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ABSTRACT 

In this paper we outline a program for physics using as basic mathematics 
counting, binary arithmetic and randomness. We believe this approach makes 
sense because the discretization of physics has replaced arbitrary continuum stan- 
dards of time, length and mass by counting the oscillations of an atomic clock, 
counting the number of wavelengths between two positions and counting the num- 
ber of atoms in a macroscopic mass. These digital dimensional standards can 
be used to specify three dimensional constants: the limiting velocity c, the unit 
of action h, and either a reference mass (eg mp) or a coupling constant (eg G 
related to the mass scale by hc/(2nGm$ 21 1.7 X 1038). The objective of our 
program is to provide an algorithmic construction which allows us to relate this 
connection to specific laboratory paradigms. As in constructive mathematics, we 
hold that counting must be understood as the practice of mathematics in order to 
avoid redundancy. We allow no completed infinities and we aim to provide finite 
algorithms for the computation of any acceptable concept. We do not expect 
our formalism to be reducible in a mathematical sense to conventional physics. 
To succeed, our program must lead to an alternative quantitative description of 
accepted laboratory and experiential phenomena. 

* Work supported by the Department of Energy, contract DEAC03-76SFOO515. 

(This paper will appear in the Proceedings of the 7th International Congress on 
the Logic, Methodology and Philosophy of Science, Salzburg, Austria, July 3-9, 

1983.) 



1. BASIC IDEAS 

The basic concepts in our program’ are aequence,~~vent, and velocity. Each 
of these concepts is initially encountered in a digital context. Our objective is 
to give these concepts precision by means of a series of constructive, interrelated 
steps. Necessarily this requires us to loose some of the vague but creative rich- 
ness contained in the standard experiential intuitive meanings associated with 
the historical practice of physics. Our basic sequence records unique events. Al- 
though these events are sequential, they are random in the sense that we cannot 
know which event occured; we can only explore the structure now by using the 
concept of equal prior probabilities to represent this state of ignorance. Our 
laboratory paradigm, that two events are connected to the sequential firing of 
two counters (or an equivalent natural phenomenon), allows retrodiction only via 
statistical arguments. Thus the universe we envisage has, conceptually, a “fixed 
past” and a “memory” of past events, but this past is only statistically accessible 
at the present. Further, even in principle, which event occurs next can only be 
predicted in the sense of relative frequencies, or probabilities. Hence the future 
is always uncertain. 

Our digital definition of “event” and connection between specific events is 
most easily understood in terms of the explicit construction of a “bit string uni- 
verse” which we articulate in the Chapter 2. This construction leads to unique, 
ordered strings of the existence symbols “0” and “l”, called bits. The informa- 
tion content of the first 256 bits in any string is organized by an information- 
preserving mapping known as the combinatorial hierareh#b, which generates 
levels of rapidly increasing complexity characterized by the cardinals 3,10,137, 

21n + 136 that Bastin2 identifies with the scale constants of physics, and termi- 
nates at the fourth level. These first 256 bits are called the label; the rest of the 
string is called the addreaa. We will see below that -after the early stages in the 
evolution of this universe - there will be many different addresses for each label, 
providing us with the concept of labeled enaemblea. Each time an event occurs 
the program adjoins a random bit to the end of each string in the universe; hence 
our “universal time sequence” is simply the (common) integral length of each bit 
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string. 

The way in. which we recover a discrete version of the-relative coordinates 
of special relativity and the PoincarC transformations is explained in Chapter 3. 
To connect two ordered events we concentrate on one label which is involved in 
the first, and after the bit string length has increased by b bits, is also involved 
in the second. Since, in general, there will be many different addresses involved, 
we take as our (dimensionless) definition of the velocity u connecting these two 
events the average <> over this ensemble v =< N’ - No > / < N’ + 
NO>=<N’--fl>/b, h w ere N% the number of l’s and No the number 
of O’s in the address segments with b = N’ + No bits. Clearly all velocities 
lie in the interval -1 5 u 5 +l. Modifying a construction due to Stein4, we 
interpret this connection between events as a biased random walk of b steps with 
limiting velocity c, fixed step length C, velocity of the most probable position of 
the peak u = UC and mean position d = vbc this interpretation implies that “1” 
represents a step in the positive direction and “0” a step in the other direction. 
Thanks to the limiting velocity, this allows us to derive a discrete version of the 
Lorentz transformation for intervals between events. 

Associating a mass with each label (the mass ratios to be calculated later 
by the theory) and an invariant step length .& = h/me (the value of the step 
length in the zero velocity coordinate system) we can also define energy by E = 
he/e (our basic quantization condition) and momentum by p2c2 = E2 - m2c4. 

Invoking our counter paradigm, we find that we need to introduce an ensemble 
of ensembles of differing momenta weighted with positive and negative coeffi- 
cients in order to meet our quasi-local boundary conditions. This construction 
introduces both probability amplitudes whose squares are interpreted as predicted 
probabilities and a coherence length X = h/p in addition to the step length ! = 
he/E. We recover the DeBroglie relativistic wave mechanics for free particles 
as a continuum approximation to our theory with discrete corrections that -so 
far as we can see - are currently beyond the reach of experimental test. Then a 
double slit experiment or equivalent interference arrangement provides us with 
explicit ways to measure h. 
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From these definitions we develop in Chapter 4 a quantum scattering theory 
with asymptotic momentum conservation. -The way in which we arrive at our 
version of quantum numbers and gravitational phenomena is explained in Chap 
ter 5. 

2. PROGRAM UNIVERSE 

We start from very primitive finite mathematical structures (which we be- 
lieve, but do not attempt to demonstrate here, can be grounded in the con- 
structive mathematics of Bishop5 and Martin-L@). “All”we need take from 
constructive mathematics are the symbols 0, 1, +2, = with their usual signifi- 
cance [i.e., 0 +2 0 = 0; 0 +2 1 = 1; 1+2 0 = 1; I+2 1 = 01, the “random” 
operator R which gives us 0 or 1 with equal probability, and ordered bit strings 
of the symbols 0 and 1. We take the symbols O,l, +2 to stand for primitive 
recursive functions. Then the expressions in [ ] above can, essentially, be seen as 
programa which give the information needed for their own evaluation7. By this 
strategy we aim at showing the expressions above to be self-explanatory vis-a-vis 
meaning; we do not have to embark on a reductionist strategy in order to justify 
the use of these expressions. 

Our computer algorithm makes use of two processes which create new strings. 
For two ordered bit strings of length N, symbolized by Si = (..., zi, . ..)N where 

xi E [o, 11, i E 11, WI, d incrimination is defined by DNSiSj = (..., xi +2 xj, . ..)N. 
Complementation is defined by ‘Si = (..., xi +2 1, . ..)N = DNSilNs where 1~ is 
the antinull string containing N l’s, When neither of these operations succeeds 
in generating a string not already contained in the universe of bit strings we 
generate novelty by increasing the string length of all strings by appending a 
random bit randomly chosen for each string, at the growing end. This process is 
called TICK because it defines an irreversible sequence measured by bit length; 
note that it does not order happenings between ticks. 

To get the program started (assuming an indefinitely extensible memory avail- 
able, consistent with the mathematical practice of counting), we assign the first 
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string in the universe the value R (i.e. a random choice between 0 and 1) and the 
second again the value R, provided only it differs from the first. Since there is no 
way to produce further novelty at this level we enter the main program at TICK. 

From the universe containing SU unique strings we pick at random a string S1 
with prior probability l/SU (expressing our ignorance of what else to do), pick 
another S2 (testing that it is not the same) and discriminate them to produce a 
third, S3. If it is not already in the universe , we adjoin it and proceed. If it 
is, we compute the complements of the first two strings, and adjoin them to the 
universe if they are not already there. When DNS~S~ = S3 = D~-@+ft and 
all five strings are already in the universe, this failure to produce novelty causes 
the bit string universe to crank forward by one tick. We call this happening an 
event. Note that we have by this step abandoned the concept of simultaneity, 

and not just “distant simultaneity” as is customary in special relativity. 

In order to organize the information content of this universe into four levels of 
increasing complexity which preserve the information content of the lower levels 
in constructing the upper levels, we make use of the combinatorial hierarchy2J3. 
We first define a discriminately closed subset (DCsS) as a single non-null string 
or as that set of non-null strings which when any pair are discriminated yield 
another member of the set. If we start from linearly independent strings u, b, c, . . . 

(i.e. a+b # 0, b+c # 0, c+a # 0, a+b+c # 0, . ..) we can clearly form the DCsS’s 

{a>, W, 6% {a, 4 a+% (4 c, b+ch 1 c, Q, ~+a}, {a, b, c,a+b, b+c, ~+a, a+b+c} 
and so on. Here we have used + for discrimination; since a + a = 0 the closure of 
the subsets is transparent. From j linearly independent strings we can obviously 
always form 2j - 1 DCsS’s because this is the number of ways we can choose i 
distinct objects 1,2, .., i at a time. 

Starting from strings with two bits (N=2) we can form 22-l = 3 DCsS’s, for 

example WW, Wl)h W), W, (11)). T o P reserve this information about dis- 
criminate closure we map these three sets by non-singular, linearly independent 
2x2 matrices which have the members of these sets as eigenvectors. Rearranged 
as strings of four bits these form a basis for 23 - 1 = 7 DCsS’s. Mapping these 
by 4x4 matrices we get 7 strings of 16 bits which form a basis for 27 - 1 = 127 
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DCsS’s. We have now organized the information content of 137 strings into 3 
----levels of complexity. We can repeat the process once more to obtain 21n - l& 

1.7 x 1O38 DCsS’s composed of strings with 256 bits,- but cannot go-further 
because there are only 256x256 linearly independent matrices available to map 
them, which is many to few. We have in this way generated the critical numbers 
137 =k hc/2ne2 and 1.7 X 10B G= hc/2xGmi and a hierarchical structure which 
terminates at four levels of complexity. 

Since the labeling capability of the combinatorial hierarchy scheme is ex- 
hausted using strings of 256 bits in length, but our program requires the string 
length to continue to grow, we reserve the first 256 bits in all strings as a label for 
an ensemble of strings, organized as discussed above. The remaining bits in each 
string in the ensemble are called the addresses. From then on we assign strings 
to ensembles with the same first 256 bits, or labels, making new arrays when 
new labels turn up. Thereafter all that can happen are the discriminations and 
complementations which occur between ticks and that the number of members 
of each ensemble and the length of their addresses continue to grow. 

3. TIME, SPACE AND PARTICLES 

To connect events to coordinate systems we modify the random walk model 
pioneered by Stein 4. We pick some event, which as we have seen will necessarily 
involve labels Ll,&,& = D25&& 41, +J, later to be associated with a 
laboratory event such as the firing of a counter by a particle with quantum 
numbers L1, as the origin of our coordinate system and then look for a second 
event involving also involving L1 which occurs b ticks later. We now extract from 
the memory the address strings with label Ll and form the address ensemble 
of string segments with the b bits which were added between the two events. 
We define the “velocity” connecting these two events by u =< N1 - No > 
/(N’ + N.0) =< N’ - No > /b, where Nf and No are the number of l’s and 
O’s respectively in an address string in the ensemble and <> is the ensemble 
average. We assume that the ensemble represents a biased random walk of b 

steps with a probability p =< N’(u, b) > /b = (l/2)(1 + u) of taking a step in 
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the positive velocity direction defined by our two counters and a probability q = 

l-p =< fl(u, b) > /b = (1/2)(1-u) of taking astep in the negative direction. 
The velocity of the peak, u, is obviously bounded by---l _< u-5 +l while the 
standard deviation from the peak is ~(u, b) = (bpq)‘j2 = (b/4)l12[1 - u~]~/~. 
With this probabilistic interpretation, the random walk model, specified by the 
two parameters b, u is equivalent to an ensemble of bit strings of length b, or to 
a binomial distribution specified by the same two parameters. 

In order to convert this algorithm into a dimensional metric for our digital 
construction of space we assume not only that the limiting velocity is to be 
identified with the physical limiting velocity c but also that to each label we can 
associate a parameter m with the dimensions of mass. We then can introduce 
a constant with the dimensions of action called h and define an invariant step 

length h/me. We take our random walk as describing the probability distribution 
for an event to occur, and the distance that the peak has moved, ube, as only 
one point in the distribution. Thus, following Stein, we take our definition of the 
distance [ between the two events to be [ - ub = O(U, b) = (b/4)‘12[1 - u’]~/‘. 
It might appear arbitrary that we have assigned our distance at one standard 
deviation beyond the peak rather than on the other side. However, we have at this 
stage no way to assign a significance to the sign of the velocity, and must choose 
this convention so that in the special case when u = 0, the distance (b/4)‘/” is 
positive, because a negative distance in this case would be meaningless. 

Accepting our definition of distance (so far in dimensionless form), our next 
step is to recognize that, although Program Universe defines all events in a unique 
way in a “coordinate system”which, when we turn to cosmology, will be identified 
with the frame at rest with respect to the 2.7’K background radiation, we cannot 
(and probably never will be able to) define any laboratory procedure of sufficient 
precision to uncover directly the digital character of the bit strings. Hence we 
must content ourselves with constructing relative coordinates based on relative 
velocities. Thus, if we ask what is the distance interval < in which the two events 
have zero relative velocity we must have that i$i = ~(0, b) = (b/4)‘j2 = (6 - 

W/P - (4 1 2 lj2. If we define this coordinate system to have velocity -u relative 
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to the first, by reversing the argument we must have that 5 = (t’ + ud)/[l - 
u~]‘/~, where we have made use of the fact- that in this system the number of 
steps can be different and must be called 6’. Now, by simple algebra, we can solve 
for b and d to obtain b = (c + d)/[l - u~]‘/~; d = ([ - ub)/[l - u~]~/~. In 
this way we claim to have derived a digital version of the Lorentz transformation 
for the interval between two events in our bit string universe, so far for a l+l 
Minkowski “space-time”. 

The next step is to note that at this stage the hierarchy construction has 
given us only four classes of labels, so we can have at most four different types 
of label & occuring as the intermediate link in four events. Since we have by 
now a metric space, and the Lorentz transformation must apply to any interval 
connecting two events, we can from four events, in the general case, proceed 
immediately to the construction of our digital version of 3+1 Minkowski“space- 
time”. Hence for us the hierarchy construction forces us to recognize that 
the basic space of description has to be three dimensional. Further, since the 
vertices in this basic tetrahedron are labeled, we will have a choice between two 
chiral alternatives, or in the language of chemistry, stereo isomera. Hence, once 
we can relate this to a basic asymmetry in the labels, or quantum numbers, 
related to scattering events (a much more complicated concept than the events 
so far considered) we can expect our interactions to have chiral properties, as 
has indeed been found experimentally. We find this basic argument for the three 
dimensionality of space a very satisfactory consequence of our approach. Once 
these details are worked out we must from now on assign three ensembles to each 
label, defining the components of a vector velocity i) in the appropriate contexts. 

We introduce our connection to physics by assuming that when we have two 
well separated counters of finite volume AxAyAx with a distance S between them 
greater than their spatial resolution which fire sequentially with a time interval 
T greater than their time resolution At that they define a velocity v = S/T for 
some object which passed between them. Further we assume that the probability 
of the counters firing can be connected, statistically, to the events in the bit string 
universe. We now claim that the velocity c can be given laboratory significance 
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and that we can take the Lorentz transformations derived above over into stan- 
dard laboratory practice. That the uncertainty associated with the relativistic 
“wave packet spreading” will not trouble us diiectly isobviousrsince it is scaled 
by Compton wavelength, and even the much larger Schrodinger spreading has 
never been measured experimentally. Further, since we develop below the usual 
connection between coordinate and momentum space via Fourier transformation 
and we have the usual Lorentz contraction of distances, the usual arguments for 
QED being tested down to w 10 -16cm and the evidence for partons and quarks 
will survive in our theory in spite of our finite step lengths. However, in Chap- 
ter 5, we will see that this basic discreteness in our model will allow indirect 
confirmation in that it will enable us to understand the successful calculation of 
mp/m, achieved by Parker-Rhodes using a different starting points. 

We now introduce dimensional units in the physical sense by identifying the 
random walk step length with the Compton wave length in the coordinate sys- 
tem in which two connected events have zero velocity and by postulating that 
the corresponding mass parameter is associated with one of our labels, which was 
the critical step taken by Stein. However, our treatment departs from his in that 
our basic counter paradigm compels us to see this length is Lorentz contracted in 
moving coordinate systems whereas he used it as a basic dimensional parameter. 
Our approach enables us to define relativistic energy and momentum for free 
particles correctly connected to the velocities we have already constructed by 
defining two new dimensional quantities through the basic relations E2 -p2c2 = 

m2c4and s = m ?f /[l - (u/c) ] 2 lj2. Then, since as already noted, our step length 
is t = t?o[l -(v/c)~]~/~ = (h/mc)[l -(v/c)2]1/2 and our basic quantization is e = 
he/E; we also have a second length X = h/p which will be discussed below. We 
now claim to have constructed a discrete version of classical relativistic particle 
kinematics for which the conventional continuum theory is a useful approxima- 
tion. 

4. CONSTRUCTING QUANTUM PARTICLES and SCATTERING THEORY 

Returning to the bit string universe, all we have so far is that when two coun- 
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ters separated by a macroscopic space and time interval larger than the volumes 
and time resolutions of the counters have fired, some random walk connecting 
those two volumes has occured. We call the labeled-ensemble connecting two 
events an object. But we do not know within those macroscopic volumes where 
this random walk started and ended. To meet this problem, we construct an 
ensemble of objects (which are themselves ensembles) all characterized by the 
same vector velocity 3 and the same label (or mass) chosen in such a way that, 
after k steps, each of length 1 = (h/mc)[l - (v/c)~]~/~, the peak of the random 
walk distribution will have moved a distance 1 in the direction of 3. We take as 
our unit of time the time to take one step, 6t = l/c. Once “time” is understood 
in this digital sense the peak of each subensemble in this coherent ensemble has 
a velocity c/k. We call this coherent ensemble of ensembles a free particle of 
mass m, velocity 3, and momentum 9 = m3/(1 - (v/c)~]~/~. We assume that 
the size of the counter At in this direction and in the plane perpendicular to this 
direction is so large that we can ignore end effects. 

There is a second “velocity” associated with this ensemble of ensembles, 
namely that with which something moves at each step always in the direction 
3. We call this the phase velocity uPph = kc; hence ?~+,h = c2. Associated with 
-each of the two velocities and the label (or mass) there is a characteristic length 
x ph = 1 = he/E; X = kl = h/p. Our next step is to show that these coherent 
ensembles of ensembles have ezperimental consequences that can be exemplified 
in the laboratory. 

We now consider our coherent ensemble of ensembles specified by i> and m in- 
cident on a “screen” perpendicular to if made of absorbers containing two holes 
(or slits in the two dimensional approximation in which the distances perpen- 
dicular to the line between the holes and to 3 are so large as not to produce 
appreciable end effects) a distance d apart. This is all well and good in the 
laboratory where we can established the meaning of absorbers by showing that 
they prevent counters from firing. In the bit string universe the absorbers can 
be thought of as containing so many events that their consequences are so dif- 
fuse as not to affect the progress of the experiment. Our coherent ensemble will 
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pass through these two holes dividing into two subensembles without loosing its 
coherent properties. Thus we are led to the same conclusion as the wave theory 
when it is analyzed in this way9 even though we have-used a drgital basis. 

At some large distance D behind the screen we set up a counter array in a 
plane perpendicular to 3. We further assume that the source is a distance S 
on the other side of the array, and is equipped with a counter which fires when 
the particle leaves the source. Calling the time interval between when source 
and detector fire T, the velocity between source and detector is v = (D + S)/T. 

By making D and S large enough, and assuming that the source has a velocity 
spectrum which includes u, we can select in this way particles whose v is as 
precisely known as we like ‘. This step is necessary to insure that all elements 
in the coherent ensembles we consider have the same v to requisite precision; 
only such pairs of events will provide data for the experiment. Then, on a 
plane perpendicular to the center line of the slits at distance D, the coherent 
ensembles will have their maxima coincide, and hence counters be most likely to 
fire, at positions away from the center line given by zn = nXD/d, where d is the 
distance between the slits. 

We now claim to have shown that our bit string universe contains something 
related to “deBroglie wave interference”, and that by defining velocities and 
counting maxima under appropriate circumstances, we can measure h, which we 
are now justified in identifying with Planck’s constant. We have also derived 
the deBroglie wave length and the relativistic phase wave length he introduced. 
Hence in the limit of negligible mass, we have the basic Einstein-Planck quanti- 
zation condition E = hc&h as well. The fact that energy is quantized is thus, 
for us, a direct consequence of our digitized step length. 

Having constructed our ensembles of ensembles corresponding to a unique 
value of p we now note that these cannot be used to meet our basic counter 
boundary condition at t = 0, which confines the initial event to a finite space 
time volume. For this purpose we must make a superposition of these ensembles 
of ensembles for different values of p weighted by a function which must have both 
positive and negative values. Mathematically expressed this boundary condition 
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is J?z dpf(p) c,‘=N_,$(z. + nA) = @(z - AZ) - e(z + AZ). For the wave theory, 
--the-boundary condition9 is J?g dpf(p)e@” = @(z - AZ) - @(z + AZ). Therefore 

by Fourier inversion (1/27r) J?z d%eiPlz jI!Ig dpf (p)eipa = JI!g dpS(p 1 g) f (p’) 
and hence f(p’) = (1/2&[eiflAz - eBiflAz] = (i/lrp’)sin(#Az) But the mathe- 

matical operation of Fourier inversion can just as well be applied to the digital 
as to the wave boundary condition. Doing so, we recover the conventional re- 
sult plus correction terms of order (l/N). T o extend our discussion to time 
dependent deBroglie waves we need only represent the bit string ensemble by 
b(% + nh - d/X,,) = 6[(p% + nh - Et)/h] We therefore claim to have derived 

wave mechanics as an approzimation to our digital model in a form (laboratory 
boundary conditions based on counters of finite macroscopic size) which will 
serve for most of the practical applications of scattering theory. Further, we can 
now derive the Heisenberg uncertainty relations for continuum variables in the 
usual way. Thus we claim to have proved that we have constructed free particle 
quantum wave mechanics on a digital basis as an approzimate theory. Finally, 
we see that the amplitude f(p) must contain negative as well as positive values, 
and hence that we must take the squares of amplitudes, appropriately weighted 
to conserve flux, in order to make contact with the laboratory paradigm taken 
from physical optics and here extended to matter waves. 

Since we now have standard relativistic particle wave mechanics for free 
particles, it would seem that we could now develop scattering theory in a con- 
ventional way. This true up to a point, but there is a critical conceptual differ- 
ence. We have no Hamiltonian, so we cannot calculate scattering amplitudes as 
the matrix elements of such an operator between appropriate scattering states. 
-This problem was met some time agolo by constructing a “Democritean scat- 
tering theory” starting from free particle wave functions and arriving at the 
standard Goldberger-Watson wave function l1 for NA particles in and NB par- 
ticles out. The essential point is that the scattering amplitude then becomes a 
kinematic quantity describing any conceivable experiment of this type, including 
those which do not conserve flux. Then we are under the obligation of supplying 
dynamical equations for this amplitude which guarantee flux conservation, or in 
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technical terms are unitary. Since this theory has been developed elsewhere12-l4 
--.- and its connection to the bit string universe discussed in more detail in Ref.l, 

we will be very brief here. _ - 

The basic process which drives the integral equations of the theory is given 
by a scattering amplitude describing the process in which two particles with 
masses ml, m2 and momenta &, & coalesce to form a state of mass p and 
momentum Z = & + 22 and then come apart with momenta ii, $ conserving 
total momentum, i.e. Z, +Z2 = 2: +$. Although total momentum is conserved, 
the mass restriction to ~1 does not, in general, allow energy to be conserved 
in the intermediate state. Taking g = 1 = c as is conventional, in the zero 
momentum coordinate system where the relative coordinate between the two 
particles is r this scattering amplitude describes a bound state with binding 
energy cc = ml + rn2 - ~1 and wave function in configuration space(ignoring 
relativistic factors) proportional to e --rcr/r; the particles scatter with a probability 
amplitude proportional to this wave function, so this model generates a “short 
range interaction”. This, of course, simply represents the uncertainty principle 
in energy, which as Wick saw long ago15 is the simplest way to understand the 
origin of short range forces in relativistic quantum mechanics. In momentum 
space the corresponding relativistic factor is [&1 + ~5 - p - iO+]-l, where ci = 
irnf + kf]1j2. Th e scattering is also proportional to the square of a coupling 

condant s2/&. Putting this together, the basic scattering amplitude for the 
theory is 

(4.1) 
Note that, as promised, the basic theory guarantees momentum conservation 
and hence allows us to measure mass ratios. The functions f are known as form 
factors and can be used to represent internal structure in the bound state wave 
function. In a minimal theory without internal structure they can be determined 
in terms of the masses by the requirements of relativistic invariance and unitarity 
or flux conservationr4 . 

To go from this scattering amplitude to the wave function in momentum 
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space which in configuration space will represent a radially outgoing wave with 
asymptotic energy as well as momentum conservation we simply repeat the un- 
certainty principle argument and arrive at - --. - - 

The theory then goes on to sum sequences of scattering processes using relativistic 
Faddeev-Yakubovsky integral equations which by their structure guarantee flux 
conservation. 

Our task now is to show that this theory can be derived from the bit string 
universe developed above. We start from the labels of the two initial states, 
restricted for simplicity to level 1 of the hierarchy and taken to be (10) and (01). 
Then the label content of the process just described in more conventional terms 
is simply (lO)+(Ol) --+ (11) + (Ol)+(lO). Ash as b een noted before3 this simplest 
example of discrimination can be thought of, following Fermi and Yang16, as a 
particle and an antiparticle forming a bound state which is to be thought of as a 
quantum. It also is the simplest example of an event in the bit string universe. If 
we think of particles and antiparticles as carrying a signed dichotomous quantum 
number, we see that this interpretation conserves the number of particles minus 
the number of antiparticles, which provides us with our first discrete (quantum 
number conserving) conservation law. 

We have already seen that our experimental access to the bit string universe 
does not allow us to assign a unique integer to the event, and that we must use 
statistical arguments to connect events. We now extend this idea to connecting 
discriminations such as D2( lO)(Ol) = (11) which occur between ticks but which 
are separated by several ticks. This gives us two vertices connected by a propa- 
gator and is our version of an elementary Feynman diagram for scattering. If the 
number of ticks is small enough, our experimental contact, which is asymptotic, 
cannot differentiate the elementary event from two discriminations separated by 
these ticks. So we extend our concept of event to a scattering amplitude which 
is the sum of these possibilities, appropriately weighted. Relying on the metric 
connection we have made (approximately via the wave theory) between energy 
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and distance, we assume that this weighting factor will be inversely proportional 
to the distance, or in momentum space inversely proportional to the difference 
in energies and hence to l/[r’ - c]. _ - 

This creates a new problem. We are summing over discrete rather than 
continuous energies; hence these energies could coincide creating an infinity which 
violates our basic finite philosophy. However, our minimum step is St = e/c and 
the quantization condition is E = he/L We see that the minimum energy step 
6E = h/B and hence that for a spread in energy 6E and time St we have that 
6E6t 2 h. We emphasize that this is not the Heisenberg uncertainty principle, 
which we have already seen comes in a conventional way from limitations on 
measurement due to finite counter size. Therefore we argue that the best way to 
meet the difficulty is to use l/[E’ - E - iSE] where we have used the imaginary 
factor i as the simplest way to insure that no infinity can occur. This argument for 
complex amplitudes can be reinforced by appeal to the scattering theory where 
they are needed to express flux conservation in the asymptotic region. We go over 
to the the continuum momentum space scattering theory in the limit (SE -F iO+) 
consistent with our dropping of l/N terms. If this argument is accepted for the 
scattering amplitude it carries over to the scattering wave function itself. We 
have now made the connection between conventional scattering theory and our 
construction, and can proceed to N particle scattering theory along the lines 
previously developed. 

5. PARTICLE IDENTIFICATION,MASS SCALE and COSMOLOGY 

We have now seen that our construction gives a complete phenomenological 

theory for relativistic N-particle scattering if we supply the masses and coupling 
constants from experiment. We took care in our original construction to show 
that the label-addreaa schema was sufficient to construct the approximate theo- 
ries of relativistic particle mechanics and relativistic quantum scattering theory 
without specifying the interpretation of the labels, a problem to which we now 
turn. 

- 
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In our treatment of the scattering theory in the last section we made a start 

by showing how to interpret level 1 labels -as referring to particle-antiparticle 
scattering as going through a composite quantum state; The same approach also 
can be applied to quantum-particle scattering, but we have not space here to 
develop the argument. The clue which led us to this interpretation, and which 
is discussed in earlier work1j3, is that the mapping which leads from level 1 to 
level 2 necessarily leads to doubled descriptors in the new basis, for example 
0 = (lllO), b = (llOl), c = (1100). But in spite of the ambiguity in choice of 
representation ( a problem still under study) any choice ends with the same max- 
imal DCsS, namely ((OOOl), (OOlO), (OOll), (UOO), (llol), (lllo), (1111)). This 
suggested that, at least from level 2 on, the basis vectors of the hierarchy are 
quanta, interpreted as composites of particles and antipartices, but carrying ad- 
ditional quantum numbers such as charge, and that strings of the same length 
outside this representation of the hierarchy referred to particles or particulate 
systems. We try to make this guess more systematic in what follows. 

In mapping level 2 to level 3, we first note that the three basis strings 
are of the form (llyz), which guarantee that the seven strings in the ma.xi- 
ma1 DCsS are all of the form (wwyz). In contrast, the eight remaining possible 
non-null strings are of the form (wxyz) with w # x. Writing the mapping as 
(ABCD, EFGH, IJKL, MNOP) x (wzyz) = (Aw + Bz + Cy + Dz, Ew + Fz + 

Gy + Hz, Iw + Jx + Ky + Lz, Mw + Nz + Oy + Pz) we can see that the only 
way to have only the first seven strings as eigenvectors and exclude the other 
eight is to use mapping matrices of the form (0100, 1000, IJKL, AINOP). Thus 
we again necessarily have a doubled descriptor, allowing us to continue our in- 
terpretation of quanta as composites of a particle-antiparticle pairs on to level 3. 
More detailed examination of the problem leads to the conclusion1 that all of the 
eight remaining entries must be non-null in one or another of the seven mapping 
matrices. This suggests that up to level 3 all three level levels can be represented 
by a string of 16 bits, the first two referring to level 1, the next four to level 2, 
and the last 10 to level 3. The next problem is to interpret these sixteen slots 
as referring to dichotomous quantum numbers which will describe some of the 
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basic elementary particle states. A tentative attempt to do this, which gives two 
component neutrinos at level 1, leptons, em quanta and weak vector bosons when 
this is combined with level 2, and SU(3) baryons and mesons atlevel 3 has been 
given in Ref.1. Since we are no longer confident of the details of this scheme, we 
will not present it here. 

Our final step is to use the evaluation of the charge on the electron as e2 = 
tic/l37 to calculate the fundamental mass ratio between leptons and baryons by 
computing the mass of the electron from its electromagnetic interaction. Parker- 
Rhodes8 started from a very different construction of space time and the combi- 
natorial result; we provide here a modification of our previous discussion of this 
calculation1F3. Taking as our basic mass the baryon mass mg (because of the 
connection to the gravitational constant G) the minimum distance we can assign 
to the diameter of this system in a rest system is h/mgc. We therefore scale the 
minimum distance distance we can assign to any happening measured from the 
center of this system by r = (h/2mgc)y, 1 < y < 00. The charge in the lepton 
must separate by more than r into two lumps which by charge conservation we 
can write in terms of a dimensionless parameter z as ex and e( 1 -z), where x is a 
statistical variable reflecting the fact that we have both charged and neutral lep- 
tons and baryons. Hence < e2/r >= (hc/fn x 137) < x( 1 - z) > (2mg/h) < 

l/y >= mlc2 and mB/rnl = 137n/ < 2(1- 5) >< l/y >. 

Our basic identification of the statistics underlying our dynamics as due to 
random walks is now invoked to calculate the expectation value <l/y>. Since 
we have now established our space as necessarily three-dimensional, the discrete 
steps in y must each be weighted by (l/y) with three degrees of freedom. [Note 
that this is consistent with our previous use of the weighting factor l/(E - I?- 

iO+) in momentum space.] Hence < l/y >= [Jy(l/y)4dy/y2]/[Jr(l/y)3dy/y2] 

= 4/S. Since the charge must both separate and come together with a probability 
proportional to z(1 - z) at each vertex, the other weighting factor we require is 
x2(1- x)~. For one degree of freedom this would give < z( 1 - z) >= [Jh x3(1- 

~)~&r]/[Ji z2( 1- ~)~&r] = 3/14. Once the charge has separated into two lumps 
each with charge squared proportional to z2 or (1- z)~ respectively, we can then 
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-- 
write a recursion relation1p3j8 K, = [jA[z3( l-~)~+K,-~z~( l-~)~]dz]/[j~ z2( l- 

~)~dz] and hence K, = 3/14 + (2/7)K,-1 = (3/14)C,F!.i(2/7)i. Therefore, 
invoking again the three degrees of freedom, -we must take < ~(1 - z) > = 
K3 and we obtain the Parker-Rhodes result mg/ml = 137n/[(3/14)[1+ (2/7) + 

(2/7)2](4/5)] = 1836.151497.... Since the electron and proton are stable for 
at least 1031 years we identify this ratio with mp/m, in agreement with the 
experimental value 1836.1515f0.0005, thus setting the basic mass ratio scale for 
the theory. Whether this mass ratio remains unchanged when we go on to level 
4 and we must show how to calculate the masses of unstable baryons and bosons 
from our dynamical theory is under investigation. 

As already noted, the absolute unit of mass in the theory must be approxi- 
mately the proton mass because of our identification of 21n+136 with the inverse 
gravitational coupling constant. Since the calculation given above is a mass ra- 
tio, its success is independent of the absolute value of this unit. The corrections 
which take us from our single dimensional mass parameter mg to the empirical 
value for the proton mass, given G (or equivalently to the empirical value for G, 
given mp) and to the empirical value of the fine structure constant will have to 
come from level four of the theory, where we must also find a place for the equiv- 
alent of quarks and heavy leptons. Since we will then have 256 quantum numbers 
to play with, this will be challenging but not obviously impossible. Other prob- 
lems, such as building up the electromagnetic field from our photons and the 
gravitational field from gravitons (we can obviously make the latter - so far as 
quantum numbers go - from leptons as spin 2 helicity states) is similar to that 
of any theory which starts from the weak coupling limit, and might even have 
advantages since we cannot encounter the infinities which plague conventional 
continuum approaches to this problem17. 

The reader immersed in special relativity may be troubled by the ticking uni- 
verse, which provides a universal time and would seem to single out a particular 
coordinate system. We have been led to the construction which identified unique 
events with TICKS because we cannot allow our events to have a continuum limit 
in points; else we would get back to the agony of infinite energy at each point, 
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which it has taken so much hard technical work for quantum field theory to deal 
with. Our “virtual” processes occur in the “void” as finite fluctuations which 
cannot be directly accessed by experiment. We claim- this-is a strength rather 
than a weakness. As to the special coordinate system, we claim to have shown 
that we can still define macroscopic velocities u to arbitrary precision, and derive 
the Lorentz transformation, thus recovering special relativity as a macroscopic 

approximation. As to the special coordinate system we claim that empirically 
there is such a coordinate system which defines u = 0 by the 2.7’K background 
radiation. This is no more an embarrassment for us than for special relativity; 
the fact that it occurs so naturally in our theory we again count as a strength 
rather than a weakness. Although we have a special frame for velocities, our 
construction does not allow us to attach any significance to any particular choice 
for the origin of spatial coordinates. Any point will serve as the “center” of 
the universe, in agreement with the cosmological principle. Further, we have an 
event horizon defined at each address length N by the strings IN and ONwhich 
refer to to systems which have suffered no velocity-changing scatterings from the 
beginning of the construction; since they cannot be assigned any direction in 
bspace, this horizon is isotropic. 

Clearly we still have to show that we can get the particle physics right, 
and then go on to show that the big bang emerges from our initial generation 
operations. This is a problem for future research. We are encouraged by the 
fact that we have only one type of mass in the theory, and in that sense have 
no place for a difference between gravitational and inertial mass. Further, if we 
do indeed succeed in getting spin 2 gravitons in the weak coupling limit, we can 
hope to recover gravitational theory from that starting point, a problem already 
discussed by Weinberg l8 As to the big bang itself, scattering events labeled . 
by the full level 4 quantum number scheme can only start when the 256 bit 
hierarchy scheme closes off and we have 2256 - 1 labels in the universe. If we can 
get our microphysics right, this is a reasonable estimate for the baryon number 
and lepton number of the universe. 

- 
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Our final point is that by focusing on velocity rather than space and time 
as basic we believe we have the correct fundamental starting point for unifying 
macroscopic quasi-continuous measurement with a digital moda, a point of view 
already stressed by S-matrix theorists. Further, our ticking universe allows us to 
fuse the special relativistic concept of event with the unique and indivisible events 
of quantum mechanics. Whatever else survives from this attempt to construct 
a digital model for the universe, we are convinced that this is the correct place 
to connect relativity with quantum mechanics in a fundamental way. We close 
by remarking that the cosmological implications of the model are not in obvious 
conflict with experience. 

This paper has benefitted greatly during the course of its preparation by com- 
ments and criticism from John Amson, Ted Bastin, Clive Kilmister, A.F.Parker- 
Rhodes, Irving Stein and J.C.van den Berg, but in no sense presents a consensus 
of this diverse group. The assistance provided to one of us (HF’N) by an Alexan- 
der von Humboldt U.S.Senior Scientist Award is gratefully acknowledged. 
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