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ABSTRACT 

We analyse a class of Grand-Unified Theories and show that, if one accepts 

severe fine-tuning of many parameters, it is possible to satisfy all the physical 

constraints that one would like to impose for an Inflationary Universe scenario. 

We include some post-inflation constraints, such as the usual zerotemperature 

heirachy, as well as the constraints that arise directly from the inflationary pe- 

riod. The new feature of our analysis is that we study a slow-roll-over transition 

between two broken-symmetry minima, rather that the usual Coleman-Weinberg 

case of a symmetric to broken symmetry transition. 
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1. Introduction 
--- 

The idea of inflation as a solution to the cosmological problems of the flatness 

and homogeneity of the observed universe, as well as the problem of the density 

of monopoles from the breaking of the grand-unified symmetry which first led 

to its suggestion by Guth and Tye,’ is very attractive. A particularly exciting 

development in this subject is the observation that these models present the first 

possibility of understanding the development of the Zeldovich2 scale-invariant 

spectrum of density fluctuations3 and estimating the amplitude of this effect. 

However, as is usually the case, the more physical effects one seeks to explain 

with a mechanism, the harder it becomes to find a model where all these effects 

have their correct (that is observed) properties. We will review what we consider 

the essential requirements for a successful model and discuss previous attempts 

to satisfy some or all of these requirements. 

We then analyse a class of grand-unified field theories and show that, if one 

accepts severe fine-tunings of parameters, these models can have sufficient flex- 

ibility to accomodate all the constraints. The new feature of our analysis is 

that we assume the inflation takes place by a slow-roll-over type of transition be- 

tween two symmetry-broken minima, rather than the usual Coleman-Weinberg4 

scenario of a roll-over from a symmetric configuration to a symmetry broken 

vacuum. 5$ We will show that this avoids some of the problems of the Coleman- 

Weinberg scenario, while retaining the slow-roll-over advantages. We study an 

SU(5) grand-unified theory with a Higgs multiplet 4p, in the adjoint and F in 

the fundamental representation. The idea is, however, quite general and could 

equally well be realized in any grand-unified model with a sufficiently rich Higgs 

sector. 



Section 2 summarizes the physical features that one would like to fit in an 

inflationary universe model and the requirements on the model that arise from _ - 

each of these features. We make no new contributions to the estimation of these 

effects. We then briefly discuss previously suggested models. Section 3 presents 

the analysis of the SU(5) theory. Section 4 presents our conclusions. 

2. Review of Physical Requirements 

The essential features of an inflationary universe scenario are summarized as 

follows: 

(1) The zero temperature vacuum state of the universe [or the present 

metastable state in some models] is assumed to have zero cosmological constant. 

This is achieved by a fine tuning of parameters in most models. 

(2) The expectation value of the Higgs fields in this state is nonzero. We will 

denote this by 

Statement (1) above requires 

v&((q)}; T = 0) = 0 . (2) 

(3) At early times the universe can be described by a temperature 2’ and 

values for 

(3) 
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The Hubble parameter of the theory for any temperature 2’ and field configura- 

tion {a} is given by 

(For very high temperatures typically one finds {a(T)} G 0 that is the universe 

is in a symmetric phase for 2’ > Tc. This fact is not essential to our analysis.) 

(4) At some temperature 2’~ there appears a region of the universe, which we 

will refer to as a bubble, within which the scalar fields have values {&((a’)) such 

that the classical field equations predict a smooth evolution from this configura- 

tion to the global minimum at T = 0. The region inside this bubble constitutes 

the present universe. This evolution of the scalar fields in this region is the slow- 

roll-over transition. We are following the ideas of Witten, Lindk,4 Steinhardt 

and Albrecht5 rather than the original first order transition inflationary universe 

idea of Guth and Tyel because of the problem of percolation of bubbles.8 

(5) The effective potential of the theory controls the roll-over transition as 

well as the nature of the zero-temperature vacuum. It must be such as to satisfy 

a number of constraints. These are: 

A. Correct zero temperature physics 

The physics of the zero-temperature vacuum must be an effective SU(3) x 

U(1) theory with the usual Glashow-Weinberg-Salam weak interactions. The 

heirachy problem of SU(5) - the fact that rn~ << mx where X is the heavy 

boson responsible for proton decay in this theory - requires fine tuning of the 

zero temperature effective potential. This tuning must not be in conflict with 

any of the other requirements on the effective potential. We remark here that 

-we chose to study a model with both adjoint and fundamental Higgs multiplets 
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-- - 

in order to be able to achieve this zero temperature physics correctly.g 

B. Sufficient inflation _ - 

In order to explain the flatness and homogeneity of the observed universe as 

well as the lack of monopoles from the grand-unified theory we needlo 

(4) 

where a is the scale factor in the Friedman, Robertson-Walker metric 

ds2 = dt2 - a2(t)d Z2 . (5) _ 

The time tf is the end of the exponential expansion period and to is some time 

during the slow roll-over, at the earliest it is the time of bubble formation. This 

requires that the potential V({a}; T) is very flat over a large range of {6}, for T 

near zero. 

C. Sufficient reheating 

In order that the baryon to photon ratio of the present universe can be 

explained by the CP-violation inherent in a grand-unified theory,” the universe 

must reheat after the expansion to a temperature high enough to give baryon 

number generation by this mechanism. The reheating is governed by the shape 

of the potential V({a}) near {a~} l2 and requires a sufficiently deep minimum 

with large curvature. 

D. Limited Fluctuations 

A remarkable feature of the new inflationary universe is that it allows us 

for the first time to envisage a mechanism that generates the Zeldovitch scale 

invariant spectrum of density fluctuations Sp/p in the universe. These fluctua- 

tions are responsible for the condensation of matter into galaxies and clusters 
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of galaxies. In such a model these fluctuations in density are a direct result of 

fluctuations in {&} during the roll-down period. For a detailed analysis of the _ - 

fluctuation development, we refer the reader to the work of Brandenberger and 

Kahn.13 Although the mechanism is natural, the scale of the resulting 6p/p pro- 

vides a problem. Very crudely this scale is controlled by the value of (d & /dt)-’ 

at an early stage of the inflation. 2 Guth and Pi have shown that, under certain 

conditions, the requirement 

can be translated into a requirement 

d& 
dt t=t,, > ? ’ 

-- 

(6) - 

(7) 

Typical galaxy formation models in conjunction with the observed homogeneity 

of the 3’K background radiation suggest 6 - 10e4*‘. The large value of d & /dt 

at to (in H2 units) and the long expansion time required by Eq. (4) can only 

be achieved if the effective potential is essentially flat over a very large range 

of 6/H. It is the combination of Eqs. (4) and (7) that causes the principal 

problem in achieving a successful scenario, and leads, in our example, to extreme 

fine-tuning requirements on the parameters of the theory. 

E. No domain walls 

The requirement of a homogeneous and uniform universe after expansion 

cannot be met if the model has a degenerate set of inequivalent 2’ = 0 minima 

for V& and if, at any stage during the inflation, fluctuations can create regions 

-of space in these different vacua. This problem has been pointed out by Breit, 
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Gupta and Zaks.14 For the Coleman-Weinberg potential the degeneracy is be- 

tween symmetry breaking vacua with opposite signs of TR <B3. This problem is _ - 

simply resolved in the model we discuss - there is a unique T = 0 vacuum. 

F. Natural evolution along the desired classical path 

Another problem for the Coleman-Weinberg scenario that was pointed out by 

Breit, Gupta and Zaks15 is the fact that the classical path from the symmetric 

point to the SU(3) X U( 1) minimum corresponds to a ridge rather than a valley 

of Vea. Any small departure from this path could grow - giving a rapid descent 

to an SU(4) x U( 1) minimum instead of the desired slow roll-over to SU(3) x 

U(1). In general, one is studying the evolution of a bubble in a multidimensional 

group space. One can tune the potential so that particular classical path which 

leads smoothly to the correct zero-temperature minimum is flat. However it can 

be a nontrivial problem to assure that this path would be followed by a finite 

fraction of the bubbles starting from a given initial configuration. In our model 

the relevant classical path lies at the bottom of a deep valley in I&, and hence 

is not unstable in this way. 

To summarize the inflationary period requirements in a more quantitative 

fashion we discuss the case of a single scalar field variable 4. Later we will 

show how the more complicated grand-unified theory analysis can be related 

to the constraints on this V(4). S imilar constraints have been given by Ovrut 

and Steinhardt16 who study such a potential in the context of a supersymmetric 

“inflaton” model (their paper also contains a review of such models). Let us write 



W  

V(4) = x an 4”. 
_ - 

n=O 
(8) 

; V(0) zo . 

Here we assume that we have chosen variables such that the starting configuration 

is near to d, = 0 and that the roll-down takes us to 4 = 6. 

The constraints are derived as follows. Define 

H2 = 8nG ‘to) 
(9) - 

The classical equation of motion for the spatially constant background 4 field in 

a Freedman-Robertson-Walker metric are 

and 

(~)2=~($+V(~)) . (11) 

One can solve these equations under a number of simplifying assumptions. Con- 

sider the evolution of the 4 field from some time to at which [by Eq. (7)] 

H2 
i (to) 2 -$-- (12) 

till some time tf such that (to - t/)/H x  60 [from Eq. (4)] and 

Wf) =Ku ) K<l . (13) 



Assuming during this period 

(i) y (V(4) + $) w H2. 

(ii) $j is dominated by a single term a,gP. 

(iii) 4 is negligible compared to 3H 4. 

After making these approximations, one can solve Eqs. (10) and (11) and find 

constraints on the a, such that Eqs. (12) and (13) can be satisfied. One can then 

check the consistancy of the approximations. 

For example if the evolution is dominated by the #2 term of V(#) in this 

period one finds the requirements 

H2 H ~8 
a2== , o%ic (14) 

an < U4-n . i (&)’ K4-n all n > 2 . 

Similarly, dominance by the nth term requires 

for 

arz < u4-n - 204: - 2) (60(,6_ 2))2p4-n (15) 

H P6 -= 
u fx(n-2) 

and a,(tca)m < an(Ka)n all m # n . 

In Eq. (14) assumption (ii) gives the constraint on the an for n > 2; one 

can readily verify that assumptions (i) and (iii) are valid. For 6 N 10v4 these 

requirements can be written 

2 
mP ao< 04-;;2-10-r3~2 

an_< (KU)4-n -lo-l4 . - 
(16) 
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-- -- 
In a theory where natural scale of an is u 4-n this requires tuning of all coefficients 

up to some power n for which .4-n N 1014. -For example is we choose IC = 10m4 _ - 

then a0 through a7 need to be artifically small.17 The most severe tuning is of 

ag, which is this case is required to be less than u2 X 10-22. (This is however 

certainly no more of an adjustment than the choice zero which is made in the 

Coleman-Weinberg case.) 

The reason that the fine tuning is so severe is quite obvious. We require 

that 4 (to) is large in H-units. This means that, following a classical evolution 

which naturally begins with both 4/H and i/H2 of order 1, q5/H is already 

large at t = to. To get a further 60 e-foldings of inflation after t = to thus 

requires an effective potential for which reheating occurs at an extremely large 

value of 4/H. The potential must be approximately flat over a range from 1 to 

KU/H N 107. (To achieve 60 *foldings of inflation starting from qb/H and 4 /H2 

of order 1, would require much less finetuning. However one then finds that the 

fluctuations are too large, in fact so large that the validity of the classical analysis 

of the expansion is questionable in this case.h18) 

The requirement of Eq. (12), which is based on a number of assumptions 

about the formation and development of the fluctuations in the 4 held within 

the bubble, was given by Guth and Pi. Brandenberger and Kahn13 have pre- 

sented some discussion of cases where the approximations leading to Eq. (12) 

are invalid. Their criticisms do not apply to a potential V(c,b) such that the re- 

strictions of Eq. (14) are met. In such a case the approximations made by Guth 

and Pi are reproduced by the more detailed analysis of the evolution given by 

Brandenberger and Kahn. Perhaps the most debatable point in all analyses is 

-the assumption that the fluctuations in 6 in the initial bubble are given by the 
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statistical fluctuations at a temperature H/27r, which is the Hawking temper- 

ature of the interior of the bubble due to its exponential expansion. We have _ - 

nothing new to add to the discussion of this point, we-will assume that Eq. (12) 

is required. We find that drastic fine tuning is needed to satisfy Eqs. (12) and 

(13) simultaneously. 

We now turn to a brief summary of models which have been previously 

studied for a slow-roll-over transition. We remark that most of these studies 

do not attempt to discuss all the requirements A through F above. Most discuss 

only B, C and D. References to the literature on these models can be found in 

Refs. 13 and 16. 

(1) Coleman-Weinberg Models 

The idea of a slow-roll-over transition was first analysed in the context of 

these models,5T6 but they have not been successful in achieving the desired sce- 

nario. They suffer from problems E and F, they give too large fluctuations and, 

because of this, also insufficient expansion. Generally no attempt is made in dis- 

cussing these models to include a fundamental Higgs multiplet and achieve the 

correct zerotemperature heirachy. 

(2) Supersymmetric Inverse Heirachy Models 

These models founder on requirement C - they cannot be arranged to give 

sufficient reheating. For these models the assumption that 3 is small compared 

to 4 during the inflationary period is not valid, and the analysis of constraints 

for a power law potential given above does not apply. In general such models 

also give large fluctuations. 

(3) Supersymmetric Inflaton Models 
- In these models a gauge singlet scalar supermultiplet 4 is added to the theory 
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and V&(q5) fine-tuned to satisfy the constraints discussed above. It is assumed 

that the inflation and reheating is all due-~to the inflaton potential and that _ - 
the SU(5) breaking transitions occur at some subsequent time. (If the order 

is reversed then one loses the ability to generate baryon number via the CP- 

breaking part of the grand-unified theory.) However if the SU(5) --, SU(3) x 

U(1) transitions occur after the slow-roll-over and are first order transitions then 

new inhomogeneities of the universe are generated in these transitions and the 

percolation problem of the old inflationary universe scenario is resurrected. These 

problems appear to us to be very severe. They have not been addressed at all by 

the proponents of inflaton theories. 

3. A Model 

Let us review some properties of the effective potential for an SU(5) theory 

with an adjoint Higgs multiplet <P and a fundamental Higgs multiplet F. The 

most general renormalizable scalar interactions for such a theory can be written 

- $F+F + aF+F ma2 + pF+-a2~ + 7~+a~ (17) 

+ ~(F+F)~ . 

We allow the following scalar vacuum expectation values 

@-$0 
-- c 

+ Ji2 

\ 

1 

-3 

0) 
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(18) 

This allows us to study breaking of SU(5) to 

w4 x U(l) (q = 0; c = 0; A # 0) 

SW4 (q # 0; c = 0; A # 0) 

su(3) x W(2) x U(1) 
( 

q = 0, $ = - 5 J-) 
3l/a 

or SW) x w P#O,~#O,rl#O) - 

In terms of these variables the effective potential is given by 

v= -$(h2 + X2) + ;(A” + 2A2C2 + E4) 

( 3AW 2C3A 7 +; gA4+T-- 
d/15 +iic4 1 

A3 C2A c3 u2 2 --- - 
2&+3& 

-- 
2’ 

(20) 

+ (cr+fa)qY + aq2C2 - $2 + $4 . 
We will discuss the slow-rollover transition as if it occurs at T = 0. More 

precisely it should be regarded as occuring at a fixed temperature H/2n, which 

is the Hawking temperature due to the expansion. This effect can be included 

by replacing v2 and p2 by the temperature dependant mass in the constraints 

that come from the roll-over period, but the correction is negligible. 

We choose the parameters (a, b, . . .) so that at 2’ = 0 there is a global mini- 

-mum which is as SU(3) x U( 1) minimum A = A3 C = C3, q = q3. We choose > 
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-- .-- 
VO so that V(A3, t,9, X3) = 0. Furthermore this minimum must have the property 

~3 << A3, C3. In fact we need _ - 

~3 - 300 GeV 

A3 - 1015 GeV (21) 

C3 - 1015 GeV 

in order to give a viable zero temperature theory. This is the usual heirachy 

problem. One finds 

The condition (21) requires a fine tuning of parameters. [we note however that 

it does not require u2 to be of order qz.1 This fine-tuning can only be achieved at 

one temperature, the value of t,$(Z’) will be sensitively temperature dependent. 

The sequence of global minima of V&(T) as the temperature decreases de- 

pends on the parameters. However, if parameters are chosen to give the SU(3) x 

U(1) global minimum at T = 0, there is a wide range of such choices for which 

there is an intermediate temperature range where either an SU(4) minimum on 

a different SU(3) X U(1) minimum is the global minimum. We will choose to 

discuss the first possibility, although the second could equally well be treated in 

the same way. We assume, for the sake of definiteness, that at some high temper- 

ature T (of order 10 l5 GeV) some region makes a first order phase transition to 

an SU(4) symmetric global minimum of the effective potential. Since the region 

in this minimum has V({tj}) # 0, the bubble so formed expands exponentially 

and cools rapidly to its Hawking temperature. We then consider the subsequent 

development of some region interior to this bubble as this interior region makes 

a slow-roll-over transition to the global SU(3) X- U(1) minimum configuration. 
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We view this region as a bubble within the bubble - a local fluctuation away 

from the metastable SU(4) minimum which subsequently expands and evolves _ - 

(following the classical equations of motion in the fixed temperature effective 

potential) to become our universe. It has been suggested that a slow-roll-over 

transition should occur globally rather than locally - in this scenario this would 

mean the “interior” bubble fills the SU(4) region, but would not otherwise alter 

our discussion. We will use the term bubble, very loosely, to describe whatever 

the region may be in which the classical evolution equations apply. It does not 

imply a thin-walled bubble of the Coleman-De Luccia type.711g 

It is convenient to make a shift of variables to study the slow roll-over. We 

define the SU(4) minimum by 

Now let 

A=n,+A q=tj4+$ . 

(23) 

(24) 
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Then 
-- --- 

v= W4 ; 0 ; ~4) 

- I13($++j==)+~(a+~) 

+ C2 ij (ikqq) + C2 ij2 a 
(25) 

+ ii3[(a+$)A4---+]+c(a+$) 

+ iji2[2(a+&]+i2i 2(@+3+4 

where 

1 2 -mz 2 + cl! 

If rn$ is negative this potential has a deep valley connecting the SU(4) sym- 

-metric saddle point to the global SU(3) X U(1) minimum. Even for small positive 
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rn$ such a valley exists, but separated from the SU(4) minimum by a small bar- 
-- --- 

rier. If, in some region of space, a fluctuation to a small nonzero C occurs then _ - 

the classical equations of of motion which govern the-evolution of (A, C, ij) in 

that region are 

W 
It+-3Hk dC =-- 

where 

fp,y v(A4; 0; lip) * 

(27) 

(28) 

We note that, once C is nonzero, the symmetry of the region is SU(3) x U(1) 

and it is inevitable that the state will be reached by following Eq. (27) will be 

the global SU(3) X U(1) minimum - the true vacuum of the theory - there can 

be no other intervening minimum. 

Now we can study the potential near A = ;i = C = 0. In this region we can 

write 

av - 
---==Am&,+ijm~+2aC2+ . . . 
0 

(29) 

-=Cm2, + . . . . 
ac 

The coefficients rni, rni and m& are all positive [this is the condition that 

-A=&, ‘I = q4 is the SU(4) minimum]; but rni can be chosen to be negative. 
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Equations (29) then show that A and ;i grow as C2 near the origin, and the 

evolution of the system is governed principally by the C evolution. Hence we will _ - 

parameterize the evolution along the valley by 

c(t) = m(t) 

ii =uc2( go .fnen) 

where u is chosen so that 6 = 1 at the SU(3) X U(1) minimum of V. 

If the potential is flat enough that a successful slow-roll-over can be achieved, 

then, as was the case for the single variable example discussed in the previous 

section, one can consistantly neglect the 2, A and i terms in Eq. (27). By 

combining Eq. (27) with Eq. (30), one then has 

(31) 
. 

Equations (27) (30) and (31) then allow one to write 

3HC=u2 2 nbn c n-1 . (32) 
n=2 

and solve for the 6, in terms of the couplings of the theory. The constraints (14) 

derived for the single variable problem can be translated into constraints on the 

6, in Eq. (32) by the relationship 

a0 = W4,O; ml - W3, C3; rl3) , 

n>2 . 
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We find 

mE a2 =- 
2 

4a4 =a+:+ 
m;[(a +%)b +&J + 16mia2qi + 8miAqqcu [( f++$zl. a + 

7 
2m2, - rni - rnfjA 

We have verified that the tuning of a2, ag and a4 is not in conflict with 

the zero temperature constraints. Also, since the reheating is controlled by 

(d2V/dC2)lC=a and the coupling of the C field to fermions, we find it is not 

made small by these choices. Since a5 and ag will also be independent functions 

of the original parameters they can also be tuned. [Nine parameters in V allow 

us to fix ag, a2 through a& the scale of u, the zero temperature heirachy, and 

the choice of zero temperature global minimum.] Adding more Higgs multiplets 

gives a richer vacuum structure and more free parameters. Hence we believe that 

any Grand Unified theory with a sufficiently rich Higgs sector can, in principal, 

satisfy all the constraints. Clearly the result requires much parameter twiddling 

- it is highly artificial - however the same criticism can be applied to all other 

attempts to satisfy even a subset of the constraints A through F. 

With all this fine tuning of parameters a word is in order about higher loop 

effects and sliding couplings. We take the point of view that for a problem such 

as this it is simplest to fix a renormalization definition once and for all, and then 

explicitly display all higher loop effects. Renormalization group “improvements” 

-in a problem where many different physical scales enter can never sum all large - 
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logarithms and can be deceptive if naively applied. Thus we assume that all 

our Lagrangian parameters are defined in terms of quantities measurable (in _ - 
principle) in the T = 0 vacuum at some momentum scale p. The equations for 

the various an that are given in Eq. (34) are tree-level equations. At the one loop 

level they will acquire additional terms. The values of the original parameters 

which satisfy the one loop equations may be quite different from the values which 

satisfy the tree level equations; that is the problem of fine-tuning. However in 

general higher loop corrections do not make it impossible to satisfy constraints 

that could satisfied at tree level. 

4. Comments and Conclusions 

We have studied the possibility of a slow-rollover in a broken-symmetry to 

broken-symmetry transition. We chose to illustrate this possibility for a particu- 

lar transition in a particular model but there is nothing special about this choice. 

Any grand-unified theory with a sufficient number of Higgs multiplets to get the 

zero-temperature physics right will probably also allow such transitions. Even in 

the context of the SU(5) model the choice of an SU(4) to SU(3) x U(1) transition 

is not special. [One could for example equally well study other possibilities, such 

as an SU(3) X U( 1) to SU(3) X U(1) t ransition with the first minimum of the 

form 

A#0 , C=O , F= o 

P 

io) 
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and the second of the type previously discussed.] 

We have presented a scenario for an infiationary universe history which we _ - 

believe is at least as plausible as any other that has been discussed. We find that 

a high degree of fine tuning is necessary to produce &l the required properties 

for the resulting universe. Linde has argued that inflation is a “natural” phe- 

nomenon that will occur with almost any starting potential. Our analysis here 

shows that, in the context of inflation, the homogeneity of our present universe is 

still unexplained, except by unnatural fine-tuning. There is no longer a horizon 

problem, but the small range of values of 6p/p which are consistent with galaxy 

formation and the observed homogeneity of the 3’K background radiation is 

very difficult to achieve - at least if the present theory for the development of 

these fluctuations is correct. Since only very crude analyses of the origin of the 

fluctuations have yet been made, it is possible that further work on this problem 

will change the picture drastically. 
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