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ABSTRACT 

Motivated by Hawking’s proposal that the quantum-mechanical density ma- 

trix p obeys an equation more general than the SchrGdinger equation, we study 

the general properties of evolution equations for p. We argue that any more 

general equation for p violates either locality or energy-momentum conservation. 
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1. Introduction 

A recurring question in the attempt to construct a-quantum theory of gravity 

has been that of whether such a theory can be constructed within the conven- 

tional framework of quantum mechanics. Recently, Hawking ~1 has argued that 

this cannot be so, and he has proposed a modified set of axioms for quantum 

field theory to accommodate quantum gravity.* Basically, Hawking’s proposal 

entails allowing pure states to evolve into mixed states. The motivation for this 

proposal comes from the idea that the final state of black-hole evaporation should 

be a mixed state, even when the gravitational field of the black hole has been 

treated as a part of the quantum -mechanical process; this point has been ar- 

gued particularly strongly by Page. 1’1 Hawking also envisions modifications of 

quantum mechanics, however, in apparently less extreme situations: In particu- 

lar he predicts that they should occur in ordinary, flat space-time, as the result 

of instanton-like gravitional quantum fluctuations. This proposal is provocative 

-and clearly of fundamental interest; it therefore deserves the closest scrutiny. 

In this paper, we will analyze the effects of such violations of quantum me- 

chanics on ordinary quantum field theory. We will show that the effects sug- 

gested by Hawking are very dangerous perturbations, leading either to nonlocal 

interactions, and, thus, to acausal signal propagation, or to large violations of 

energy-momentum conservation. We will also argue that neither of these con- 

sequences is likely to be suppressed by inverse powers of the Planck scale. The 

magnitude of such quantum-mechanics violation has been analyzed previously by 

Ellis, Hagelin, Nanopoulos, and Srednicki, 14 who have pointed out serious phe- 

- 

* Some further formal development of this proposal has been made by Alvarez-GaumC and 

Gomez[2] . 
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---- 
nomenological constraints. However their picture of thes effects is considerably 

more benign than the one to be presented here. .._ . - 

We should, properly, note tha.t the precise proposal made in Ref. 1 does not 

stand on an especially firm theoretical foundation. Hawking introduces it there 

as an interpretation of negative-frequency poles observed by Hawking, Page and 

Popelsl in propagators in the field of certain gravitational instantons. One might 

alternatively interpret these poles as resulting from the fact that the spaces 

considered in Ref. 5 are not asymptotically Euclidean. Recent, Gros#‘l has 

constructed a set of gravitational instantons in the Kaluza-Klein theory and 

has shown in detail that their effects show no such apparently acausal behavior. 

However, the connection between systems in background gravitational fields and 

systems at finite temperature makes it intuitively quite reasonable that pure 

states might evolve into mixed states in quantum gravity. We feel, therefore, 

that one should criticize this idea on more general grounds. 

We note that, while our arguments are motivated by considerations of the 

theory of gravity, they apply equally well to other modifications of quantum 

mechanics which would lead to a loss of quantum coherence. They do not apply, 

however, to theories such as that of Friedberg and Leel’l in which space-time is 

replaced with a background which is random but coherent. 

Our analysis will proceed as follows: In Section 2, we will argue, following 

Ellis, Hagelin, Nanopoulos, and Srednicki 1’1 , that Hawking’s proposal can be 

expressed as the statement that the quantum mechanical density matrix obeys a 

linear equation of motion more general than the Schrodinger equation. We will 

then discuss the general features of such equations for p. In Section 3, we will 

give an interpretation for a subclass of these equations which makes intuitively 
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---- clear that they violate either locality or momentum conservation. In Section 4, 

we will show how these unfortunate consequences follow for -the more general 

class of equations described in Section 2. In Section 5, we will illustrate our 

conclusions with a simple model. 

2. Evolution Equations for Density Matrices 

In Ref. 1, Hawking suggests the modification of the usual logic for extracting 

the S matrix from Green’s functions. He first derives the evolution formula for 

the quantum-mechanical density matrix: 

where /s is a linear operator which preserves the Hermiticity, positivity, and 

normalization 

ttip) = 1 (2) 

of the density matrix. The operator ,&, called the superscattering operator, is 

normally derivable from the S matrix via the relation 

/&p=sps+ (3) 

However, Hawking chooses to reject the axiom of the completeness of asymp- 

totic states, the ingredient needed to justify the factorization (3). Instead, he 

considers eq. (l), supplemented by the requirement of overall energy-momentum 

conservation, as the basis of quantum dynamics. Thus, he considers a structure 

in which the usual quantum-mechanical connection between p and the results of 
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measurements is retained, but in which there exists no pure state limit in which 

p represents the evolution of a single wavefunction. .._ - - 

If the dynamics which gives rise to &!J is local in time, we can represent fl 

as the integral of a differential equation for p141 : 

-gP=P*P. (4 

In this equation, ,8 represents an arbitrary linear operator, constrained, as ,8 

was, to preserve the Hermiticity, positivity, and normalization of p. 

Our strategy in this paper will be to write a convenient canonical form for 

H and then use it to study the properties of Eq. (4). Before we begin, we should 

give a few remarks of justification for this approach. Quantum mechanics is well- 

tested only on time scales long compared to the Planck time and in regions of 

space-time which are, on average, almost flat. We need only assume, then, that 

(4) can be derived from (1) in such a situation, by performing a coarse-grained 

averaging over fluctuations of space-time. We thus will not worry about possible 

effects nonlocal in time over a few million Planck times. Equation (4) contains 

the possibility of describing effects nonlocal in space. We will not consider such 

effects troublesome unless the nonlocality is of nuclear, rather than Planck, size. 

Let us now simplify Eq. (4). We first consider the case of a finite-dimensional 

Hilbert space. Let us write this equation, with indices, as 

iAD =flABCD pcD (5) - 

For fixed values of B and D, we can expand the matrix flAc in terms of a 

complete orthogonal set of Hermitian matrices &“, with &’ = 1. The expansion 
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coefficients ,JZ~B (which are, in general, complex) may now also be expanded 

into term of the Q”. This allows us to write (5) in the.form - 

i, = - ChaaQ”~&’ - 
a@ 

(6) 

Hermiticity of @, given the Hermiticity of p and the Q”, requires that h,~ be 

Hermitian. Now let us write the condition that the normalization is preserved: 

tr j = 0 = -tr {hoop + C(hoa + hao)Qap + C &pQBQ"p) . 
a#0 %a#0 

(7) 

This equation may be solved for the quantities (hea + hae). The other linear 

combination is undetermined; let us parametrize it as follows: 

(hoa - haO)Qa = -2i Ho (8) 

where H is some Hermitian operator. Then we have cast (4) into the form: 

p= -i [Ho, p] - f c (Q8Q"p + P&@&* - ~Q*P&‘? - (9) 
d#O 

We still need to implement the requirement that p remain positive. One 

might also insist that the entropy defined by p not decrease with time. We do 

not know what conditions are necessary to insure these properties, but we can 

state some simple sufficient conditions. p remains positive if h,B is a positive 

matrix. To see this, diagonalize hap; this produces 

h,p Qa QB = hxQX Q+’ (10) 
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where the Qx are not necessarily Hermitian but are orthogonal in the sense that 

Now diagonalize p, calling its eigenvalues pi, and consider the situation in where 

one eigenvalue, say, ~1, becomes zero. Then 

d 
zP’ = ill Ip14l = c h lQ:;12p; 

x 
(12) 

is positive, so that p remains positive, if hl 2 0. Entropy increases if h,B is a real 

symmetric matrix, or, equivalently, if the Qx of (10) are Hermitian. Consider, in 

fact, the evolution of tr(p)“, a > 1: 

$trp” = -‘Chx cPqe1(IQ~‘.12~;- IQij12pj) 
x ij 

(13) 

= --(Z C hx C (IQ~‘12pi - ]Q~‘12pj)(pfe1 - p;-‘) e 
x pairs ;,j 

This is negative if all of the Qx are Hermitian; taking Q + 0, we find in this case 

i tr (-plogp) 2 0 . 

We have shown, then, that a linear evolution equation for p can generally 

be written in the form (9). Assuming that h is positive insures that p remains 

positive; assuming, in addition, that h is real implies that entropy increases. 

However, it is easy to find exa.mples which show that these last two conditions 

are not strictly necessary. 



3. An Interpretation of the Evolution Equation 

_ - 
The case in which h in Eq. (9) is real and positive is attractive from another 

point of view: In this case, Eq. (9) p assesses a simple physical interpretation. 

Let us now present that interpretation, and use it to expose some problems with 

writing (9) as a fundamental equation. 

Consider a system described by quantum mechanics evolving under the action 

of the following Hamiltonian: 

H(t) = Ho + &(t)Q” (15) 
a 

where the Qa are a set of Hermitian operators and the j&(t) are c-number sources. 

Let the ja vary randomly in time, according to Gaussian statistics with covariance 

(ja( t)ja( t’)) = haBb( t - t ‘) - P-9 

In (16), h,~ is real, symmetric, and positive. If p(0) is the density matrix of this 

system at time t = 0, the density matrix at time t = c is given by: 

p(c) = p(o) + i j dt’[Ho + ia(t’)Qa, P(O)] 

0 

(17) 

Averaging over the ja, we find 

P(C) - p(O) = -it: [HO, p(O)] - f chap[Qa[Q’, P(O)II + o(c2) (18) 
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which, since h is symmetric, is identical to (9). Thus, Eq. (9) in this special case, 

is simply equivalent to ordinary quantum mechanics m-the presence of a random 

source term. 

Quantum mechanics with a random source, however, differs from the ob- 

served behavior of elementary particles in two important respects. First, energy 

is not conserved; in each realization of the random source, the nontrivial time 

dependence of the source allows energy to be added or removed. Secondly, in 

the case of a field theory, there is an irreconcilable conflict between momentum 

conservation and locality. In field theory, (15) must be generalized to: 

H=Ho+ 
/ 

d3zja( t, ~)&a( 5) - (19) 

If the sources ia fluctuate randomly as a function of spatial position, then, 

in each given realization, the sources will break translational invariance and add 

momentum to the system. On the other hand, if the fluctuations of the sources 

are translationally invariant, the sources must go through the same random fluc- 

tuations at widely separated points on the same spacelike surface. This will 

introduce correlations between fields at spacelike-separated points. In general, 

the range of the spatial correlations of (&(Z)i~@)) will be just the reciprocal of 

the size of typical momenta added or subtracted. 
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4. Some Consequences of the Evolution Equation 
-- 

The violation of energy conservation and the conflict between locality and 

momentum conservation, observed in the previous section as properties of a sys- 

tem governed by the Hamiltonian (15), can be readily seen to follow from the 

general structure of Eq. (9). Let us work out more explicitly how they arise. 

The failure of energy conservation can be seen from the following observation: 

What if the theory did possess some Hermitian operator H (not necessarily equal 

to HO) which was conserved by the dynamics. Then any p which was a function 

only of H could not change under the action of (9). However, this is possible only 

if (9) contains only operators Q which are simultaneously diagonalizable with H. 

Unless H has highly degenerate eigenvalues (a property which would exclude it 

as a good candidate for the energy), this is a serious restriction on hap, especially 

if Qa must be a local operator rather than a global charge. 

The conflict between locality and momentum conservation can be seen as 

follows: Let us generalize (9) to field theory by writing 

i, = -; [I ~~H(d, PI-; / d3zd2y ~a,+-~)(Q%)Q”(4, P}-2Qa(4pQ8(r) . 

For the moment, we allow h(s - y) to have some finite spatial extent. In Fourier 

space, the second term of (20) has the form 

1 -- 
2 J 

$ha/@)[ { Q+8(-iJ)Q”V)~ p} - Q”(P)P&+‘(-P)] * (21) 

The operators Q”(g) change the total momentum by g; the size of 3 is restricted 

only by the fall-off of the Fourier transform of h. Momentum conservation vi- 

olations can be kept small if H(j) is concentrated at small values of 3. Let us 
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compare this to the criterion that the evolution of p does not introduce long- 

range correlations. Consider preparing a density matrix pa in-such a way that 

all correlations among operators fall off at a specified rate: 

tr[A(?!)B(a)pe] < Cc-r]‘-3]; p]Z- a] >> 1 . (22) 

This is possible in a theory whose lightest particle has mass m if p < m. Then 

the normal quantum-mechanical evolution of p preserves the locality indicated 

in (22): 

= tr (a(;)o(j) - (1 d3%W), po]} 
(23) 

= -i tr { (kW HI&l) + 4WW, ,,,o> 

since each indicated commutator is a local operator. The second term of (2O), 

however, gives the additional contribution 

-k tr{A(;,Bca, / d3.zd3w h,p(.z - -,( { Q%dQW PO} - Q”MP~Q%J))} . 

(24) 

If I2 - al B P, we can use the commutativity of space-like separated operators, 

the cluster properties of p, and the identity h&z- w) = (h,q,-Jw - 2))’ to write 

- 
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this as: 

- J d3w hap@ - w) A@!) [ t / d3z &“~4]&‘%4W~}~o 

+ ((4 2) ++ (8 J,) 

N --2(tr[A(zhJ Qa]po)Rehap(z- y)(tr[B(y),J ~'1~0) - 

- i[ (tr[dzly J Q.]Po) J d3~Imha,d~ - z)tr ((B(Y), Q’(z)}Po) 

+(A,~) * VW 1 - (25) 
We are free to choose operators A and B so that this expression is nonzero. 

Equation (25) is only as local as h(z - y). If h falls off fast enough to insure that 

(22) is maintained, the considerations of the previous paragraph imply that the 

theory allows violations of momentum conservation of order cr. (We should note 

that, if h(z - y) is independent of (z - y) and only operators Q” with vacuum 

quantum numbers appear in (20), the effect of (25) is only the rather subtle one 

of violating cluster decomposition.) 

13 



5. An Illustrative Model 

The arguments we have just given show that violation of energy and momen- 

tum conservation is to be expected for operators of the form (9) which preserve 

locality. We should now offer a few remarks to connect this a.nalysis more con- 

cretely to Hawking’s proposals for quantum gravity. In the analysis of Ref. 1, 

Hawking imagines that quantum coherence is violated by the effects of gravita- 

tional quantum fluctuations of the size of the Planck scale, rnp’. In his picture, 

the fluctuation influences both the left- and right-hand side of the density matrix 

p at the same space-time point (or wit,hin mP -l of this point). This corresponds to 

an evolution equation of the form (20) with h(z-y) extended only over a distance 

m;‘. The locality of h(z - y) is used in a crucial way in Hawking’s analysis (and 

in the more detailed analysis presented in the appendix to Ref. 3) in estimating 

the size of the proposed quantum incoherence. Under this condition, Eq. (20) 

would be able to change the total energy and momentum by amounts of order 

mP. Hawking proposes to deal with this problem by imposing overall energy- 

momentum conservation in scattering processes. However, it is not enough to 

insure that energy-momentum is conserved in transitions from the asymptotic 

past to the asymptotic future; energy-momentum should remain constant as a 

function of time, at least after course-grained averaging over time. We have seen, 

however, that this would entail removing, by hand, most of the operators Qa(p) 

in Eq. (20) and, by hand, making this equation nonlocal. The resulting equation 

would be very different from what one would obtain by literal application of the 

prescriptions of Ref. 1, and would, in any event, by an equation with its own set 

of difficulties. 

- 

In principle, it is still possible that the violations of energy-momentum con- 
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-- - servation could be unobservablly small. A bound on the occurrence of rare but 

sizeable violations of energy conservation follows from. the fact- that changes of 

order 1 MeV would cause a-emitting nuclei to decay. Thus such changes can 

occur in each nuclear volume only once in the lifetime of the longest-lived Q- 

emitter. This limit is quite stringent, because Hfl’* is an a-emitter with a 

half-life of 2.0 X 10” yrs; converting this to Planck units in the simplest way, 

this corresponds to a bound of 10-12’ energy violations/(Planck time)(Planck 

length)3. One might expect effects of quantum gravity to be inhibited in low- 

energy physics, with rates containing powers of (1 GeV/mP). But we will now 

show, in a simple model calculation, that such a suppression does not appear in 

this process. 

Hawking’s argument in Ref. 1 that his predicted quantum incoherence effects 

are small applies only to particles of spin 2 i and uses constraints of helicity 

conservation or gauge invariance to provide some suppression. Let us, therefore, 

examine a process which contains this suppression: photon creation by gravita- 

tional instantons. Taking the prescriptions of Ref. 1 literally, we represent the 

coupling of gravitational fluctuations to photons by writing 

- z(F,,)2(Z)P(F,,)2(2)] (26) 

where HO is the free photon Hamiltonian. The factor rn;’ is inserted for di- 

mensional reasons. In solving (26), we will cut off momentum integrals at a 

momentum M of order mP. Let us insert into (26) 

PV = 0) = 14 PI (27) 

where 1st) is the usual free photon vacuum. Then, if n(g) is the number of photons 
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of momentum i> 

-$trn(p)p(t)l+a = -!$ C A/ 
p x1x2 2P 

d3q --‘.8 
(W32q 

- 

= (pure number) . p . 

It is true that few photons are created at small p, but energy nonconservation 

allows all modes up to mp to be populated; the high-energy modes are populated 

without suppression. The photon energy produced per unit volume is given by 

integrating (28) 

&P d f tr (~)PWo = J (2?r)3 (;ii tr b@)PM) t=o - P 

a Mg =-- 
rnj 157r4 

= (pure number) . rni . 

The moral of this exercise is clear. Incoherent perturbations localized in time 

and space must, by the Heisenberg uncertainty principle, create energy and mo- 

mentum. Once energy conservation is lost, the enormous volume of phase space 

for 131 - mp makes quantum incoherence a major effect. A sensible theory of 

quantum gravity must, then, respect the coherence of quantum states, even under 

strong gravitational perturbations. 
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