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ABSTRACT 

We review the role of the generalized gaussian solution to the Migdal- 

Kadanoff renormalization group for SU(N) lattice gauge theories, and point out 

that it can be continued down to very low values of the inverse coupling 8. 

We thus explain the long distance stable line of actions observed in numerical 

investigations of SU(Z), and propose a simple SlJ(3) mixed action which should 

exhibit improved scaling behavior. 
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The approach of lattice gauge theories to the continuum limit is 

generally hampered by the smallness of the lattice8 available in conventional 

simulations. As a result, it is not immaterial in practice what action is 

used in a Monte Carlo simulation. Is it possible to-improve the approach to 

the continuum by a judicious choice of the action? 

Consider the effective action which results out of renormalizing a theory 

defined on a lattice, by integrating out degrees of freedom (e.g. block 

spins 1, so as to obtain a lattice with fewer sites. The resulting effective 

action should, for a lattice of a given size , provide an improved approach to 

the continuum, as its irrelevant operators are suppressed. In general, the 

effective action resulting out of the renormalization of single plaquette 

actions is non-local, and cannot itself be described in terms of single 

plaquet tes .l B* However, in the Migdal-Kadanoff (MK) approximation3*4 to the 

real space renormalization operation, the effective action lies in the space 

of-single plaquettes, just like the original bare actions. 

Since the MK effective actions are definable in terms of single 

plaquettes, they are reasonably easy to incorporate into a conventional 

program and to manipulate without the complications typical of the 

corresponding more exact multiplaquette expressions. In the past, Bitar, 

Gottlieb, and Zachos5 observed that the MK effective action for SU(2) gauge 

theory is described essentially by 

s - B[x1,2 - 0.18x11 
(1) 

- 8[TrU - 0.18((TrU>2 - 1)] . 
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This action is universal in that it is the long distance attractor of a large 

domain of possible bare actions entering the renormalization process--see 

Fig.1. Since it reflects properties of actions defined on lattices with 

spacings smaller than the spacing of the lattice onwhich it itself is 

defined, this action was conjectured5 to approach the continuum limit faster a. 

than the Wilson action commonly used. 

Following this clue, Otto and Randeria6 computed the physical ratio of 

the mass of the lightest glueball (O+) to the square root of the string 

tension in the SU(2) pure glue theory, for several values of the coupling 8. 

They noted that this ratio varies with 8 significantly less when the action of 

Eq.(l) is used, as compared to the case when the Wilson action is used. They 

therefore concluded that this Long Distance Effective Action (LDEA), Eq.(l), 

improves the approach to the continuum limit, since it is less dependent on 

lattice artifacts like variation with the coupling. 

- A natural extension of the above investigation would be to find the 

corresponding LDEA for SU(3). Could one perhaps avoid carrying out the 

cumbersome analog of the renormalization calculation of Ref.S? In fact, this 

turns out to be possible, provided we find a generic characterization of the 

LDEA’s within the framework of the MK approximation to the renormalization 

kernel. 

Actually there exists empirical information on the generic form of the 

LDEA’s of the MK kerne1.3~7~g~8s5~10 In some analogy to the central limit 
-. 

theorem of statistics 11 , they are gaussians generalized to the appropriate 

group manifold, quite close to the heat kernel action 8,12-14. Here, we will 

try to make this characterization somewhat more quantitative. By analogy with 

Eq.(l) for SU(2), we will further conjecture that the following SU(3) action 
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exhibits improved scaling properties: 

S(U) = 6 Re[x3(U) - 0.26xg(U) - O~lO~(U)] (2) 

where x3(U) = TrU constitutes the Wilson action, and X6 = (~3)~ - (x3)*, Xg = -. 

Ix31 2 - 1. 

Let us start by a review of the MR renormalization recursions. We will 

follow the conventions of Refs.9,5,10. The actions for the gauge theories 

considered are class functions, i.e. they cannot distinguish among different 

group elements which belong to the same equivalence class. As a consequence, 

these actions can be expanded in terms of the characters of the group, and so 

can their Gibbs factors (their exponential8 which enter into the functional 

integral): 

F(U) z e-'(') = 1 Frdrxr(U) 
r 

(3) 

dU e-'(')x:(U) . 
r 

Here x,(U) denotes the trace of U in the irreducible representation labeled by 

=; dr E xr(1) is the dimensionality of that representation; and dU is the 

normalized group invariant Haar measure. 

If every other link is integrated out in all directions, the ensuing 

Gibbs factor will describe the exponential of the renormalized action. In 

general, this doubling of the basic length scale yields single plaquette 

effective actions like the original ones only in the special case of two 
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spacetlme dimensions. Nonetheless, Migda13 proposed to extend the two 

dimensional result to arbitrary numbers of dimensions d and scaling 

factors X. His one-shot approximation relies on judicious processing of the 

link variables which reduces the problem to a two dimensional one. 

The (Migdal) renormalized Gibbs factor reads: 

F’(U) 5 es”(‘) o (1 p:2drxrUJl) a 
d-2 

. 
r 

(4) 

This recursion has the correct d * 2, X = 2 limit, and, of course, the 

necessary h = 1, and S(U) - const. limits. 

A closely related, perhaps more intuitive approximation has been provided 

by Kadanoff4. In addition, there have been attempts 15 to improve both 

approximations systematically, but at the heavy price of formal 

complication. For instance, the desirable feature of remaining in the 

original space of functions of single plaquettes is lost. We will thus not be 

discussing these improvements here. 

The following joint recursion5: 

e-s’(u) = [f (k I dVe-S(v)‘bxz(V) )“d,x,(U) ]hd-2-b 
r 

(5) 

describes both the Migdal (b = 0) and the Kadanoff (b - d - 2) prescriptions 

through the different settings of the formal parameter b. 

Note that in a succession of transformations Eq.(5) for a given b, there 

is no dependence on b in all intermediate exponentiations. Furthermore, for 

an upscaling by a small factor X = 1 + e, the recursion Eq.(5) reads: 
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F’ = F + s[(d-2)F anF + 2 1 FrOGI: drxr] + ok2) . 
r 

(6) 

The dependence on b starts only at the second order in E, which is to say that 

the infinitesimal renormalization kernel is identical-for the Migdal and the 

Kadanoff transformations. l6 In what follows, we will thus focus only on the 

Migdal prescription, Eq.(4), without lose of generality as far as the 

infinitesimal transformation is concerned. 

We will now proceed to search for fixed lines of actions of the recursion 

Eq.(4) (or Eq.(6)), that is actions which preserve their form under 

renormalization and only vary with respect to one parameter identifiable with 

the coupling. Clearly, in two dimensions, a large class of actions with 

Iln F, = f(B)g(r) will do, provided the uniform resealing of f(S) dictated by 

the recursion Eq.(4) can be reinterpreted as a definition of the renormalized 

coupling : x*m> - f(B’)* A particularly simple family with this structure 

is the heat kernel action12,13,8 defined through: 

Fr - e 
-c,/ 8 

(7) 

where C, is proportional to the quadratic Casimir invariant of the relevant 

group. For U(1): C, = r*/4, and for SU(2): C, = 2r(r + 1). In consequence, 

in two dimensions these actions maintain their form, while exhibiting 

asymptotic freedom (and attract nearby renormalization trajectories). Does 
-. 

this feature extend to higher numbers of dimensions, when the recursions 

Eq. (4)-( 6) are no longer exact? 

In higher numbers of dimensions, the situation is less clear, since 

raising F(U) to a power maintains its form only if it happens that an F(U) = 
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mmw. This is not true for any known families of the type specified 

above. However, it is approximately true for the heat kernel actions in the 

weak coupling regime, as we will now discuss. For U(l), the heat kernel 

action is equal to the periodic gaussian (Villain) action: 

i! eer214’ co8 rt3 * /-+j f e-f3(e - w2 . 
r---a0 &=-OS 

(8) 

For SU(2) Menotti and Onofri have generalized this to8: 

-*r(r+l) 

Ce B 
r 

drX,(e) = 48) y 612 + 2lrll e-8(8/2 - 2nL12/2 

a=-00 sin B/2 . (9) 

The logarithm of n(8) is an irrelevant additive constant in the action, which 

may be obtained by normalizing Eq.(9) at 0 = 0: like all constant shifts in 

the action, it will not be crucial in the discussion that follows, and will 

thus be ignored. In general, for SU(N), the appropriate periodic gaussian 

representation of the Gibbs factor is proportional to8: 

F 41 - $j + *q- Lj) 
ic”j 2sin +[+ioj + 2~(!i~-l!~)] 

e-B pj + 2x aj)2/4 
. 

121 
(10) 

=--ao 

Here the N invariant angles are dependent for SU(N): ; 41’0 ; they reduce 
I=1 

to the N-l independent class variables corresponding to the rank of the 

group. (The angle in the N = 2 case of this formula is normalized by 2, 
-_ 

Eq.(9), to accord with standard angular momentum conventions.) 

For weak coupling (large 8), the U(1) Villain action is dominated by a 

periodic gaussian. For instance, in the Brillouin zone [-x,x], the Gibbs 

factor of Eq.(8) goes like: 

. 
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+I* 
e 1 

l + e-8(2n)2 2cosh(4n80) + . ..] . (11) 

Consequently the action is essentially B$-, x1, i.e.--Manton’s action17, up to 8 

terms suppressed exponentially in B-they smooth out this action’s cusps on 

the boundaries fn of the Brillouin zone. 

Since, in this approximation, the action has the requisite form, it 

follows by inspection of the renormalization recursion Eq.(4) that the 

renormalized coupling is 8’ = 6Xds4. As a result, U(1) has a fixed point 

behavior for d = 4. Thus, for any large f3, the theory is essentially free, as 

observed in studies of the iterated recursion. 3,7,10 In these studies there 

is moreover an extremely slight renormalization towards smaller 8’s. This 

flow becomes more apparent for smaller B’s, as the suppression of the terms 

ignored in the above approximation weakens. For d < 4 and d > 4, inspection 

of the same weak coupling approximation reveals asymptotic freedom and anti- 

asymptotic freedom respectively. (In the strong coupling e ’ symptotic freedom 

prevails for all d’s, which dictates a phase transition for d > 4.) 

The situation for SU(2) is somewhat more complicated, because of the 

additional presence of the crucial measure 012 + 211x 
.TTzqr’ which accounts for 

asymptotic freedom in four dimensions, as we will now discuss. Let us first 

take the logarithm of this measure so as to incorporate it in the action, and 

then focus on the first Brillouin zone [-2n,2n]. In analogy to the U( 1) case, 
-. 

for large f3, the zone is dominated by its central region 0 - O--note that the 

singularities at 8 = 0 cancel between each fll pair of terms. The important 

part of the action in this region is then - i(i)’ + en(--$+) . It turns out 

that the logarithmic term can be approximated reasonably well by a parabola in 



this region: 

%g& ) - ; ($2 + & ($4 + . . . . (12) 

Hence the dominant component in the action is a periodic gaussian 

with the requisite form for stability under renormal- 

ization3,g,8,5 . 

A remarkable feature of Eq.(12) is the smallness of the contribution of 

the O(e4) terms: it amounts to a less than 10% correction to the Gibbs factor 

for all 0 less than 3.8. This indicates that the gaussian approximation will 

hold for quite small B's well below 1, as discussed later. . 

The renormalized B' in the Migdal approximation is read off from Eq.(4): 

(8’ - +, - ad-‘$ - +, . (13) 

We should, however, reinterpret S - l/3 as the effective coupling %. The 

renormalized is' is then: 

(14) 

This coupling (8) is essentially identifiable with SF of the LDEA of Ref.5 and 

Fig.1, since the projection of this gaussian action on the lowest SU(2) 

- characters is, apart from an irrelevant additive constant: 

12 
- Tf e[-2n,2n] - + z[x1,2 - 0.21x, + 0.08x3,* + . ..] . (15) 

. 
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Inspection of Eq.(14) directly reveals the presence of an unstable fixed 

point (and the concomitant phase transition) for d > 4: 

; RJx *- &-4 
C 3(Ad’4 - 1) ’ 

(16) 

For example, for d = 5 and e = 0.1 we obtain jc = 2/3 + E, which corresponds 

to gFc = 0.68, in accord with Refs.3,9. 

It is also clear by inspection of Eq.(l4) that asymptotic freedom 

prevails for d < 4. In four dimensions, 3 decreases with a speed independent 

of its value: 18 

(17) 

This agrees well with the LDEA results of numerical NfC iterations (Table II of 

Ref+5, and Ref.9) down to B = BF w 0.4. In addition, down to the same 

coupling, the fixed line of Fig.1 is straight, with local slope 0.21 (Table II 

of Ref.5). 

The above remarks suggest that the analytical treatment discussed here 

holds for quite large couplings (gF > O.4), even though it relies on the weak 

coupling approximation. For smaller g’s, the quartic term in Eq.(12) becomes 

significant and upsets the fixed proportion among the characters, so that the 

LDEA begins to curve, aligning itself with the Wilson axis. For sufficiently 
-_ 

small g’s, it is evident that the renormalization recursion Eq.(4) diminishes 

the Wilson component less than all higher ones: 
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ee,X1/2+ 8*x1+* l l 

- 1 + Bpx1,2 + B,Xl + l . l 

Xd-2gX2 

+ 1 + ,--g- x,/2 + 

ad-2 Ba2 
A + 

l ** 
2x - 1 

3x2- l x1 

2 
ads2( 8: x1/2/2 

a24 a2 a24 + 
+ 6, x113 . . . > 

= e 

(18) 

Since the LDEA we are studying is not a straight line near the origin of 

the B’s (Fig.l), its straight portion does not quite extrapolate to the 

origin. However, since the corresponding intercepts are small, we choose to 

fit it with a straight line of slightly smaller slope Eq.(l), in the interest 

of computational simplicity. 

Bitar2’ has suggested a refinement by providing a strong coupling 

approximation to the universal trajectory with parabolic behavior. He is 

guided by saturation of the Osterwalder-Schrader positivity bound21p2*, which 

is evident in weak coupling. In weak coupling, the two approximations to the 

LDEA, namely the heat kernel action Eq.(9) and the Manton action Eq.(lS) 

satisfy and violate OS positivity, F, > 0, respectively.22 As they approach 

each other for large 6, they bracket the boundary which separates the OS 

region from the domain of negative norms. Bitar traces this boundary to 

strong coupling and parameterizes on it the curved part the LDEA (the 

connection to the OS positivity boundary is however only empirical). In any 

case, the resulting parameterization is more elaborate than the-simplest mixed 

actions we are proposing for Monte Carlo simulations. 

Let us now summarize our discussion of the SU(2) LDEA’s. For weak 

coupling and even well beyond the crossover region, they are reasonably well 

. 
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approximated by the heat kernel and the Manton actions, both of which exhibit 

smoother crossovers and improved scaling in the Monte Carlo simulations of 

Lang et a1.23 Moreover, -m the two leading terms in the character expansion of 

the appropriate gaussian provide a simple mixed action close to Eq.(l), the 

fit to the universal LDEA which was specified by direct iteration of the MK 

kernel. This action was empirically observed to exhibit improved continuum 

behavior6. Let us now extend this reasoning to SU(N), and, as a consequence, 

- . 

obtain the LDEA for SU(3). 

The extension of the above weak coupling approximation to the general 

SU(N) case8 is straightforward. In the central Brillouin zone, all the angles 

of the LDEA in Eq.(lO) are forced to lie near zero, and thus the logarithmic 

terms are well approximated by parabolas: 

c an ($1 - +j) $1 - 6j 2 
i<j 2 sin + (0, - 4j) - ; Jj (-7) = & $ 0: l 

We are thus led to the LDEA gaussian for SU(3): 

(19) 

(20) 

where $1 : 9, 42 z 0, and 93 - -(0 + $). The analog of Eq.(17) is now 

AB = -8 + O(E2). The character expansion of this (real) action is: 
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8 2 2 +I$ +9$-c 1 + x3 +x3 
c3(--Y- - 3) 
x6 + % + c&-7-- - 6, 

(21) 

+ Cs(x8 - 8) + . . . ~-- 

The real coefficients Cl are obtained by performing the two dimensional 

integrals : 

Cl = / dU( f12 + L+~ + 00) = 4.88 

c3 - / dU(e2 + +2 + e4Nx3 + 3) - -2.73 

‘6 = 1 dU( e2 + O2 + W4(x6 + q) = 0.28 

(22) 

‘8 - J du(e2 + .+2 + e+)x8 - 0.70 

The Haar measure in this parameterization may be found in Ref.9. Projecting 

onto the lowest three characters and taking the intercepts of the extension of 

this line to be zero, we obtain the mixed action of Eq.(2). Taking into 

account the measure, this action agrees with Eq.(20) over most of the variable 

range reasonably well, and represents the approximate generic renormalization 

trajectory for SU(3). 

Since approach to this universal trajectory upon scale expansion involves 

suppression of irrelevant components in the action (lattice artifacts), we 

-. conjecture it to provide better access to the continuum limit.- 24 As in the 

case if its SU(2) analog, Eq.(l), we therefore wish to attract attention to 

this mixed action as a convenient, improved alternative to the Wilson 

action. Of course, since there is no agreement on the reliability of the MK 
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framework, the superior performance of Eq.(2), or some action close to it, is 

an open *‘experimental” question. It thus appears to us that a Monte Carlo 

study of it should be quite worthwhile. 

We are obliged to K. Bitar, M. Karliner and P. Eeinartz for helpful 

conversations and numerical assistance. This work was partly carried out at 

Fermilab and the Max Planck Institut fur Physik und Astrophysik, whose theory 

groups we also wish to thank. 

. 
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FIGURE CAPTION 

Figure 1. Reproduced from Ref.5. The SU(2) MK renormalization trajectories 

of bare actions with a Wilson (gF) and anadjoint (BA) component. 

Within a large domain around the Wilson axis, all trajectories are 

attracted to and coalesce with a line of effective long distance 

actions. They then flow along this universal line of actions to 

the infrared fixed point at the origin. 


