 

several familiar results of the point-like model including gauge invariance and the 

ultimate conservation of electric charge despite its apparent non-conservation by the 

fermion sector. Our exact treatment of the “non-abelian” core lent itself particularly 

well to the accounting in this effect. In addition, the discrete spectrum of the electric 

charge operator was derived for the finite-sized monopole coupled to fermions. 

- 

Finally, the non-conservation of fermionic axial vector charge was demonstrated 

as a one-loop, quantum effect, and a conserved, but gauge-non-invariant version con- 

structed. The standard anomalous commutation relation of the axial vector and elec- 

tric charges was immediate. 

Many of these results have been reported previously elsewhere without, however, 

the consistent context we have tried to present here. In particular, other authors have 

ended up in the point-like approximation or have adopted the anomalous divergence 

- of the axial vector current as an equation of motion [7,17,19,20]. 
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