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ABSTRACT 

A method for obtaining the solutions of the Euler’s equations of t,he theory of harmonic 

maps is proposed. It is also shown that in two dimensional case different solutions of the Euler’s 

equat,ions of harmonic maps are generally related by the conformal transformations. As an 

application of the proposed method the solutions of the Ernst equation in general relativity is 

studied. 
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1. Introduction 

The theory of harmonic mappings (HM) of Riemannian manifolds has application to 

a wide variety of problems’ in Physics such as the Nambu string, solitons, nonlinear 0 

model, Heisenberg ferromagnet, and Einstein field equations of gravitation. In this paper a 

method for obtaining the solutions of the Euler’s equations of HM is proposed. It is shown 

that if the hamonic mapping $A(~) : A4 + M’ (A = 1 . . . m) are functions of an argument 

g alone, where u is a function of xp (cl = 1 . . . n), then the Euler’s equations of HM can be 

reduced to the geodesic equations in M’ space with CT as a line element, and the function 

Q = a(x) satisfies the general covariant D‘Alember’s equation in A4 space. It is also shown 

that in two dimensional case (m = 2) different solutions of the Euler’s equations of HM 

are generally related by the conformal transformation W = F(w) where w = # + 42. As 

an application of the proposed method, we study the solutions of the Ernst equation in 

general relativity. 

2. Harmonic Maps 

Let M and Ml be two Riemannian manifolds with # coordinates on M and 4A 

coordinates on M’. The metrics on M and M’ are denoted by 

de2 = gp,,(z)d& dzV (p, u = 1,2, . . . . n) 

dL2 = GAB(4)dqbA dbB (A$= 1,2, . . . . m) 

respectively. A mapping 

of M onto M’ will be represented in coordinates as - 

(1) 

(2) 

cbA = 4A(4 (3) 
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It will be called a harmonic map if it satisfies the Euler’s equations resulting from the 

--~-variational principle 61= 0, using the action - 

i.e., the conditions for a map to be harmonic are given by the Euler’s equations 

1 a z.azp [ ~Tjg”~!!f]+s’“r~(~)$$.~ =o (C=l,2,...,m) (5) 

where I’& are the Christoffels of the 4 metric dL2 on M’. 

Since fbA(z’) = d,+A has th e vector transformation properties: 

(6) 

it follows that (5) are covariant with respect to coordinate tranformation both on M and 

M’. That is to say the harmonic mapping is an invariant statement which is not affected 

by any choice of coordinates on M and M’. 

3. The Functional Relations Between the Harmonic Maps 

The (5) are nonlinear partial differential equations of variable 4A. We shall study the 

functional relation between the solutions of the (5). This problem is equivalent to finding 

the conditions under which the (5) h ave one and the same form in different coordinates 4’ 

and 4 on M’. It is not difficult to find that these conditions should be 

&?(4’) = GAB@‘) (7) 

This means Gb($‘) and GM(~) must be the same functions of 4’ and 4 respectively. It 

follows that I”&($‘) and I’%($) are also the same functions of 4’ and 4 respectively. The 

co_nditions (7) can be expressed as 
- 

GABW) = (8) 
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which are the equations for determining the functional relation between the different so- 

lutions C#J’ and 4 of (5). - 

In two-dimensional case with diagonal metric, denote 

GI = 4% G22 = %9, G12=G21=0 

4’ = 14’9 4227 (lt = {G, a+?} 
(9) 

. 

Equation (8) then can be written as 

and 

Using (lo), (11) and (12) we have the relations 

and 

It is easy to see that the expressions satisfying (12) and (13) should be either 

or 

- 



In fact equations (b) can be reduced to (a) by writing #2 for -t$2. 

In the case of equal metric A = B, Eq. (14) ian be expressed as- 

These equations are just the Cauchy-Riemann equations in the theory of complex variables, 

it follows that a1 + ia = F($’ + ;b2), w h ere F(ur) is a regular function of ?,u = # + itj2. 

This means in this case two solutions of the Euler’s equations (5) should be related by the 

conformal transformation 

w = F(w) ) (16) 

where W = <pl + ia2. We shall see later that the Ernst equations and its solutions belong 

to this case. It is well-known that the non-orthogonal metric in two-dimensional space 

can be transformed into the orthogonal form with equal metric A(#) = B(4), so in fact 

the above discussion is the general two-dimensional case. 

4. An Important Kind of Solution of the Euler’s Equation in I-IM 

In the following we shall study an important kind of solution of the Euler’s equation 

in HM. We investigate the case that cbA (A = 1, . . . , m) are functions of an argument 0 

alone, where u is a function of SY 

u = u(x) 

In this case the Euler’s equation can be written as 
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From the above equation we can see that if c#~ satisfy the geodesic equations on M’ space 

--with parameter CT: 

and o = a(x) satisfies the covariant D‘Alember’s equation on M space, 

1 8 __- 
J9 &dJ (19) 

then 4A = #A(a(r))(A = 1, . . . , m) are the solutions of the Euler’s equations (5). 

In particular when M space is the Minkowski space, the equation (19) for C(X) becomes 

the usual D’Alember’s equation 

q o(x) = 0 (20) 

i.e., a(x) satisfy the wave function and u is a function of wave argument alone (for example 

in 1 + 1 dimensional case cr is a function of wave argument x f ct). 

This kind of solution is of importance, because it enables us to find the exact wave 

solution of some nonlinear partial differential equation, especially to find the exact wave 

solution of Einstein equation. A study of this problem will be published elsewhere.4 

In the case bA is not the function of t (time variable), the function a(x) shall satisfy 

the Laplace equation 

v20=o 

which is useful for studying the stationary solution of Einstein equation. 

(21) 

5. The Ernst Equation 

In this section we shall study the Ernst equation from the view point of harmonic 

= nipping: Following Ernst2 we express the axially symmetric line element as 

dS2 = f-1[e2p(dz2 + dp2) + p2d$] - f(dt - wdqb)2 (22) 
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Let M be a flat three-dimensional manifold with metric 
~-~- 

dt2=dp2+dz2+p2dq52 __ - 

and M’ with metric 

dL2 = f-2[df2 + d$2] 

where 

GAB = f-2bm , 

(23) 

(24) 

(25) 

and the function 1c, is related to w by 

WJ dp= f2p-l g ) g = -fQp-l !g 

It has been suggested that the Ernst equations2 

FV2f=Vf~Vf-V$G~ 

fV2$ = 2Vf * v+ 

i.e -1 . 

fV&=V&.V& , E=f-ki@ (26) 

can be obtained from the Euler’s equation (5) using the variation principle3 61= 0, where 

I = 
/ 

f-2[(Vf)2+(V$)2]p dp dz d4 (27) 

That is to say, the Ernst equation can be derived by use of the theory of harmonic map. 

In the following we shall study the functional relations between the solutions of the 

Ernst equation (26). Suppose that (f, $) and ( u v are two pairs of the solutions 0; the , ) - 

Ernst equation and they are related by 

- f = f (% 4 

$ = +(% 4 
(28) 
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From (10) - (12) and (24), putting ip = (f, $) and 4 = (u, v), we find that if both 4 

--and Cp are solutions of the Ernst equation, they must satisfy the conditions _ - 

u2 [(g+(gy]= f2 

u2 [(gf)2+(gy]= f2 

and 

It follows from (15) that the expressions satisfying (29), (30), and (31) should be 

af w 
au=z 
af w --- dv- du 

(29) 

(30) 

(31) 

(32) 

Equations (32) are the Cauchy-Riemann equations and express that f + it,b = F(u + iv) 

where F(E) is a regular function of & = u + iv. This means that the transformation (28) 

should be expressed only as the transformation in terms of the Ernst potential E, that is 

E’ = F(E) (33) 

where E’ = f + ;T,!J. Moreover, from (29) and (32) it can be proved that the transformation 

function F(E) should satisfy the condition 

WE) -f I I-- d& u 

which means 

- 
dF(E) f iff 
-2r=ue 

(34 

where Q is a function of u and V. 
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It is not difficult to verify that the inverse transformations 

and the Euler’s transformation 

[, = dE + ic 
ibt +a ’ 

ad+cb= 1 (36) 
satisfy the condition (34). 

Let us now study the functional relation between the static and the stationary solutions 

of Ernst equation. If we denote the static potential by & = tl+ iv with u = 0. Then from 

(26) the Ernst equation for u should be written as 

uv2u=vu*vu (37) 

or 

V2a=0 

Here c and u are related by 

Let j and $J be the stationary solution, the transformation (28) should be expressed by 

functions of u alone 

f= f(u) 7 + = W) (39) 

Since IS satisfies the Laplace equation (38), from (18) and (21) we know that u coulds 

be looked upon as the geodesic parameter and the geodesic equation (18) can be written 

as 

- 
d2t,!- 
da2 

2’!!! !!!!=o. 
f da - do 
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The solution of the above equation with the boundary condition, namely, of asymptotic 

flatness at spatial infinity ($ = 0, f = I), is 

f2 + ($J + b)2 = a2 (41) 

where the real constants a and b are related by 

1 + b2 = a2 (42) 

This means that the solution of Ernst equation F = j(u) and 1c) = $(u) should be described 

by circle on M’. 

Employing (39) the condition (29) or (34) can be written as 

(!I>“+(!!&$ (43) 

From (41) and (43) it can be proved that the stationary solution of Ernst equation j and 

$J should be related to the static solution u by the following relation 

2au 
f=a(u2+1)-b(u2-1) ’ 

t+- u2- 1 
a( u2 + 1) - b( u2 - 1) 

In the special case a = 1 and b = 0, the above relation reduced to 

2u u2- 1 
f=p12 ’ +=-= 

and 

(44 

(45) 

which represent a circle with unit radius on the M’ space. 

If we set a = CSCCY and b = C&Y, which satisfy (42) o b viously, the relation (44) can be 
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This pair of solutions represents a trajectory of a circle with radius a = csm on M’ space, 

----which corresponds to the Ernst solution - 

1+E - = -eiff c&h g (=1-E , u = e20 (47) 

where & = f + ;?,LJ and tr satisfy the Laplace equation (38). 

From the above discussion we note that the Ernst solution (47) is the solution which 

satisfies the condition (43) and is related to the static solution by (37). 

In the following we shall study the solution of Ernst equation in term of N static 

solutions. In the case 

$A = +Ah, 02, .“, w) 

Ui = Ui(X) i = 1, . . . . n 

where it follows from (17) that the solutions of Euler’s equation in HM can be obtained 

from the following two sets of equations: 

When M is the Minkowski space 

II. 
a%jC 

duiauj 

-r& -.- wA eB = o 
aui auj 

i,j=l, . . . N 

From the above two sets of equations, if we put 4’ = f, 42 = $J, we can get the solution 

of Ernst equation in terms of N static solution, that is 

f= 
2ani Ui 

[(I-Ii uiJ2 + l] - b[(IIi ui)2 - l] 

1c(= 
(lli uU)2 - 1. 

[(I-Ii Ui)2 + l] - b[(II Ui)2 - I] 

(48) 
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I 

where 
---- 

II Ui = Ul u2 . . . -UN - --. 
i 

and ul, 29 , . ..uN are static solutions of Ernst equation 

Ui V2Ui =VUi'VUi i = 1,2, . . . N (49) 

It had been shown5 that the Bogomolny equations for the axially symmetric SU(2) 

gauge fields are equivalent to the Ernst equation. Therefore the method in this paper can 

be also used to study the problem of monopole theory. 
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