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breaking of chiral symmetry and look for the mass gap between the ground 

state and the one composite-fermion state. The chiral symmetry is realized 

in the strong-coupling lattice Hamiltonian with the fundamental fermions being 

massless and fundamental scalars being massive. This calculation is based on the 

mean-field approximation to the state wave functions. Similar to the calculations 

of Quinn, Drell and Gupta in models without scalars, we also find that the chiral 

symmetry is spontaneously broken, and the composite fermions are massive. The 

extension of our calculation to SO(N) cases is shown to be straight forward. 
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1. Introduction 

In the context of strong coupling lattice gauge theories, Quinn, Drell and 

Gupta’ (QDG) h ave shown that the chiral symmetry is spontaneously broken 

and composite leptons and quarks, which are made out of fundamental fermions 

are always massive. They argue that in going to the continuum limit there can 

only be two alternatives, either the chiral symmetry is realized in the Nambu- 

Goldstone mode with massive leptons and quarks, or there is a phase transition 

at some finite coupling. In the first case, the masslessness of leptons and quarks 

cannot be achieved; whereas in the second case the desired property of confine- 

ment and asymptotic freedom is lost. 

Our goal in this paper is to extend this no-go senario to the type of composite 

models in which the fundamental matter fields involves both scnlars and fermions. 

Due to the limitation of our technical tools, we can only deal with those models 

having SO(N) as their gauge groups. A generalization to SU(N) groups awaits 

for future efforts. 

We shall first briefly review the QDG senario, then go to a SO(3) model 

and demonstrate that the no-go senario can be extended to the case involving 

fermion and scalar fundamental fields. We then argue that this can be straight 

forwardly extended to SO(N) cases. Although we are not able to cover the no- 

go senario to all models of this type (in particular, the SU(N) cases like the 

Fritzsch-Mandelbaum model2 or the Abbott-Farhi mode13), the implication is 
already interesting. Some discussions are given at the end. 

2. The Quinn-Drell-Gupta N-Go Senario 

As mentioned previously, Quinn, Drell and Gupta consider the composite 

-models in strong-coupling lattice gauge theories. They use the long-range form 

2 



of the lattice gradient operator (the SIAC gradient), which for an infinite-volume 
lattice is 

(2.1) 

in order to explicitly maintain chiral symmetry without the fermion “doubling” 

problem. Consider the problem of a simple hypercolor gauge group, say SU(N), 
with fermions (preons) assigned to some set of representations R with dimension 

dR and number of flavors fR. The Hamiltonian in AQ = 0 gauge is given by 

(2.2) 

where the lattice spacing a is the only dimensionful quantity and oP is the Dirac 

matrix 707~. For strong-coupling effective Hamiltonian we separate H into 

Ho = c g2E2 > and V=H-Ho (2.3) 

and perform degenerate perturbation theory in the sector of flux-free states. 

This requires that the fermion states at every site is a gauge group singlet. By 

retaining the terms only up to order l/g2, which corresponds to acting V twice, 

exciting a flux then annihilating it, gives4 

+O 
1 0 z ) 

where 

(2.4) - 

- wit = NR @6; + nonsinglet pieces 
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and g2c& is the energy denominator from Ho corresponding to a string of length 

e in representation R - R. _ - 
Notice that the Hamiltonian has a nearest-neighbor symmetry 

S nn = n [m(4fR)@u(l)R] . P-5) 
R 

The U( 1) charge is 

QR(?) = &;)b~(h -&(?)d~(h 

= i&t;, ?'R(%-fRdR 9 

QR=~ QR(;) t 
i 

(2.6) 

where 

-and 6 and df are two-component spinors. The generators of the m(4fR) are 

where kfk are the (4fR X 4fR) Hermitian unitary matrix representations of 

su(4fR). By performing a Fierz transformation and using Eqs. (2.6) and 

(2.7), we can rewrite Eq. (2.4) in a compact form 

HeJf =:c c 
NR 

9 R j,!+ 4fRcR 
P-8) 

- 
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where 

a/, Mkq, = tfk Mk .(7pk = fl) - - --_ P-9) 

and x is a normalization factor. Since the interactions fall off rapidly as (!!)-3, 

the odd-neighbor terms (l = 1) provide the dominant part of Herr. The smaller 

terms (4! = 2) provide the symmetry breaking perturbations. The odd-terms are 

of the form 

x2 C Qf$) Q@ + (2n + 1) i]+ Q&J Q$ + (2n + 1) b] 
k 

and hence are antiferromagnetic in character, tending to antialign w(dfR) X 
U(1) spins on sites separated by odd numbers of lattice spacings. The even-e 

terms tend to reinforce or compete with this antialignment depending on whether 

the sign ~,IP~ is negative or positive. By using the mea.n-field ansatz with two 

overlapping sublattices (see Ref. 4, and more specifically the simplified version 

in Ref. S), QDG showed that the states that develop an expectation value for 

Mk = 70, that is for the operator 

$ (1) $(1’) = (-l)jz+jv+h JJt (;) 70 4 (31) , (2.10) 

are among the degenerate set of possible ground states that minimize the energy 

density 

E = bweffl4) 
volume ’ 

(2.11) 

Any infinitesimal mass term added to the Hamiltonian will select this chiral 

symmetry breaking state about which the mass acts as a perturbation. 

QDG also showed that by acting on any site of the lattice with a composite 

fermion operator on the chosen ground state, there will be a mass gap created 

and of order l/g2. Hence the composite leptons and quarks are massive. This 

conclusion does not change for any choice of fermion representation content and 

_ gauge group for four-component fermions. And the no-go senario of QDG as 

-stated at the beginning of this paper follows. 

- 
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3. The Ground State Structure in a SO(3) Lattice Gauge Theory 

Now we extend the above no-go senario -to composite models involving 

fermions and scalars as fundamental constituents. We begin with the model 

where the hypercolor SO(3) is the gauge group, both fermions and scalars are 

assigned to the fundamental triplet representations. 

The Hamiltonian in the continuum limit is given by 

H - -; G,v GpY + +* Wa + (D,4a)t(Dp4a) + p2 &*$a +; (qbta&)2 (3.1) C- . 

with X > 0. Notice that the Yukawa term $6 $ is not allowed due to the 

assignment of the representations. The quartic coupling between scalars and 

fermions is purposely avoided by assuming that the scalars and fermions interact 

only through the gauge fields. 

Although the Hamiltonian Hc thus constructed preserves chiral symmetry, 

one may suspect that when #@da obtains a nonzero vacuum expectation value 

the fermions may still acquire masses through the box diagram and its higher 

order iterations (see Fig. l), as a result the chiral symmetry of the system 

will be broken explicitly. We argue that this worry is unnecessary, because the 

contributions of these diagrams have an explicit dependence on the fermion mass 

m (see Appendix A). Since we assume m = 0 in the first place, these contributions 

should vanish. 

Let us now consider a lattice Hamiltonian, which preserves chiral symmetry 

and it will reduce to Eq. (3.1) as the lattice size a + 0. Recall that in the standard 

construction of the Hamiltonian in a lattice gauge theory, one assigns the matter 

fields on lattice sites and the gauge fields on the links connecting the sites. Within 

the SLAC long range gradient formalism, 4~6 the present Hamiltonian in the 4 = 

0 gauge can be written as: 
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+ D(o) #*(;) #a(;) + h.c. 1 

Notice that the term D(0)~fa(~)g$-$) comes from the spatial derivative of the 

scalars at the same site. Numerically D(0) = 7rr2 in three spatial dimensions. 

The scalar momentum r&) is defined as 

i7r&) = i/z6 [-&ti,, a-a(;)] 

so that 

(34 

All the fields and parameters in Eq. (3.2) have been properly redefined in such a 

way that the lattice spacing a is the only dimensionful quantity. 

In the strong coupling limit, we neglect the plaquette terms and separate the 

rest of the Hamiltonian into two parts: 

1 
Ho = a c 

l 2 a 5 g E & and V=Ht-Ho . 
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Since E&(3, ji) measures hypercolor flux-excitations, the ground state of HO 
corresponds to that sector of the Hilbert space, which does not involve flux- 

excitations. So we are looking for perturbative effects--due t‘o IT Rewrite V as 

V=Vm+V,+Vf ) (3.6) 

u&i, N 4% + Q) + h.c. 1 , 

Since we are working in the strong coupling limit, we retain the perturbative 

Hamiltonian only up to the second order. In other words, 

H N H(l) + H(2) e/f - , 

with 

(3.7) 



and 

Hi21 = c E. ’ EL {V/” + V,2 + 2VjV8} - - - ~.. - 

After a Fierz transformation, He!! can be expressed as 

+ 3 [4+*(T) &(;)I2 + 4! h.c. 1 
Q,(;) Q,(; + e i4 

(3.8) 

+ x2 5 (r)pk)t+l f&(y) Qk(; + @) + kc. 
k=l I 

- f [[PG) &(;,I Id% + Q-4 hrtl + WI + h.c.1 

F(; + t ji) + h.c. I) . 

-is the creation operator for the composite fermions. 
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Let us compare our He~f in Eq. (3.8) with the Ile// in Eq. (2.8). The U(1) 

x SU(4) charges in HI is identical to those-in Eq. (2.8). But, in addition to the 

H8 terms, there are two main differences between the two effect&e Hamiltonians: 

First, there are zeroth order (in l/g2) contributions H(l) to He!! due to the scalar 

fields in our case. This plays a dominant role in the construction of the ground 

state bosonic wave function. Second, Hj3 corresponds to the kinetic energy term 

which moves the composite fermion from site 3 + !!b to site 3. While the kinetic 

term in QDG’s case is of order l/g4, our kinetic term is of order l/g2 and can in 
principle compete with the potential terms in Hf. Next we proceed to construct 

the ground state of the system. 

A. A General Trial State for tb.e Vacuum 

We anticipate that the trial state for the ground state or the vacuum should 

take the general form 

IV = c C$ c &m(o,op?qe,-m)~Sam)+ @)I, 0 
ma) [ m II ) 

(3.10) 

-where the SO(3) scalar product is defined and where Cp’s are functions of boson 

field operators with t, m being the SO(3) hypercolor labels and (Q) some addi- 

tional labels, and *II’s are the corresponding hypercolor conjugated functions of 

fermion field operators. Summing over m above amounts to taking the scalar 

product in the hypercolor space to ensure hypercolor singlet states. The C’s are 

numerical weight factors for different assignments of t, {o, 8). 

(1) The E&on Wave Functions 

The first order Hamiltonian for the scalar part has the form [cf. Eq. (3.6)]: 

+ $ [&;) g”(?,]’ + h.c.] . 
. 
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Our present problem may be mapped to the nonrelativistic quantum mechanics 

problem with 
_ - 

H(l) (3.11) 

In particular all we need is to make the identification: 

u2 
2m=a, -= 

4 
= 3.3 ) and p2 = rLra = Z’-?r . (3.12) 

Now we consider the case where X0 is sufficently small, so that we may make 

use of the perturbation approach and describe the complete set of the orthonor- 

ma1 wave functions for the tensor products of 4, in terms of eigenfunctions of 

the Hamiltonian: 

H(l) (3.13) 

Later we shall make precise on the range of Au to be assumed. 

Next we proceed to discuss the solutions for H(l) of Eq. (3.13). The radial 

part of the Schroedinger equation for H(l) is given by: 

1 d2u --. 
2p dr2 

where the full wave function is 

(3.14) 

(3.15) 

which satisfies H(‘)Q, = EO. Following the standard approach (see for example 

Ref. 7), let 

U = #+1 exp(-$ r’) f(r) 

and denote z = mwr’. Substituting Eq. (3.16) into Eq. (3.14), we get 

z$+gf(t+;-z)+[f-(;+;)]f =o - (3.17) 
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Recall that the associated Lageurre polynomial satisfies the differential equation 

d2w dw 
z-@+J-(p+l-z)+qw=-0 . - - 

Comparing Eqs. (3.17) and (3.18), one obtains 

f(z) = L1iti( Z) and E = (2g+e+@ . 

(3.18) 

(3.10) 

Denote t = d-i----T2 D + ~1 4 . For our present complete orthonormal set of bosonic 

functions, we write 

(3.20) _ 

where the overall constant can be specified through normalization of the states. 

(2) The Fermion Wave Functions 

To describe fermion states we must take into account the two degrees of 

freedom for spin l/2 and make the particle-antiparticle distinctions. Denote the 

field operators for the creation of fermions by 61,m, b:,, and for the antifermions 

dt+,_, and d!-,_, Here the subscript m takes the value m = -l,O, 1, since all 

these particles are in e = 1 triplet states. Note also a particle in the m state is 

-color-conjugate to an antiparticle in the -m state. 

The resultant color content of the products of fermionic field operators can 

now be defined through the usual procedure of the Clebsch-Gordan additions. 

More explicitly one would write: 

en (n+,n-,fi+,fQ z *em = C $k:-) ,I,,,-) (h+!lml;ep22) , (3.21) 
Cl9 
f2f7-42 

with 

and a similar definition for the antiparticles. The general trial state of Eq. 

- (3.10) is now defined through-Eqs. (3.20) and (3.21). 
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B. The Inclusion of the Xur4 Term 

Now we return to the full expression of H(t) [cf. Eq. (S.il)Lby adding in the 

Xor4 term as a perturbation to the previous treatment. 

By invoking WKB approximation for the harmonic oscillators (see Appendix 

B), we have, for t = 0, the phase condition when without the Xur4 term 

and for e > 0, the phase condition 

6 / dr \I& - f mw2r2 - “,‘,:i’ = f , gives Et x EO + tw . (B.lO) 

Now we proceed to consider the effect of including the Xur4 term. Denote the 

eigenvalues we are looking for by: 

E; = E. + A0 and E: =Ee+Ae . (3.22) 

And they satisfy the corresponding conditions: 

and 

Jzm/ dr /E~-~rnu?-~-Aor4=~ . (3.24) 

Application of the mean value theorem on Eqs. (3.23) and (3.24) reveals 

following crucial properties for the energy shifts. For Xo > 0, A;‘s are all 

positive quantities and they are monotonic functions of X0. Since E/ - EL = 

Cw + At - Au, so long as A0 is maintained with some finite value below w, E/ 
_ for e > 0 would always be at least a finite gap away from EL. In other words, 

-we have now arrived at a sufficient condition which ensures a finite gap between 
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Ed and El for e > 0. To reiterate, this is achieved when X0 is kept in the range 

such that 
_ - 

Ao < Cl- 4~ (3.25) 

with q being some arbitrary finite fraction. 

Now we proceed to make a quantitative estimate on the range of X0. First we 

calculate the approximate ground state energy based on the variational technique. 

We choose the form of the ground state wave function for the harmonic oscillator 

to be that for the trial wave function. We get 

(OpI(l)lO) = / r2dr exp(-g r2)H(‘) exp(-$ r”) 

/ 

, 

with 

L2 H(1)=-+$r2-f-+~r2+T , 
r r 

and 

H(1)exp(-~r2)=($+W2;82+r2+~r4)exp(-~r2) . 

Use the mathematical identity: 

co 

J 
r"dr exp(-$) = f (;ln+1)'2 r(f$-..L) . 

0 

Equation (3.26) becomes: 

W2 (H(l))=;(p+-p-+g =f(P) - 
> 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

Now let us allow j? to be a parameter. The minimum value of (H(l)) is 

obtained by minimizing f(p). As a rough estimate on X0, we solve for (H(l)) 

iteratively. To the zeroth order in Au, the stationary point occurs at p - w, so 

(HO)) N ; + 5xo 
2w2 * (3.31) 



The condition of Eq. (3.25) now gives, 

x0 < ;(1-q)w3 . - - (3.32) 

It is important to point out that while from Eq. (3.26) onward, we have used the 

perturbative method to estimate the quantitative range of X0, our argument in 

arriving at the finite-gap conclusion is independent of the perturbation theory. 

4. Chiral Symmetry Breaking and Composite Fermion Masa 

Recall that the full effective Hamiltonian Hejj includes H(l) and Ht2), where 

Ht2) is of order l/g 2. The fact that the eigenvalues of H(l) are separated by 

finite gaps suggests that the e = 0 component in the ground state In) [defined 

in Eq. (3.10)) d ominates over other components. 

A. The Mixing Angle in the Ground State 

We shall simplify our ground state structure by truncating away all the 
t t <p,,, \Ere --m components for e 2 2. Meanwhile we introduce a mixing angle 

8 to parametrize the relative weight between the @ i - @& and @ i - 9i components: 

IfI) = [cos t9+h - 9& + sin 6 a[ - *t,llO) 
(4.1) 

= PO) + If-h) * 

Note that the normalization for these states are: (nlfl) = (0ulSu) = (f&lnl) = 

1. Let us define 

(i201Hjlfl~) = cos2 0 Ejo , (nlIHjIR1) = sin2 eEj1 ; 

and 

(~olxQl~o) = ~0s~ 8 Ed , (flllH81fl~) = sin2 flE,l ; (4.2) 

pol~j8p1) = (~I~IH/BIRo) = cod sin eEj8 . 

Notice that all Eli’s, Eai’s and El8 are at least of order l/g2 inherited from their 

corresponding Hamiltonians. Recall that 

- (RolH(‘)IRo) = cos2 O& , (O~lH(‘)lfil) = sin2 OE1 ; (4.3) 
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where EO and El are given according to Eq. (3.22) and the energy gap between 

EO and El is finite (of order zero in 1/g2). 
_ - 

Putting everything together we have 

if - Pl~ejjl~) 

= (t21(H’1’ + H’2’)ln) 

= cos2 B(Eo + Ejo + E,o) + sin2 8(E1+ Ejl + E81) + 2 cos 8 sin 8 Ej8 . 

(4.4) 
Minimize this vacuum expectation value by varying 8, 

we get 

tan 28 = - Ef8 
(El - Eo) + wj1- Ejo) + m31- EBO) - o ’ 

(4.5) 

or 

e--o1 0 ;12 * (4.6) 

If we were to include the 4! 2 2 contributions in Eq. (4.1) it can be shown that 

our conclusion of Eq. (4.6) still prevails. 

B. Chiral Symmetry Breaking 

Now that 0 - O(l/g2), we know that cos2 8 - O(1 - l/g4) and sin2 0 N 

O( l/g4). Thus 

and 

(f201Hjlflo) = cos2 BEjo - 0 ;;fi 
0 

(4.7) 

(nllHjpl) = sin2 0 Err - 0 . 

Since the part of the Hamiltonian Hejj which deals with chiral symmetry break- 

- ing is Hj [see Eq. (3.8)], we see from Eq. (4.7) that the part of the vacuum which 
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dominates this breaking situation comes from (00) E cos 8 @ i - q$O) where qi 

corresponds to creating all possible fermionic hypercolor-singlets in SO(a). On _ - 
the other hand, In,), which consists of fermionic hypercolor-nonsinglets, will 

contribute only up to order l/g6. 

In the context of our present discussion, we remind the reader an important 

point: In QDG’s argument for chiral symmetry breaking, they consider the case 

where there are only colorless fermionic states present, that is the state IsZu) = 

I@o). (Note for e = 0 chiral symmetry breaking is independent of the scalar con- 

tribution.) Their chiral symmetry breaking conclusion is arrived at by showing 

that a certain nonchiral symmetric ground state gives the lowest energy expecta- 

tion value E/O. At the same time chiral symmetric tria.1 states give expectation 

values at least of the order l/g2 higher. For our case, from Eq. (4.7) one sees that 

the Ist,) state contribution is suppressed by an additional factor of l/g4 and can 

be ignored. So our conclusion of the spontaneous breaking of chiral symmetry 

now follows in the same way as that of QDG. 

C. The Composite Fermion Mass 

In the case of QDG, the “potential energyn for creating a composite fermion 

from the mean-field state is positive and of order 1/g2: 

(4.8) 

On the other hand, the “kinetic energy” terms that move composite fermions 

(made of three or more fermionic preons) from one site to another are able to 

reduce the mass gap but only to leading order 1/g4. Hence one cannot alter the 

mass gap result by making a zero momentum superposition of local composite 

fermion states. We now turn to our case. 

The evaluation of the composite fermion mass for our case is complicated 

by two additional effects. First the presence of the composite fermion kinetic 

term Hj8, which as we shall see gives rise to a O(1/g2) effect. Second, even more 

importantly, the presence of the scalar term which gives rise to O(1) effect. 

-(i) General considerations involving composite fermion operators. 

- 
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Define a composite fermion state as a composite creation operator acting on 

the mean-field ground state: 
_ - 

Ft(&-l) = IF6)) * II IfU3)s II l%(7E)) 
even 

i#i 
odd 

k#j 

(4-Q) 

where In,) and 10,) are the even and odd site mean-field ground states, respec- 

tively, and Ft zz $ . Jt. 

In momentum space, introduce 

IF(Z)) E C exp (ii. j) Ft(j)ln) , 0 5 I Z I 5 i . (4.10) 
t 
I 

The expectation value of the kinetic term defined by the momentum state is 

given by 

(?(Z)IFt(y) F(j + eji)Iqi)) + h.c. 

=%;, {exp [w iii - iii’) S(?3 - ;, 6(; + eji - ih’) + h.c. ] > , 
(4.11) 

= 2cos(Z. eji) . 

Clearly, the maximum value corresponds to 2 = 0, i.e. 

17(f = 0)) = c Ft(l’)ln) . -! .I 
(4.12) 

This turns out will lower the expectation value of He11 the most. So the 

l?(iE=O)) t t s a e is appropriate for the evaluation of the mass gap. 

(ii) Evaluation of the mass gap. 

The Hamiltonian of the kinetic terms is H/B and can be expressed in terms 

of the composite fermion operators 

- (4.13) 



where the first term on the righthand side, FJF,, corresponds to movings be- 

tween nearest-neighbors, and the second term corresponds to hoppings between 

next-to-the-nearestneighbors. These are all along the--P direction. 

In appendix D we find that 

Again, keeping only e < 2 terms then the state /7(; = 0)) is approximately 

equal to 

13(i = 0)) N (#t, - +[I (COS e@ . *A + h e# - ~1) 10) 
(4.15) 

21 sin elf-g) + co9 eln[) , 

where IQ,“) E @~t+%~tlO) and IfI:) EZ @:t-‘kitlO). The superscript states are not 

properly normalized (see appendix D). Denote some normalization factor NF = 

(3(i = 0)13(Z = 0))-1, 

NF(?(i = O)lHj13(f = 0)) N sin2 t9Eyo + cos2 @Ejl , 

with Eye defined to be equal to N~(Q~lHjlf$‘), and is of order 0(1/g2), E;r 

equal to N~(fl[IHjIfl[), also of order O(1/g2). So 

NF(3(& = O)lHj13(i = 0)) - 0 (-t& . (4.16) 

whereas for Hj8, 

NF(?(i = O)lHj813(z = 0)) - sin8 cos8Ej8 - 0 $ 
0 

. (4.17) 

To arrive at Eq. (4.17) note that for the expectation value of the second term on 

_ the right hand side of Eq. (4.13) upon averaging over the spin orientations of the 

-composite fermions, this term vanishes. So in our case the kinetic energy is also 
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of order l/g4 and cannot help to close the mass gap for the composite fermion 

state. 
_ - 

Now we come to the second effect mentioned earher. The fact that there 

exists a H(‘) part in the total Hamiltonian and that ‘H(l) is of zeroth order in 

l/g2 expansion, tells us that the mass gap for the composite fermion state is of 

zeroth order in l/g 2. To be more specific, 

N~(3(i = O)IHejjl3(Z = 0)) - sin2 t9@4 + cos2 t9l$ 

and using the notation of Eq. (3.22) we have 

(f’llHejjlfl) - cos2 8(Eo + Ao) + sin28(E1 + Al) . 

Thus to leading order in l/g2 

A& = 443 IHef/l3) - (QlHef/lR) - COS2 e(ti; - E. - Ao) - o(i) . (4.18) 

In the last step we have used I!$ N El + Al. Note in general to zeroth order 
in l/g2, for fixed e the corresponding energy eigenvalue for 10,) is the same as 

that for la!). We thus conclude that, in the case of SO(3) composite model 

involving both fermionic and scalar preons, the chiral symmetry is also sponta- 

neously broken and the composite fermions (leptons and quarks) are massive in 

the strong-coupliilg lattice calculation. 

D. Generalization To Other Cases 

(i) Extension to the case with Higg’s phase. 

For Do + &$ < 0, the minimum of the expectation value is 

occurs at 

- 42 2 I4 
=v =2x0? 

with 101 = -(Do +pg) . 

(4.19) 

(4.20) 
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With the usual redefinition of the dynamical fields: 3 = 4 - v, we have 

H4 = ii2 + 2lal cj2 + 4xovq3 + &i4 ; - (4.21) 

Now we can apply the procedure as before to evaluate the energy of the trial 

ground state as a function of the parameter ,0. After a similar manipulation, we 

arrive at 

(4.22) 

The absence of .f > 0 components in the ground state can be ensured when 

-1 

- (4.23) 

(ii) Extension from SO(3) to SO(N). 

So far for definiteness, we have considered the SO(3) case, which is locally 

isomorphic to SU(2). Our considerations can, in a straight forward manner be 

extended to general case of SO(N). A particular case which might be of physical 

interest is to assign the fermions and the scalars and their corresponding an- 

tiparticles to the irreduciable representations of SO(6), which contains SU(3) as 

a subgroup. Here we will be looking at a theory which has a symmetry slightly 

larger than that of QCD and it has additional scalars. 

Bander and Itzykson’ have shown that for SO(N), the corresponding Lapla- 

cian operator is given by: 

(4.24) 

where L2 is the generalization of the total angular momentum and it operates 

on angular variables with 

(4.25) 

- 
where fi is an arbitrary unit vector in the N-dimensional space. 
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Define the reduced radial function by: 

u=raR 
N-l 

, a = 
Yi-= * - - 

The present SO(N) theory can now be associated with the corresponding radial 

equation: 

1 4e(e + N - 2) - (N - l)(N - -- 

2p 

d%+ 

dr:! fw2 

3)+’ 
2 

pw2r2+Xor4 
- 

4! I 
u = Eu . (4.27) 

WKB approximation can again be applied to solve for the energy eigenvalues. 

Once again one concludes that as long as the parameter X0 is kept below a 

certain value, the nonhypercolor-singlet (.f? > 0) components in @e and \Ire are 

appropriately suppressed in the ground state. In turn the no-go senario advocated 

in Ref. [l], is also applicable here. 

5. Further Remarks 

So far we have demonstrated that the QDG no-go scenario extends to the 

composite models based on SO(N) groups. Note that our result follows rather 

trivially once one recognizes the smallness of the mixing angle 0. On the other 

hand we find that without the explicit calculations of the eigenvalues El and 

Eo, it would be difficult to argue a priori about the smallness of 8 and thus the 

breaking of chiral symmetry. 

Unfortunately we are not able to enlarge the scope to those models based on 

SU(N) local gauge groups, be it either having both scalars and fermions assigned 

to the fundamental representations (like the Fritzsch-Mandelbaum model), or 

having right-handed and left-handed fermions transform differently under the 

gauge group (like the Abbott-Farhi model), or other constructions. But the 

message we get from the previous sections is quite clear. For composite models 

based on QCD-like non-Abelian gauge theories, the chiral symmetry is very hard, 

if not impossible, to be retained. There is, however, an exception suggested by 

_ Banks and Kaplonovskyg, who use a variant of a Kogut-Susskind gradient which 

-is only possible for groups with real representations, such as O(n), and with a 
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single flavor of fermion. But these theories would give massive composite fermions 
when treated using any of the standard lattice gradients.l 

An interesting alternative is given by Buchmiiller; Peccei and Yanagida,lO 

in which the lightness of leptons and quarks is not supposed to be protected 

by the chiral symmetry of a “normal” Yang-Mill gauge theory. Rather, the 

light composite leptons and quarks are quasi Goldstone fermions arising from 

the spontaneous breaking of a global symmetry in a supersymmetric theory. In 

this framework they treat the weak interactions as residual interactions of the 

quasi Goldstone fermions. The simplest preon model realizing this global sym- 

metry breakdown leads to the supersymmetric extension of the standard model 

of electroweak interactions. So this model can be viewed as a supersymmetric 

generalization of the model of Abbott and Farhi. But there are shortcomings 

in this supersymmetric model. Namely, there is only one family of leptons and 
quarks realizing in the coset space U(6)/U(4) X SU(2) that they suggest. Thus 

the main theoretical motivation for lepton-quark substructure, namely, the fam- 

ily (or generation) replication and the fermion mass spectrum, is far from being 

addressed. Despite the fact that no realistic composite model has been advanced 

thus far, the notion that quarks and leptons are composite particles remains to 

be intriguing. 
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APPENDIX A 
The Absence of #t4 $ $ Term 

in Effective Hamiitonian-- - - 

We argue that the Hamiltonian Hc will not develop an effective tit6 $I T/J term. 

Since we assume that 4 and + can interact only through the gauge fields, the 

lowest order contribution is the box diagram in Fig. l(a). The scattering ampli- 

tude in the U(1) case is 

A2a: dq / 4 Pk - q)p WV+ A+ mW’l(2k - ab 
I@ - d2 - M21 KP + q12 - m21 q4 ’ (A4 

where k and p are the momenta of the scalar and the fermion, respectively. The 

quantity q is the hypergluon momentum, A4 and m are the scalar and fermion 

masses, respectively. The resulting terms in the effective Hamiltonian are given 

bY 

c n (b42) dt#$rX+ . (A-2) x 

The candidate mass term is #t4 6 $, with its coefficient given by the trace 

of 4, 

Tr A2 a: d4q 
/ 

W  - q),v n WV4 Pk - q)v 
IF - d2 - M21 NP + q12 - m21 !I4 

=4m 
J 

(2% - d2 
d4q [(k - q)2 - A@] [(p + q)2 - m2] q4 * 

(A4 

We see that ‘llA2 depends explicitly on the fermion mass m. Since we assume 

m = 0 to begin with, this box diagram does not contribute to an effective $tQ $I 1c, 

term. 

Next we look at the higher order iterations, which is diagramatically shown 

- in Fig. l(b). Th e corresponding coefficient for its contribution to the mass term 
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is proportional to THAN, 

‘IIANcc / 
d4ql . . . d4qN-r(. . .) - ~-. - - 

X Tr +(j{ + m)yp2(#2 + m) . . . qPN-l(#~-l + m)qpN 1 . (A-4 
Notice that the mass term should be associated with even charge-conjugation 

configurations, so N must be even. This in turn tells us that there are odd 

number of (p; + m) terms inside the trace. As a result the only term which is 
independent of m [i.e., Tr (7pl ,& 7p2 $4 . . . 7”N-1 $hml 7p”)] should vanish. 

All other expansions depend at least on one power of m, and should be zero when 

m = 0. So we conclude that the term q4 t 4 $ cc) should never occur in the effective 

Hamiltonian. 
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APPENDIX B 
--. -- WKB Approximation for the 

Harmonic Oscillator -Problem - - 

In this appendix we illustrate that the WKB approximation does indeed re- 

produce, at least approximately, the spectrum of Eq. (3.19). We shall illustrate 

the effect of the perturbative terms in this context. 

1. WKB Approximation for the Ground State Energy 

Consider Eq. (3.14). With C = 0, the WKB approximation gives’: 

for 0 < r < a, 

and for r > a, 

W) 

h:=Jqqz. (B.2) 

In these equations, a is the classical turning point. For the present case: 

a = \/2Elmw2 , V(r) = f mw2r2 + “‘,‘,‘,t) , 412 = Tkdr . 
rl 

To ensure the vanishing of u at r = 0, we need the condition 

4Oa-q- *-(2q+l); . 

The ground state corresponds to q = 0 or the condition 

Evaluating the left hand side of Eq. (B.4) gives 

(B-3) 

- LIIS=uJ2mE;~. 
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This leads to E = c w in agreement with the exact solution given in Eq. (3.19). 

2. To verify the WKB Method for fJ > 1 _ _ - 

For e 2 1, the WKB method gives: 

for O<r<b , (B.Sa) 

and 

u--$~~($b,-i) for b<r<a . (B.56) 

As usual, we rewrite the right-hand side of Eq. (B.Sb) as: 

Now we recall that the connection formulae in the WKB method give 

-$ eos(&.,-i) ---) --$ exp (- jtcdr) , 
a 

-$sin(&.=-:) + -$exp(+/ndr) . 
a 

(B-7) 

(B-8) 

Equation (B.8) h s ows that the appearance of sin(&a - (n/2)] factor in Eq. (B.6) 

is not acceptable. This could be avoided with 

or 

4ba = (B.9) 
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For arbitrary e and q, Eq. (B.9) takes the form: 

jdr /-f(q+i)+- - 
b 

Rewrite LHS in the form 

az&2 
LHS=y12 

Pr 
r2 - b2) (a2 - 6) 

(B.10) 

=$f.i(a-b)2=(q+k)a . 

The second equality can be proven by means of, among other things, hypergeo- 

metric function identitiesll Some details are given in the Appendix C. 

Comparing Eqs. (B.lO) and (B.ll), we get 

a,=J@- and a2+b2- 2E -- 
PW pw2 - 

From Eqs. (B.11) and (B.12) 

(B.12) 

(a-b)2=&($J@TT))=-f-(q+~) , (B.13) 

E=29+l+,/@+zzq+e+; . (B.14) 

Some observant reader might have already notice that the WKB wave func- 

tion given in Eq. (B.Sa) does not have the correct near r = 0 behavior for C 2 1. 

Despite of this discrepancy, we observe that so far as the eigenvalues of (3.19) are 

concerned, the WKB method does a reasonable job in reproducing the spectrum. 

Notice that for e = 1, 

&e+ 1) = 1.41 

our approximation in (B.14) amounts to replacing this value by 1.5, which is a 

reasonable approximation. Furthermore the approximation in replacing Jm 
-by e & $ becomes more and more accurate as CJ increases. 
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APPENDIX C 
Derivation of Equation (B.11) 

_ - 

Mathematical identities (all quotations are referred to those given in Ref. 11) 

that we need are: 

I.1 

/ 
b dx (x - a)y-l (b - z)p-’ = (b - a)“+v-l B(~, v) 

2 b a (3.228.3) 

for b>a>O . 

I.3 

;,1;2;4z(l--2 
)I 

=A (9.121.25) - 

We begin with the LHS of Eq. (3.11). From (1.1): 

a2 - b2 
a2 . 

From (1.2), 

a2 - b2 
1,;;3;- = 

a &2 4 ;,1; 2; (&-$,“] . 

Identify 

W.1) 

(c.2) 

This gives 

- = 2(a2 + b2) 1 
1-Z (a + b)2 . 

From Eqs. (C.2), (C.3) and (I-3), Eq. (C.l) can be rewritten as 

LHS = 7 (a - b)2 

-and the expression in Eq. (B.ll) follows. 
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APPENDIX D 
Derivation of Fg. (4.14) 

_ - 

To arrive at Eq. (4.14), we need to reexpress each relevant bilinear form of 

scalar products of SO(3) vectors in terms of linear forms of scalar products of 

new SO(3) vectors. Consider the general expression 

P = (a - b)(c - d) 

= c [(-l)l--” aim bml I(-I)‘-” cln bnl (W , m,n 

where a, b, c and d are vectors in the triplet representation. Introduce the new 

SO(3) vector AJM, BJIM~ defined 

alrn cln = C AJM(J, MI19 m; 1, n) 9 
JM 

P-2) 
bl-m dl-, = c BJ~M~(J’, M’(1, -m; 1, -n) 

J’M’ 

with J ranging from 0 to 2. Now the Clebsch-Gorden identities imply that 

(J’, M’ll, -m; 1, -n) = (-1) J’(J’, -M’Il, m; 1, n) 

C(J,MIl,m;l,n)(J’,--M’Il,m;l,n) =GJJ/SM-MI 
(D.3) 

m,n 

with M = m + n. Substituting Eq. (D.2) and (D.3) into Eq. (D.l) we get 

P = (a - b)(c . d) 

= c AJM BJ-Mkl)J-M 
JM 

- 
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Now we introduce Qpi and ai’ through following expressions: 

= +:+(O, Olf, m; 1, n) + C @fL(l, MIl, m; 1, n) 
M 

(D-5) 

+ C +:L(2, M’ll, m; 1, n) , 
M’ 

and similar expressions for Si and \Ir:‘. Substituting Eq. (D.5) and the corre- 

sponding expressions into Eq. (D.4) one arrives at Eq. (4.14). 

Consider the case when a - a = b-b=c-c=d-d=l. Notethatforthiscase 

by setting A J equal to BJ in Eq. (D.Q), A J and BJ are not properly normalized. 

However, note that the multiplicative factor needed to restore the normalization 

is some finite factor of o(1). For example, 

= $a1 . cl 
P.6) 

When al = cl, Au = l/ & In general, al - cl deviates from unity by some 
finite amount. One can easily see that this complies with the above statement of 

normalization. 
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Figure Caption 

Fig. 1. (a) The box diagram that could give rise to -San eff&t&e #f$ $11, term; 

and (b) its higher order iterations. 
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