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ABSTRACT 

The running coupling constant S(Q2) in QCD is investigated using the general 

principle of renormalization and renormalization group theory. From the formal ex- 

pression of color dielectric function, an exact functional relation between p2 and mo- 

mentum transfer Q2 has been obtained. For large Q2 the theory is consistent with the 

perturbative &CD. For small Q2 the running coupling constant behaves as ij2 (Q2) = 

(M2/Q2)k where k > 0. It is shown that in the infrared region the scale transfor- 

mation d2 = X g2 is essential to the renormalization group theory in QCD for small 

Q2. 
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1. Introduction 

Quantum Chromodynamics is a renormalizable non-Abelian gauge field theory of 

color quarks and gluons. In this theory the renormalization group running coupling 

constant or the effective charge plays an important role. One of the fundamental prob- 

lems in QCD is to find the momentum dependence of the effective charge ij2 (Q2). QCD 

became a most attractive theory, only when it was understood to be asymptotically 

free.ls2 For large momentum transfer or short distance the effective charge becomes 

small, this allows perturbative calculations to be performed for large Q2. The study 

of the effective charge for small Q2 or large distance (i.e. the problem of confinement) 

has known only a limited success. The investigation in this case encounters great diffi- 

culties due to a failure of perturbative theory. Several methods were developed based 

on Schwinger-Dyson equation,3-7 dispersion relation’ and self-consistance condition 

imposed by Ward-Slavnov-Taylor identities9 

Since QCD is a non-Abelian gauge theory, the gluons themselves carry color 

charges and interact with each other. So the color charge of a quark is no longer 

located at a definite place in space, it is diffusely spread out due to gluon emission and 

absorption. At small spatial distance (for large Q2), only a small part of color charge 

acts effectively, and the effective coupling constant thus appears weaker as the me 

mentum Q2 is increased. On the other hand, at large spatial distance (for small Q2), 

the effective charge should be much stronger, which may lead to confinement property. 

This gives an intuitive physical picture of the momentum dependence of the effective 

charge in &CD. From this viewpoint the running coupling constant g2 (Q2) was studied 

using the color dielectric function (e.g. Ref. lo), which plays an antiscreening role in 

&CD. 

-- In this paper the running coupling constant g2(Q2) in QCD is investigated using 

the general principle of renormalization and renormalization group theory. From the 
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formal expression of the color dielectric function, an exact functional relation has been 

obtained. 

1 
Q2 

iiz 
=btnw- a Cn g2 + f(g2) 

where b = -/30 and a = @r//30, & and ,8r correspond respectively to the one-and two- 

loop renormalization group coefficients. The function f(~)~ possesses nonperturbative 

feature, it characterizes all higher order contributions. This functional relation had 

been studied in ghost-free gaugeI (~1 = z3), in which the running coupling constant is 

defined as the renormalized transverse gluon propagator. In our theory the definition 

of the running coupling constant is directly from the renormalization group theory 

and the gauge is not specified. 

The theory is consistent with the perturbative &CD. When p2 + 0, the function 

f(g2) vanishes guaranteeing the asymptotic freedom behavior. Using the functional 

relation of g2 and t = Z 1 en%, the analytic properties of the function tn “: t 4 in the cc 

complex plane of t has been studied, from which we obtain the dispersion relation for 

en ?j2 (t). We find that in the infrared region (for small Q2) 

/ (!I21 = c tng2, c>a 

and in the infrared region 

g2(Q2)=($)‘, k=A>o 

The corresponding Callan-Symanzik function for large g2 (Q2)is 

,8(g2) = -2 k g2 

This momentum dependence of the running coupling constant g(Q2) in case A = 1 
-7 
-Isconsistent with the confinement solution (or self-consistent ansatz) of Schwinger- 

Dyson equation for Q2/M2 << 1 in Landau gauge3 and in axial gauge.5-7 The case 
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k < 1 was studied in dipersion relation theory.8 The unknown index k in our theory 

should be further determined by the dynamic structure of non-perturbative &CD. _ - 

In this paper, it is also shown the in the infrared region for different renormalization 

schemes the corresponding running coupling constants g2 and t2 are related by the 

scale transformation (or scale mapping): 

where X is an arbitrary constant. This new invariant property is essential to the 

renormalization group theory in &CD for small Q2 and plays an important role in 

studying the infrared behavior of &CD. 

The theoretical structure and formulation proposed in this paper is also applicable 

to other quantum gauge field theory. 

2. A Formal Theory of Running Coupling Constant 

In renormalization group theory the running coupling constant or the effective 

charge ij (t) is introduced by the defining equation 

d s(t) 
dt= c B (l(t)) (1) 

with the boundary condition 

(2) S(O) = 9 

Here ,&(ij) is the Callan-Symanzik function 

t Q2 =f en-, 
P2 

Q2 = -q2 (3) 

p2 is the renormalization point and g is the renormdized coupling constant. For 

- -- _ convenience equation (1) is usually written as - 
a92 2 

dt P(P VI) (4 
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where ,0(g2) is given by 

S(s2) = w%c$, --. - - (5) 

The solution of equation (4) with boundary condition (2) can be formally expressed 

as 

Y20) 
t= / /9-‘(z)dz = *( 92 (t)) - Vs2) (6) 

il2 

For a given renormalization scheme S’( g2 (t)) should be a unique function of g2 (t). 

An important property directly deduced from equation (4) is that the derivative 

of any function of g2 (t) with respect to t is also a function of g2 (t): 

It can be also proved that if the derivative of a function j(t, g2) with respect to t is a 

function of g2 (t) alone, then the general expression for j(t, g2) should be 

f(4 s2) = fi(s2) + ht + k2 (8) 

where kl and k2 are constants, kl is independent of g2 and jr(g2) is a function of p2 

alone. 

Let us denote the ratio of the bare coupling constant gi to g2 (t) by &(Q2) and the 

ratio of g2 to g2 (t) by K(t) 

and 
- 

2 
cl2 (t) = $g) 

g2 
s2(t) =Ko’ K(0) = 1 

5 
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and 

QQ2) 
K(t) = qj2j (12) 

(11) 

The function &(Q2) in (9) may be looked upon as the color dielectric functionlo 

in momentum space, and the function K(t) expressed by (12) may be regarded as the 

relative color dielectric function. In the Axial gauge g2 (t)/gg = &(Q2)-’ could be 

expressed by the gluon propagator d(Q2) = l/l - g&(Q2), where r(Q2) is the gluon 

vacuum polarization function, and r(Q2) could be determined further in terms of the 

gluon propagator and vertex function through Schwinger-Dyson equation. In this 

paper we shall not specify the gauge and shall not be concerned with the dynamical 

expression for &(Q2) and K(t). 

Differentiating (10) with respect to t and using (4) we find 

1 2 P(3 (0) 
1 dK(t) 

3-N =2 dt (13) 

Since the left hand side at (13) is a function of p2 (t) alone, it requires the expression 

1 q at the right hand side to be a function of g2 (t). From this requirement and P 
(8) we find that the general expression for the function K(t) should be 

$K(t)=2bt+F(g2(t))+A 

where F(g2) is a function of ?j2 (t) alone, A and b are two constants. Using the boundary 

condition K(0) = 1 and g2 (0) = g2, we have 
*z 
- 

A=’ jy - Ug2) 



Substituting A into (14) we find the general expression for K(t): 
--~- 

K(t) = 1+ 2bg2t + g2[F[g2 (t)] - F(g2)] - (15) 

Then from (10) and (15) we obtain the relation between g2(t), g2 and t 

1 
s2(t)=$ ’ + 2bt + [F(g2) - F(g’)], 

and the function 9(g2) in (6) should be 

w-9 

Using the multiplicative renormalization relation 

g = (23)3Qp go 

and (11) we find 

Q2) = (z3)-34 (18) 
where 23 is the gluon wavefunction renormalization constant and 21 is the triple gluon 

vertex renormalization constant. If we use the cut-off procedure, 23 and 21 will be 

expressed as the function of p2, g2 and the ultraviolet cut-off A2. Then it follows from 

(18) that &(p2) is also a function of p2, g2 and A2, and E(Q2) should be a function of 

Q2, p2, g2 and A2. Taking notice of the fact that &(Q2) is dimensionless, the expression 

(12) can be written in a more detailed form 

W, s2) = g2 w, 8, s2) 
92(t, = W181S2) (19) - 

where r and 8 are two independent and dimensionless variables which are defined as - -- 
- 



and t is related to r and 8 by 

tcrws - --. - 
(21) 

Since the running coupling constant p2 (t, g2)is independent of A2, the right hand 

side at (19) should be independent of A2. To study the consequence of this requirement, 

differentiating (19) with respect to &A2 and using (20), we have 

&, 8, s2) [ 
Wr, 8, s2) + Nr, 8, s2) .& as 1 - e(r, 8, g2) aE(:,"' g2) = 0 (22) 

Defining 

+(r, 4 s2) = fh &(r, 8, g2) (23) 

(19) and (22) can then be rewritten as 

#(r, 8, g2) - #(a, 8, s2) = en g2 ;112g2j 25 A(t, S2) (24) 9 

z B(8, g2) (25) 

From (24) and (25) we see that the expression in the left hand side of (24) is required 

to be a function of t, and the expression in the left hand side at (25) is required to be a 

function of 8. It is not difficult to find that the general form of the function qi(r, 8, g2) 

which satisfies the conditions (24) and (25) simultaneously should be 

4(r, 4 s2) = %A- + XV, s2) + 444 g2) (26) 

where I? is a constant and x(t, g2) = x( r- 8, g2). Substituting (26) into (24) and using 

(21) we have 
-- - 

g2 
e”m 

= 2h + XV, s2) - x(0, !I21 (27) 



Differentiating (27) with respect to t and using (4) we obtain 

-.&p p(t)] = 21FI kdX$;s2) - (28) 

This equation requires that dx(t, g2)/dt is a function of g2 (t). Thus from (8) we have 

XV, !I21 = 2k”t + G[g2(t)]+ D (29) 

where A!’ and D are constants. Substituting (29) into (27) we find 

!I2 
‘!* s2P) 

- = 2kt + G(g2) - G(g2), k=ti++ (30) 

From (6) and (30) we obtain 

Ys2) = -f kn g2 + G(g’)] (31) 

For a given renormalization scheme the function *(p2) in (6) should have a unique 

form. Comparing (17) and (31) we find that the function Q2) in (17) must contain a 

term .&I ?j2 and the function G(g2) in (31) must contain a term l/ g2. This means that 

F(tj2) and G(g2) must take the following forms respectively 

F(s2) = --a en g2 + /(g2) 

W2) = ; [,: - fM2)] 
where a = -b/k. These lead to a unique form of @(ij2): 

W2) = f [$ + 0 en g2 - f(g2)] 

(32) 

w - 

From (17) and (33) we obtain the implicit relation between g2 (t), g2 and t: 
-Tm - 

1 1 
92(t)=? +2bt-a &z’~(~) g2 + [fb2) - f(r2)] (34) 
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This result is deduced from the general principle of renormalization and renor- 

malization group theory, which is independent of gauge and is exact for all values of _ - 
Q2. Therefore it gives a nonperturbative description of the momentum dependence 

of the running coupling constant g2 (t). The expression (34) had been found in ghost 

free gauge (21 = 23) by means of the relationship between ij2 (t) and gluon propaga- 

tor with some assumption” and also used to study the higher order calculations in 

perturbative QCD.12 

Differentiating (34) with respect to t and using (4), we obtain the non-perturbative 

expression for /3( S2): 

tw2) = -2b ij4 
1 - a g2 + g4 f’( g2) 

If we define a mass parameter 

i.e.. 

2 1 
bha$=$ + = 4% !I2 - f(s2), 

then the expression (34) can be reduced to a simple form 

1 

m 
= 2btM - a en g2hd + f(s2) 

where 

(35) 

(37) 

w 

(39) 

The ma& M2 expressed by (36) gives a general definition for dynamic mass, which is 

used to scale the momentum dependence of the running coupling constant, and is the 
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nonperturbative generalization of the expression given in Ref. (13). It can be proved 

from (35) and (36) that M2 satisfies the renormalization group equation _ - 

(40) 

3. Comparison with Pertnrbative Theory 

In perturbative theory the Callan-Symanzik function can be expressed by the 

following power series 

PC(B) = kEot% P2k+3 (41) = 
From (5) and (41) we have 

/qs2) = kEo2Bo(p2)k+2 (42) = 
To study the relationship between the nonperturbative theory (35) and the perturbative 

theory (42) we write (42) in the form 

where 

u(ij2) = E bk( ij2)k 
k=O 

(44) 

and 

bk 
@k =--- 
PO ’ 

PO = 1) (45) - 

Using the formula of the expansion of an inverse function, we have 
-ee 

- 

(46) 
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where the coefficient Ok are determined by 12J4 

a0 = 1, u1 = -bl, a2= by-b2, ag = -(-l)“(@ - 2&b;+ b3), . . . (47) 

The general expression for a, is14 

m! 
Un = c al! (Y2! . . . cue! 

(-l)m (b#l (b2)a2 . . . (b#f (W 

with 

crl+cr2+crg+...+tx~=m 

al+2a2+3a3+...+eaC=n 

The above series hold true only in its region of convergence, which will be discussed 

later. 

Substituting (46) into (43), the perturbative expression for @(g2) can be expressed 

as 

comparing (49) with the nonperturbative expression (35) we find 

f’b2) = E ck(g2)k-’ 
k=l 

where 

ck = ak+l 

It is well-known that when flavor number nf = 4 or 6, we have =? 
- 

(49) 

4 
ao=$- 11+&) < 0 
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and 

Pl = &q-(-l02 +91) <-a - - 

Then from (50) we find that the constants a and b in (34) and (35) are both positive 

b>O , =>o (52) 

where b and a are determined by one and two loop contributions in &CD. 

From (51) we have 

where 

Cl = b! - b2 , c2 = -(bq - 2blb2 + b3), . . . 

with 

ck = c 
m! 

q!ag! . ..q! (-l)m b;’ b2”’ . . . b;’ 

(53) 

al+ a2 + . . . + a( = m 

Therefore the function f(g2) characterizes all the higher order contributions in &CD. 

The series (53) should be understood as the Taylor’s expansion of the nonperturbative 

function in (34) for small iJ2. 

From (53) we have 

lf(g2)l < E H(g2)k - 
k=l Cc 

(55) 
We notice that each coefficient Pk in the series (42) must be finite, otherwise the 

perturbative expression for ,8(ij2) would be meaningless. Then the coefficients bk = 

=&/PO should be also finite. Let the largest absolute value of coefficient bk be B: 

SupIbkl=B , B>O (56) 
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from (54) it can be proved that 
__- - 

Substituting (57) into (55) we find 

lckl 2 B E ‘(1 +B)k(g2)k 
k=lk 

(57) 

(58) 

This series is convergent when g2 < A, and the function lf(g2)l satisfies the inequal- 

ity 

if( 5 -B e4l - (I+ m2i = B en 1 (59) - 

which means when ij2 < &,I? en .hz is the upper bound function of f(g2). 

From (58) we know that 

/(ji2) --+ 0 9 when ij2 -+ 0 (60) 

The property of f(g2) for small g2 (60) and the constant b > 0 are of importance, 

because they guarantee that QCD is an asymptotically free theory for large q2. To 

see this we express (34) as 

1 = 2btM g2 - u ij2 Cn g2 + g2 f ( ji2) (61) 

Using the formula 

-z and (60) 
- 

g2eng2 + 0, when g2 -t 0 

g2 m2) --) 0, when ij2 + 0 
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we find that for small jj2 (61) becomes 1 = 2btMg2, which leads to the well-known 
- 

asymptotic freedom formula - 

3 1 1 z-c 
2btM b elagy 

b > 0, (62) 

which shows that small p2 corresponds to Q2 >> M2. 

Since for small ij2, alen ij2 I >> lf(~~~)j (for small g2, f(ij2) N cl ij2), dropping higher 

term f(g2) in eq. (38), we obtain expression up to two loops 

enp=& $2 Q2 ’ 1+uenij2 [ 1 w 

This means that if we choose the renormalization scheme in which g2 is sufficiently 

small, the dynamic mass M2 determined by (3’7) can be expressed as 

P2 1 ben@=2 + u en g2 

Iterating the expression of (64) we obtain the renormalized coupling constant 

1 P2 P2 
2 

= b en@+= en en@ (65) 

which depends only on the one- and two-loop renormalization group coefficients.15 

But (64) is more rigorous then (65). 

4. The Infrared Behavior of g2 (t) 

In order to study the infrared behavior of the running coupling constant ij2 (t), we 

write (34) as 

+ a en g2 - f( g2)] = *( ij2) (66) 

%%ere d > 0, b > 0. From (66) we find that when Q2 decreases from +oo to 0, the 

function !P(p2) decreases continuously from +oo to -oo. We know from (62) that 
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when Q2 -+ 00, g2 + 0, this gives ?j2 + 0, +(g2) --) +oo. Suppose that +(ij2) is a 

continuous function of 4 in the interval +oo 5 g2 > 0, then 9(g2) is finite for finite - 
?j2. Excluding the case g2 + 0 which corresponds to 9(?j2) + +oo [see (60) and (SS)], 

there is only one possibility for the value of g2 for 9(g2) -+ -00, this is g2 + +co, 

when Q 2 + 0. 

Therefore in the infrared limit Q2/M2 < 1, g2 is large, and (66) can be expressed 

Q2 
be*g2 = 0 hg2 -f(P) (67) 

Since when Q2/M2 < 1, b(Q2/M2) < 0, from (67) we have the inequality 

As21 > = ens2, for large g2 (68) 

Moreover, from (35) we find that for large p2 (when O2 >> i), 8(g2) takes the form 

@ (g2)= -w2 
3r2 f'(P2) - = 

(= > 0, b > 0) (69) 

which tells us that the infrared behaviour of @(g2) is determined by the property of 

the function g2fr(?j2) for large 8’. 

We continue to study the behavior of g2(t) by means of the dispersion relation 

theory. To do this, we define a function 

and study its analytic properties in complex plane of t. From (34) the function T(t) 

can be written as 
‘Tm - 

T(t)=;t+fV(t) (71) 
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where 

(72) 

Since when Q2 = p2, t = 0 and B2 = g2, we have 

V(0) = 0 (73) 

Using (4) and (73), in the neighborhood of the t = 0. The Taylor expansion of V(t) 

gives 

w =ht (74 

where h is a finite constant 

h = [f(g2) + -$].@(S2) (75) 

Then in the neighborhood of t = 0, (71) can be expressed in the form 

T(t) = y t 

Therefore in the neighborhood of t = 0, T(t) is a regular function of t. 

For Q2 is large enough, tM = t = @nQ2, substituting (62) into (70), we have 

T(t) = 4% t, for large t (77) 

This means that the function T(t) possesses a branch cut along the real axis of t and 

a branch point is at t = +oo. Since T(t) is a regular function in the neighborhood of 

t= 0, the other branch point, say t = cr, must be on the positive real axis, that is 

Q > 0. 

Now we consider a function defined by 
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Using (70), (76) and (77), we find that this function has the following singularities and 

asymptotic properties: - 

( i) A branch cut along the positive real axis of t from (Y to +co. The 

branch point cy > 0 and G(a) is finite. 

( ii) A simple pole at t = 0, which is not lying on the branch cut and the 

residue of G(t) corresponding to this pole is 

zb + h 
r0 =--- 

U (79) 

where the constant h is defined by (75). 

( iii) ItlG(t) + 0, when ItI + 00. 

(We suppose that there is no branch cut along the negative real axis of t.) 

These properties are of importance to derive the dispersion relation for G(t). We 

take a contour C that excludes the branch cut and the pole of G(t) in the usual way 

in the theory of complex variables so that we can apply Cauchy’s integral theorem: 

G(t) 
C 

(80) 

Since ItlG(t) + 0, when ItI + 00, the integral around the large contour vanishes. Then 

(80) gives the dispersion relation for G(t): 

O” A(t’)dt’ 
G(t)=ro+l/ 

t aJq?=F) (81) 

where A(t) is the diflerence of the discontinuity of K(t) along the cut and is given by 

A(t) = &t + ic) 4qt - k)] 

-Jt is wefl-known that if K(t) satisfies the condition 

K*(P) = K(t) 
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then A(t) is the imaginary part of K(t); 

A(t)=ImK(f) -. - 

In this paper we shall not concern with this condition. 

Substituting (78) into (81) we have the following dispersion relation for p2 (t): 

cl2 (4 
en yp- w 

We notice that for all value of t off the cut the denominator (t’ - t) in the integral 

of the above expression is never zero and therefore the integral is well defined in this 

region. In the infrared limit Q2 < p2, t < 0 (t -+ -co), t is far away from the cut, 

in this case (83) becomes 

iI2 (t) 
en yj?r 

t O” A(t’)dt’ 
=rot+; 

/ r2 forQ2<p2 
a 

If we define a constant 

, 

then from (3) and (84) we find that ij2 has the following infrared behavior 

for Q2 << cc2 

(84) 

(85) 

(86) 

We have argued at the beginning of this section that when Q2 + 0, ?j2 + +oo, 

therefore k must be a positive constant: 

k>O (87) - 

Using (35) (75) and (79), it can be proved that 

rg = - 
2bg2 

1 - =!I2 + s4f’(s2) 
= &s2) 

9 
(W 
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Usually, we always choose the renormalization point that /3(g2) is negative, therefore 
-__ ~. 

Then from (85) and (87), we have the inequality 

1 O” A(t’)dt’ 1 
n I 

a 
t’2 < ~lP(s2)l 

In the infrared limit, taking into account of (68), (34) can be written as 

g2 f(g2) = ah 7 + b en P2 
( 1 

&z 

Substituting (86) into above equation we find that for large B2 

(89) 

j(g2) = c en g2 (90) 

where 

C =a+;>0 (91) 

Using (68) and (90) we have c > a, then from (91) we see again that k > 0. 

From (69) and (90) we obtain for large g2 

a($) = _ & g2 = -k ij2 

which tells us in the infrared limit, ij2(t) satisfies the equation 

do2 (t) -E-k g2(t) 
dt 

(92) 

(93) - 

=JVe notice that equation (93) is invariant under the scale transformation 
- 

-I2 !I =A J (94 
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where X is an arbitrary constant. This transformation is essential to the renormaliza- 

tion group theory in QCD for small Q2. - 

To study the meaning of the scale transformation (93). Let x = g2 and y = ij2 be 

two running coupling constants corresponding to two different renormalization schemes 

respectively and they are related by the scale transformation 

y = xx (94)’ 

It is well-known that in renormalization group theory x and y should satisfy the 

relation16 

dy dx 
PO=po (95) 

where p (y) and p( ) 3: are the Callan-Symanzik functions corresponding to two different 

renormalization schemes respectivey. In our theory (see eq. (35)) 

and 

P(4 = 
-2bx2 

1 - ax + x2f’(x) 

P(Y) = 
-2by2 

l-“Y+Y277Y) 

where f(x) and f(y), in g eneral are two different functions. 

For small Q2, x and y are large, p(x) and p (y) can be written as 

/g(x) = -2bx 
xf’(x) - a and P(Y) = s; (96) 

Substituting (96) into (95), we have 

(97) 
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Since for the scale transformation (94)’ 

deny--1 - ~~_ - 
den x 

then from (97) we obtain an equation 

d(x) = Y 7 (Y) 

Substituting (94)’ into (98), we find 

dw = Xx? (Xx) for large x 

this equation can be expressed as 

xf’(x) = c$;) 

(98) 

(99) 

The left hand side of (99) is a function of x alone, it requires that the derivative of 

7(Xx) with respect to en X is to be independent of X. The only solution for 7(Xx) 

satisfies this requirement is 

7(Xx) = ctn 2 + ch X 

where c is a constant. Substituting it into (99), we have 

x/‘(x) = c for large 2 

which leads to 

W) 

f(x) = ch for large 2 

t From (98) and (lOO), we have the analogous equation - 

Yr(Y)=c 

22 



and 
---- 

f(Y) = &a y for large y- - 

we see that 7 (y) and f(z) h ave the same form and the constant c is also the same. 

This means if in the infrared limit two running coupling constants in different renor- 

malization schemes are related by the scale transformation (94), the unknown function 

f(ij2) in our theory must take the unique form (90). 
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