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Abstract 

- One can approximate path integrals by expanding the fields in 
terms of a complete set of functions, by truncating the expan- 
sion, and by using Monte-Carlo techniques to evaluate the result- 
ing finite-dimensional integrals. The errors introduced by these 
approximations are quite small, at least for the harmonic and 
anharmonic oscillators. 
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Euclidean path integrals provide expressions for many physi- 

cal quantities. The vacuum expected values of time-ordered pro- 

ducts of field operators, for example, take the form 

tnl~(xl)~(x2)~~*~(xk}l~> = W exp(-s[~l)~(xl~*‘~~(xk) * 
JW ew(-SMI) (1) -. 

where S[#] is the Euclidean action. One may approximate path 

integrals by Feynman diagrams when perturbation theory is valid. 

Otherwise one may use a space-time lattice. Lattice gauge 

theories have been conspicuously successful in recent years. 

However, the action functional of a theory must be altered before 

it can be used in a lattice theory. This is a serious problem for 

theories of gravity. 

The present paper introduces a method for approximating path 

integrals that does not use a space-time lattice. The method 

consists of three steps, two of which involve approximations. 

The first step is to expand each field # in terms of a complete 

set of functions f,, 

#(xl = #(x,c) = cm C&p) l (2) 
n=l 

By substituting this expansion for each field into the action 

functional S[#] and by integrating over space time, one may 
-. 

express the action as a function S(c) of the expansion 

coefficients. Thus one converts a path integral into an 

infinitely multiple integral over the expansion coefficients c. 

For ratios of path integrals, the Jacobian det[a#(x,c)/ac,J = 

det[fn(x)] cancels. The second step is to set all but a finite 

number of the expansion coefficients equal to zero. The 
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resulting integrals are now of finite dimension: 

exp(-s(c))~(xl,c)...~(xk,c) 
N  .i3) 

nnlldcn ~- exp(-S(c)) = 

The third step is to use Metropolis's method of importance 

sampling [1] to numerically evaluate the resulting ratio of 

multi-dimensional integrals. 

We have examined the errors introduced by the approximations 

of steps two and three of our method by applying it to the 

harmonic and anharmonic oscillators, which may be regarded as 

field theories in (O+l) dimensions. The hamiltonians are 

HO=(p2+x2)/2 and Hg=HOtgx4. We computed the Green's function 

G(t)=<Olx(t)x(O)lO> and its logarithmic derivative, both for 

t=o. As a set of basis functions, we used exponentials in -Itl, 

writing 

x(t) = F cnexp(-nAltl) (4) 
n-l 

where X is an adjustable parameter. We chose these functions 

because they are easy to work with. 

To test the approximation introduced by step two, the 

truncation of the series (2) to a sum of N functions, we used 

eqs.(3-4) to write the Green's function G(0) as 

G(O) = <olx(o)2lo> = F 
i,j-1 tcW’ (5) 

where 
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= Jd n=l 
cnexp(-S(c))c.c. 11 

"W = . 
y=p(-S(c)) 

(6) 

We did these Gaussian integrals and expressed G(0) in terms of 

the inverse of the matrix M 

M. i,j 
= (x-1 t ijX)/(itj) 

as 

G(0) = $ 
i,j=l 

[M-lIi,j * (7) 

We used the symbol-manipulating software Macsyma to evaluate this 

formula for arbitrary A and for various values of N up to 10. 

The resulting G(0) is of the form 

G(O) =+ -in=; . 
c InA2n 

n-l 

(8) 

This formula for G(0) yields the exact value, l/2, at X-l/n for 

l<n<N, due to the double zeros in the numerator of the error 

term. The coefficients I, are positive integers and IN is 

(N!)2. Even for N-4 the relative error in G(0) introduced by 
-. step two is less than three parts in ten thousand for .2<A<l. 

For higher N the errors are even smaller. The errors due to the 

truncation of the series (2) are tiny for G(O), but may be larger 

for other physical quantities. 

In order to examine the errors introduced by step three,, the 



- 5- 

Monte-Carlo evaluation of the ratio of the finite-dimensional 

integrals (3), we used our method to estimate G(0) and its 

logarithmic derivative for the harmonic and anharmonic 

oscillators. 

The Green's function G(0) for the harmonic oscillator in our -I 

units has the value G(0) = l/2 , and its logarithmic derivative 

at t = 0 is the energy gap between the ground state and the 

first-excited state, -G(O)'/G(O) = AE-1. We used ten functions 

of the form (4) with X-. 1 and made 100 runs of 10,000 passes each 

with a step size of 0.2. We found G(0)=0.4979*0.051 and 

AE=O.9331*0.129. By using just 4 functions, with X = -25, and 

making 100 runs of 10,000 passes each, with a step size of 0.1, 

we found G(0)=0.4932*0.145 and AE=0.8801*0.202. Since in all 

these runs XN is 1, it follows from the formula (8) for G(0) 

th-at no error is introduced by the truncations of the series (2). 

Thus the errors in G(0) are entirely due to the Monte-Carlo 

evaluation of the integrals in eq.(6). The errors in AE are due 

to the Monte-Carlo approximation, to the truncation, and to the 

fact that the basis functions (4) were even, which is suitable 

for G(0) but not for AE. These errors are typical of Monte- 

Carlo algorithms. In general, Monte-Carlo evaluations of 

integrals are better than one might expect for a small number of 
-_ 

passes, but become precise only after a huge number of passes. 

On a Vax 780 each run took 19 sec. for N-4 and 67 sec. for N-10. 

For the anharmonic oscillator, the exact values of the energy 

gap, AL are known for various values of the coupling constant g 

from the work of Biswas et al. [2]. We calculated the exact 
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expected values of x2 in the ground state for these values of g, 

by using as a basis the eigenstates of the harmonic oscillator 

[3,4,5] and by using the matrix-manipulation software, Matlab 

[61- From our path-integral approximation method, using 20 

functions of the form (4), we obtained results for both G(0) and - 

AE that were within one standard deviation of these exact 

results. With just 4 functions, we got good results for G(0). 

For each value of g, we made 10 runs of 3000 passes each. Our 

results are presented in the table, which also gives the values 

of A and of the step size, u. 

Anharmonic Oscillator 

g 0.1 0.5 1 4 50 

G(O) r exact -4125 -3058 -2571 -1728 -0773 
G(O), N-20 .409*.06 .293*.04 -267k.08 .192*.07 -082k.03 
G(Q), N-4 -433kt.16 .296*.07 -269zt.08 -216k.05 .076*.01 
AE , exact 1.2104 1.6282 1.9341 2.8728 6.4154 
AE r N-20 l-03*.29 l-50*.67 1.56k.81 2.92k.89 4.82~tl.6 
A,u, N-20 .l,.l .2,.06 .2,.06 .3,.03 .3,.03 
A,u, N-4 .5,-l .5,-l .5,-l .5,-l .5,-l 

The truncation of the series (2) and the Monte-Carlo 

evaluation of the integrals in eq.(6) are responsible for all of 

the error in G(0) and for some of the error in AE. The other 

sources of error for AE are the fact that the basis functions -_ 
(4) are even and that the logarithmic derivative of G(0) differs 

from AE. On a Vax 780 each run took 25 sec. for N=4 and 17 min. 

- for N=20. We used the random-number generator urand [7] 

exclusively. 

. 
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We intend to apply this method to field theories in four 

dimensions. Such applications will require far more than- 20 

functions. If the action S(c) depended on all possible products 

of the expansion coefficients c,, the computer time for one run 

would be prohibitively long. It is possible to avoid this problem -. 

by using basis functions fn(x) of compact support. 
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