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Abstract 

- . 

In this letter we use nonlinear realizations to examine the breaking of N = 2 

extended supersymmetry to N = 1. We derive Lagrangians and transformations laws 

for the generalized N = 2 Akulov-Volkov goldstino field. We analyze the ghost states 

and show that they may be collected into N = 1 supermultiplets. We extend the 

transformation laws for the N = 1 chiral and vector multiplets to N = 2. Finally, 

we give the N = 2 generalization of an arbitrary N = I supersymmetric Lagrangian. 
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Within the last few years, many models have been proposed in which N = 1 

supersymmetry is spontaneously broken at some mass scale Mr smaller than the Planck 

mass Mp. It is natural to ask whether such models can arise from a theory with 

extended supersymmetry, where the extra supersymmetries are first broken to N = 1 

at some new mass scale M2 > Ml. A model - independent way to investigate this 

question is through the use of nonlinear realizations [I]. In this letter, we use nonlinear 

realizations to show that any N = 1 supersymmetric theory (with chira.1 and vector 

superfields) may be obtained as the “low energy- limit of a corresponding N = 2 

theory. Our method may be trivially extended to higher N as well. 

This letter is organized as follows. We first derive transformation laws and La- 

grangians for the generalized N = 2 Akulov-Volkov goldstino field. We find that the 

Akulov-Volkov Lagrangians contain ghost fields. This is, of course, expected from a 

general argument based on the supersymmetry algebra [2]. We construct the Fock 

space for the Akulov-Volkov fields, and show that the N = 2 ghost states may be 

collected into N = 1 supermultiplets. We then demonstrate how the transformation 

laws for the N = 1 chiral and vector multiplets may be extended to N = 2 with the 

help of the Akulov-Volkov fields. We conclude by giving the N = 2 generalization of 

an arbitrary N = 1 supersymmetric Lagrangian. 

The formalism associated with nonlinear realizations is well known for the case of 

N = 1 supersymmetry [3-g]. The transformation law for the Goldstone spinor was 

first found by Akulov and Volkov [3]: 

- . 

s,i, = $2 ( -ik xamt- <Urn i)8m i, . 
The coefficient k -: denotes the scale of supersymmetry breaking.* A somewhat simpler 

transformation law was used in Refs. [5, 61: 

(2) 

The fields X and i are related as follows 

* We use the conventions of Ref. [9]. 
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where 

Y m= p- ik2 (i (Yk” x (Y)) 

This implicit definition may be rendered explicit by 

Eq* (3) PI: 

1 7 
- P 8, Ve aeCrn - 2Vn tie anae Cm 

I 
dm j;, 

. (4 

expanding (and inverting) 

+ Vn3nVe afVrn + f VnVe a,aeVrn amA, 1 
1 

- - VnVm dn 8mXa , 
2 

where vrn = k2icrni and urn = k2Xam x. In Eq. (5) all fields are functions of xrn. 

If X, and i, are promoted to N = 1 superfields A, and .&, and & is replaced by 

& (2), the transformation laws (1) and (2) realize the N = 2 supersymmetry algebra 

(without a central charge). The superfields A, and A, are the Goldstone superfields 

associated with breaking N = 2 to N = 1 supersymmetry. Because of the unbroken 

supersymmetry, the Goldstone spinors X, and Xa are members of N = 1 supermulti- 

plets. 

An advantage of the transformation law (2) is that the N = 1 superfield A, may 

be constrained to either be chiral DA = 0 or antichiral DA = 0: To distinguish the 

two cases, we shall call the antichiral superfield X,, DX = 0. 



To derive the Lagrangian for A, and X,, we follow the method of Ref. [5]. We 

first construct the N = 2 superfields associated with the transformation laws (1) and 

(2) (5,101: 

;r, ( 5, &‘), $1) ) e(2), g(2) > = esp [6@)] x -ii, (z, e(l), 8(‘)) 
A, z, et’), g(l), ef2), $2) 

> 

= =p [68(z)] X A, (2, td’), 8(l)) . (6) 

x* 2, e(l), g(l) ) e(2), $2) 
> 

= ezp [$2)] x xa (x, e(l), 0) 

These superfields may also be defined through constraints: 

Db t2) A, = 2;k (a” A)’ am Aa 

Dg f2)x, = ’ 
k w D, (l)Xg = o 

(7) 

ijb (2)& = 2;k (a”X)’ 8,X& . 

The constraints for da may be worked out with the help of Eq. (5) [5]. The constraints 
(7) are consistent with the N = 2 D-algebra [II], 

D, tA), “& tB) = -2; &m om. a, 
4 

(8) 
D, tA), LIP @) D, (A), Dp (B) = 0 . 



From these superfields we can construct invariant Lagrangians for the Akulov-Volkov 

field: 

d%d40d4 eAAl.;i = 
/ 

d4zd20(‘)d2 e(l) ’ - iAc”amA + . . . ‘ijp 1 (9a) 

d‘%d40d4 8XxXx = 
/ 

&zd2B(‘)d2 B(l) ’ -iXUrn3m X+. . . (9b) 
--ii@ I 

lkz/ -- d4zd48d2 g(2) AAxx + h c . . = 
/ 

d4rd2&l) _ L _ jAgm a, x 
2k2 

w 
+... 1 + h.c. 

The triple dots (. . .) stand for nonrenormalizable interactions, suppressed by powers 

of k. Note that the last Lagrangian is N = 1 chiral. The integral over d2tlf1)d2 e(l) 

annihilates the constants, so there is no N = 1 supersymmetry breaking for any of 

the three cases. 

Before exhibiting the ghost structure, we first expand the N = 1 superfields A, 

and X, in terms of component fields, 

A,(y, e(l)) = x,(y) + Fa B(Y) eg (l) + fja(y) e(l)e(l) 

Xb (Y, e(l)) = x;, (y) + vn(y) ea 0) ~1~ + ij;, (y) e(l)e(l) 
(10) 

, 

where ym = zm + ie(l)arn 8(l). The Lagrangians (9a) - (9c) become 

-i&rmam $ - iXarnllrnCIX - kF* ’ * amPa dmd,Fp agn. 
P aCr 

+ . . . 1 w4 
-i$om8m 4 - ixum~ma~ - VA q Vm - 2arna. V 1 1 + . . . (11~) 

-i&rm3m x - i$arn8m i - f(# am),’ VnamFp a + . . . + h.c. 1 WC) 
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The first two Lagrangians have higher derivatives. Third is off-diagional. All three 

contain ghosts. 

The Lagrangians (11~) - (11~) are invariant under the following (N = 1) super- 
symmetry transformations: 

b(J’a ’ = 2 $Jac’ - 2i amAa( F a”)’ 

S,$a = -i 8mFa 'Us* e -a 

aP (12) 

These transformations also act on the states. They map physical states into physical 

states, and ghosts into ghosts. This is easiest to see for Lagrangian (11~). We shall 

examine it first. 

To untangle the ghost structure, we canonically quantize the fields in (11~). The 

momentum conjugate to Fa @  is -&(u” ~“)a a Vn, while -i(&r’)k and -i($cr”). 
a 

I 

are conjugate to xQ and X . -P These lead to the following equal-time commutation 

relations: 

[Vn(l, t), Fa ‘(g, t)] = - (co an)& ’ b(3)(~ - y) 

(13) 
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All other commutation relations vanish. As usual, the relations (13) can be extended 

to any two spacetime points, 

[V.(Z), Fa B(y)] = - (am Bn)a ’ -3, A(z - y) 

{ Xb (x)7 4a(Y)} = - uami, am A(z - y) (14) -. 

{id, (z), @a(Y)} = - ua”;y am A(% - Y) - 

Here A(Z) is the usual Lorentz-invariant commutator function normalized such that 

(iY/Lh”) A(z) = 6(3)(~). Th e oc space is constructed by expanding the fields in F k 
plane-wave solutions 

Vn(z) = / & [U”(p)eiPZ + wnyp)e-iP’] 

$a(z) = / & [&(p)e+’ + B.?&I)~~~~~] 

(15) 

Xa(r) = / & [C,(p)eipz + D?Jp)e-iPz] , 

and similarly for Xa and +a. The operator relations 

[W”t(P)~ ga I] = [u”(p), h:‘(q)] = f (bman)a p pm ~-1 ~(‘)(p - q) 

(16) 

-. 
allow us to recover the commutators (14). They also permit us to identify the daggered 

and undaggered quantities as creation and annihilation operators, respectively. From 

(16) we see that the Fock space is off-diagonal. The one-particle states have zero norm, 

and nonvanishing matrix elements with each other. To exhibit the ghost structure, we 

diagonalize the space of one-particle states. Without loss of generality, we consider 

positive helicity states moving along the +z axis, pm = (E, O,O, E). 
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The following linear combinations 

A (*I = & (Al f E Cl) 

B (*:) = & (4 f E Dd 

q (4 = $ (U” + U3 F HI ‘) 

(17) 
v_L (*I = 5 (U” + iU2 T HI *) 

q (f) = -$ (W” + W3 f G1 ‘) 

WI (*I = $ (W’ - iW2 f G1 2, 

diagonalize the one particle states. The superscripts (&) denote positive and negative 

norm states, as may be seen from the following commutation relations: 

1 q (*I (P), q (*I+ (PI] = [y, (*I (P), Jq (*)t (q)] = f st3)(p - q) 

[ UI (*I (P), q (*It (e)] = [WI (*I (p), WI (*I+ (*)I = f N(p - q) (18) 

(A(*) (p), A(*)? (q)} = {B(*) (p), B(f)? (q)} = f d+ a) , - 

-. 

It is not hard to show that the supersymmetry transformations (12) preserve the norms 

of the states. They map physical states into physical states and ghosts into ghosts.The 

physical states and the ghosts form multiplets under the unbroken N = 1 supersym- 

metry algebra. 

The Lagrangians with higher derivatives can be reduced to Lagrangians with first 

and second order derivatives through the introduction of auxiliary fields. This can be 

done in terms of component fields or in terms of N = 1 superfields. 



The quadratic piece of the Lagrangian (9b) is reproduced with two extra superfields: 

-. 

J 
d4zd2&1) -; r urn 8,X + alW + bWW + cIT +h.c. 1 (19) 

Here fa and Wa are N = 1 auxiliary superfields, subject to the following constraints: 

D, (1) ra = D, (1) w, = 0 
(20) 

B(‘) i5’ = D(l) W . 

The Lagrangian (19) gives rise to the following superfield equations of motion: 

-itUrnarn k)a + UWa +2Cfa = 0 (21) 

26 D(l) W + 2b* D(l) W + a D(‘)r + a*D(l) F = o . 

Eliminating Wa and ra, and imposing the relation u2 = 8c Re(b), we find the superfield 

equation for X, 

ci 3, D(‘)D tl) x cr = 0 . 
In terms of component fields, Eq. (22) takes the following form: 

(22) 

Urn 8, Cl X = 0 (23) 

cl vn - 2ana-v = 0 . 

These equations are the same as those which follow from Lagrangian (llb). Their 

ghost structure may be analyzed as before. In this case, the positive and negative 

norm (one-particle) states are not eigenstates of the Hamiltonian, so the norm is 

not preserved under supersymmetry transformations. Instead, one finds that the 

one-particle states may be grouped into two physical N = 1 supermultiplets, and 

one unphysical N = 1 dipole ghost supermultiplet [12]. This is similar to the ghost 

structure of conformal supergravity, first analyzed by Ferrara and Zumino [13]. 
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The third Lagrangian, (lla), can be analyzed in terms of component fields, leading 

to analogous results. We have not, however, been able to find a formulation in terms 

of N = 1 superfields. 

Having discussed the generalized Akulov-Volkov superfield, we are now ready to 

consider its coupling to N = 1 chiral and vector superfields. We start by extending 

the transformation law of an N = 1 chiral superfield to N = 2, 

$2) Q, = - 2ik A urn t(2) 8, @ . (24 

This transformation law preserves the N = 1 chirality constraint Do. (l) @  = 0. As 

before, it may be used to construct an N = 2 superfield 0, 

@c 
5 7 0 (11, a(l) , 0 (21, et21 

1 
= ezp [68(2)] x @(x, e(l), S(l)) . (25) 

The superfield Q, obeys the following constraints: 

D, (1) t# = 0 (264 

DP (2) gj = 2ik(tYmA)P dm$ . 

These constraints are consistent with the N = 2 D-algebra (8). 

cw 

We proceed analogously for the N = 1 vector superfield V. Ibs N = 2 transfor- 

mation law is given by 

$(2) v = -ik iam{ - cU"li)amV , (27) 

where & is expressed in terms of Aa as in Eq. (5). This preserves the N = 1 constraint 

- v= V+ . The N = 2 superfield v obeys the following constraints: 

* = p+ (284 

Dat2)V = ikozhi’irme . 

These constraints are also consistent with the N = 2 D-algebra. 

(28b) 

. 
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To generalize the concept of a gauge transformation, we first consider the trans- 

formation law of a matter multiplet 

9’ = esp (iC) !S . . (29) 

The gauge parameter C must satisfy the same constraints as @. In analogy to N = 1, 

one might expect the transformation on G to be compensated by a transformation on 

V: 

- 

P = P + i(Z:+ - C) . (30) 

However, this does not preserve the constraints (28). To circumvent this difficulty, we 

must discard (30), and find a function V(e, A) whose constraints are also satisfied 

by C. There exists a general procedure for converting a superfield e, which satisfies 

a constraint of type (28b), into a new superfield V, a function of Aa and e, which 

satisfies a constraint of type (26b). One first performs the N = 2 chiral projection 

vo = +2 Df2)Df2) l;i v , 

and then constructs the superfield V: 

v v” = -k Aa Oat21 V” _ fk2MDt2)D(2) V” . (32) 

The superfield V obeys the constraint (26b). Its lowest component is the same as the 

lowest component of v. Equations (31) and (32) illustrate the general procedure for 

decomposing a chiral superfield into a standard form [5]. Armed with the superfield V, 

we can now construct a gauge transformation which preserves the N = 2 constraints. 

If we take 

- 

V + V-iC , 

then 

*+ ezp( i(V+V+))+ 

(33) 

(3‘4 

is both gauge invariant and N = 2 symmetric. For Aa = 0, Ba f2) = 3, t2) = 0, 

these expressions reduce to the usual N = 1 gauge invariant expressions used in 
supersymmetric gauge theories. 
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The N = 2 generalization of the gauge invariant N = 1 superfield Wa is given by 

Wa = -! 
,B 

@I2 D,(l) (V + V+) . (35) 

The N = 2 superfield Wa is both chiral and gauge invariant. The above construction 

can be immediately generalized to nonabelian gauge groups. 

Having constructed the N = 2 superfields corresponding to N = 1 chiral and 
vector superfields, we now proceed to construct an N = 2 Lagrangian which reduces 

to the appropriate N = 1 Lagrangian when Aa = Xa = 0. We follow the general 

procedure given in Ref. [5]. This procedure takes advantage of the fact that the 
0(2)0(2)$(g) $jt2) components of M;ia, XXxjE and AAxx all contain a constant 

term. Therefore, these objects pick out the 0(2) = 8(2) = 0 components of anything 

the multiply. This is just what we need to construct invariant Lagrangians with the 

correct low energy limits. Since we wish to preserve N = 1 chirality properties, we 

use A.Axx for N = 1 F-terms. For simplicity, we also use it for N = 1 D-terms. 

Thus an N = 2 extension of the N = 1 Lagrangian 

1 
ii J 

d2e(l) d2 g(l) @+ exp (V) d + i 1 d28(‘) WW + 1 d2 t9f1) f(@) + kc. (36) 

is given by 

t k2/ -- d48 d2 et’) AAXX 

+ f k4 
J 

d48 d4 8 AAXX !B+ exp (i(V+ v+))r 

(37) 
+;k4/ d40 d2 g(2) AAxX WW 

- + Cc4 J d48 d2ijt2) Mxx f(e) + h.c. 

Equation (37) reduces to (36) when Aa = Xa = 0. It gives the low energy coupling 

of the N = 2 goldstino to the N = 1 effective theory. As discussed earlier, the 

Lagrangian (37) contains ghost fields. How many of these become gauge degrees of 

freedom when (37) is coupled to N = 2 supergravity is currently under investigation. 
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