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AEBTFLWT 

The Casimir energy is evaluated for a free scalar field that has a mass term 

m2(q), depending on one space coordinate 21. The formalism for evaluating 

the Casimir energy is developed for the case of m2(q) finite everywhere in d- 

dimensional space-time. The case with m2(q) = m$9(L/2 - 1x11) + m&O(]q] - 

L/2) is explicitly evaluated for any value of mo and moo without any approxima- 

tion. The result consists of volume energy terms, a surface energy term, and a 

non-leading term. Most of the W  divergences are in the volume energy terms 

and renormalize the coupling constants of the underlying theory. The surface 

energy term is finite for d 5 4 and divergent for d > 5 due to the boundaries 

being sharp. A closed finite expression is obtained for the non-leading term. Our 

results are shown to reproduce the known Casimir energies for the limiting cases, 

mo + 00 and moo -+ co. 
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1. Introduction 

The Casimir energy is a quantum correctibn of the energy of a finite sized 

classical object due to its interaction with quantized fields. It usually depends 

differently on the size and shape of the object than the classical energy, and 

therefore is potentially important whenever we deal with the dynamics of such 

objects. Some earlier historical examples include conducting spheres and plates. 

Casimir[l] derived an attractive force a: l/L4 between two neutral conducting 

plates with distance L, which actually is in agreement with experiment[2]. The 

van der Waals force between neutral atoms was also explained as a Casimir 

effect[3]. More recently, the Casimir energy has played a role in the bag model of 

hadrons[4], where the quark and gluon field confined in a bag provided a quantum 

energy oc l/(bag radius). 

There are new classes of finite-sized objects which come into sight in the 

theory of the very early universe. They include the bubbles nucleated during a 

first order phase transition, the Higgs field fluctuations during the slow roll-overs, 

domain walls and cosmic strings. The Casimir energy could be potentially im- 

portant for their dynamics whenever other quantum corrections are essential. In 

fact, some cosmological scenarios are based on a Coleman-Weinberg type theory, 

where one-loop quantum corrections are essential for symmetry breaking. People 

often treat finite-sized objects such as Higgs fluctuations using only the effective 

potential. This corresponds to neglecting the kinematic part of the full one-loop 

correction to the effective action and therefore cannot be regarded as a consistent 

procedure. 

Traditionally the Casimir energy has been calculated for cases when objects 

act on the quantized field as boundary conditions. In many physically interesting 

cases, especially for the objects mentioned above, this is not so. Typically, these 

objects consist of a coherent background field &(z). It affects its fluctuations 41 

through self-coupling V( dc + 41). If dc is infinite in a region of space, its effect on 

quantum field could be counted as a boundary condition. However, $c is usually 
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finite everywhere in the above-mentioned cases. While this finiteness causes 

some calculational difficulty, it is useful for clarifying the originof divergences in 

Casimir energy calculations. Calculations based on boundary conditions suffers 

from W divergences that are either intrinsic to the theory or due to tic being 

infinite in a region of space. When we deal with a dc that is finite everywhere, 

we should be able to separate the W divergences intrinsic to the theory and 

renormalize them away. 

This paper deals with these “finite” 4c’s. We work at full one loop order and 

do not use the Feynman graph expansion, or “multiple reflection expansion”(51. 

This enables us to keep to same order approximation to the effective potential 

and thus makes the separation of the W divergences straightforward. We dis- 

cuss a single scalar field 41 with a mass term m2(q) that depends only on one 

space coordinate q of d-dimensional space-time. As an underlying theory one 

can imagine a single scalar field 4 with a renormalizable self-interaction V(4). 

A coherent background Qc(zi) provides a mass m2(q) = d2V(qbc)/d& to its 

fluctuation 41 = 4 - &. In the next section, we present the formalism and an 

approximate scheme suitable for m2(zr) consisting of a constant central region 

and outside regions. (Fig. 1). In Section 3, we explicitly evaluate the case with 

sharp boundaries, m2(z1) = m~e(L/2-I~11)+rn2,e(l~ll-L/2), for arbitrary real 

values of mo and m,. Section 4 gives some discussions including the comparison 

of our results with known special cases. 
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2. Formalism 

Casimir energy EC is the sum of the zero energies of excitation modes The of 

the quantized field #/, 

E c 
Wn 

c= -. 
2 n 

The nth excitation energy tin is given by the Klein-Gordon equation, 

( wz + A - m2( z))4!( z) = 0 , (2.2) 

(24 

with an appropriate boundary condition. When m2(z) depends only one one 

coordinate ~1, we separate the parallel coordinates 2 - d - 1 to obtain 

where Lr denotes the width of space in the parallel directions, which is much 

bigger than any length scale in m2(q), and p(p1) the density of levels of the 

separated Klein-Gordon equation, 

In general, p(p1) consists of a continuous spectrum and a discrete spectrum, 

P(n) = P4PiPbi - mm) + C~(PI - p(,)) , 
n 

(2-5) 

where moo = min{m(co),m(-oo)}. In this section, we discuss techniques to 

deal with each of the spectrums separately. The close connection between the 

formulae in each case will be demonstrated with examples in the next section. 

Hereafter, we consider cases when m2(q) consists of one central flat region of 

width L, with m2(q) = m2(-q). Extensions to more general cases are straight- 

forward. 
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-- - (i) Continuous Spectrum 

The technique developed here is based on the use of phase shifts, which have 

been applied to two-dimensional soliton mass correction calculations[6], and on 

an approximation method[7]. We present them here in a slightly different manner 

suitable for our application. 

In order to obtain pc in (2.5) we first need to solve (2.4) and obtain standing 

wave solutions. From them, we find the phase shifts, &(pl) and b,(pl) for the 

even and odd modes, defined in the following asymptotic behavior for 21 + &co, 

cos(pz, f Y) even modes, 

4/h) + 

sin(pzr f F) 
(2.6) 

odd modes, 

where p z By requiring periodic boundary conditions at 21 = 

fL1/2 (L1 >> L), we get a discrete spectrum given by, 

PLl + qpl) = 2nn ) (2.7) 

for each of the even and odd modes. As L1 -+ co, the continuous spectrum is 

obtained with level density dn. Thus the total density is 

P&l )dpl = Ll 
yr dp + WPI) , (24 

where 

G(pl) G ‘o(pl) + bo(pl) 
2x ’ (2.9) 

One should note that for p = 0 (2.6) does not uniquely determine S’s, and 

therefore the above formulas are true only for p > 0. This arbitrariness is 

resolved when one goes back to the finite L1 formula (2.7). This will be done for 

the examples in the next section. The Li-term in (2.8) gives the volume energy 

of the uniform mass case, m(si) = moo, since it leads to 
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L;m2L1J (dPJ2 f z-q-- .- 
(2.10) 

0 

The momentum integral in the above is merely a one-loop correction to the 

effective potential at the constant value of 4C that gives moo. 

An approximation scheme for the phase shifts has been devised for cases 

when m2(q) is sufficiently constant in the central region and has relatively well- 

defined boundaries (at q = *L/2, see Fig. 1). In such a case, a solution of 

(2.4) can well be approximated by a free solution for q - 0. This allows us 

to construct approximate solutions obeying (2.6) from solutions of (2.4) in the 

half-space zi > 0. For p1 > max{m(O)(= mo), m ,} we define amplitudes A(pl) 

and B(pl) from the following half-space solution, 

i 

eiP’(zl -L/2) for 21 - 0 , 
4/h) - (2.11) 

A(Pl)eiP(z1-L12) + l?(p&-‘P(~1-~/2) for Zl - o. ) 

where p’ E $21 p1 - mo. The exponents of L/2 are chosen such that A  and B are 

independent of L and depend only on the characters of the boundaries. After the 

appropriate reflection, complex conjugation and translation, we find a solution 

in zi < 0. By connecting them at zi = 0, we arrive at solutions in whole space, 

from which the phase shifts 6, and So are found. As a result, we have 

G(Pl) = arg A2 + i arg (I - ($>2c-2’p’L) . (2.12) 

The branches of arg should be chosen such that G(pl) is continuous. Due to flux 

conservation p’ = p(lAj2 - jB12) in th e a space solution (2.11), we demand h lf 

F2 
I I A  <l. (2.13) 
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Thus the second arg in (2.12) stays in one branch as p1 varies. We choose it to 

be --?r - K. Since A(pl) -+ 1 and B(pl) L O- as pl -+ co, this choice leads to 

vanishing arg term in that limit. It is also convenient to choose the branches of 

arg A2 so that it vanishes in the same limit. When mo > mco, we need another 

set of amplitudes A*(pl) defined as follows 

(+e-W) for 21 - 0 , 
4f (4 - 

AF(pl)eiP(Z-L/2) + e.c. for 21 - +oo , 
(2.14) 

where p EZ \/ rni - p:. A similar construction gives for ma > p1 > moo 

G(PI) = arg (iA?) + i arg (I- (2)2t~-~~~) . (2.15) 

In this case, we have (A+/A-( = 1. Thus, the branch of the second arg can be 

chosen to be --7f - +?r. The phase of arg (iA2) should be chosen by considering 

the continuity of G(pl). 

(ii) Discrete Spectrum 

The eigenvalue problem for each of the even and odd sectors should reduce 

to the following type of equation, 

n = f(m) y i.2.16) 

which gives a unique solution of p1 for each integer of n in an appropriate range. 

We assume that f is a monotonically increasing function of pl. The level density 

of this discrete spectrum is given by the following 

C ‘(Pl - P(n)) = C s(n - f(Pl))f’(Pl) (- pd(pr)) , 
n n 

(2.17) 
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where p(,) is the solution of (2.17). The n-summation in the above is done by 

applying the Poisson formula _ - 

E F(n) = E jOOF(k)e2"G~d~. 
n--co j==-CCI -CO 

(2.18) 

(The fact that (2.18) is a finite sum while (2.19) is not is irrelevant because we 

always can multiply F(n) by an appropriate cutoff function of n. This does not 

affect Ed, since for a value of p1 only one n is important.) As a result, we find 

that for each sector Ed is expressed as follows 

P&r )dpl = d i7tPl) (2.19) 

“1 
Qbi) = f(m) + i C 7 si@lr.i.f(pl)) . 

j-1 
(2.20) 

Applying a summation formula, we find that 

!I(Pl) = f(pd+ i arg l_ e-2rif(Pl) , ( > 

= f(Pl) + ; ) 1 1 
(2.21) 

where the arg is in the range --?r - X. 

As with to the continuous spectrum, an approximation scheme can be devised. 

For q > 0, we can have a solution that behaves as follows, 

A’e-p(“-L/2) + e.c. for 21 - 0 , 
+w - (2.22) 

g+-w for zi + 00 

given by 

fe(P1) = arg A’ , fo(P1 

9 

where p’ s \/ pf -mL. It is straightforward to show that the f’s in (2.16) are 

1 = fe(P1 )+f, (2.23) 



for even and odd modes. Following (2.19)-(2.2?), we find that the total level 

density is given by - 

Pcf(Pl VP1 = Wpd , 

WPl) = Se(P1) + So(P1) 

arg (iA’2) + 5 arg (I- ($>lfz-2iP’L) . 
(2.24) 

One advantage of our scheme is that the last terms in (2.12), (2.15) and 

(2.24) are related to each other on the Rieman surface of ~1, allowing a unified 

treatment for the integration (2.3). Also, the major volume energy terms are 

already separated as Gterms, 

J dpr/@r)=(Lr -L)[ z+L[ $+(arg terms). 
0 0 

(2.25) 

These points will be demonstrated with examples in the next section. 
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3. Examples with Sharp Boundaries 

In this section we evaluate the cases with sharp beundarieq 

(3.1) 

for any positive or zero mo, moo, and L. For cases when either mo or moo are 

infinite, the Casimir energies are known. The author has given the results for 

mm = 0.[7] The results obtained in this section will be discussed and compared 

with them in the next section. 

We note that in this case the approximation formulae (2.11)-(2.15) and (2.22)- 

(2.25) are exact since m2(q) is constant for ~1 - 0. However, we use them here 

as a guideline to be followed. The evaluation is done for two separate cases, (i) 

mo > moo and (ii) mo < mm. Note that the notation is pi = p2 + m”, = 

-pt2 + rn: = p’+ rni = -p2 + rni and m2 EE Irng - m&l. 

(i) m0 > mm 

In this case the spectrum consists of only the continuous one, p1 > moo. The 

phase shifts are 

&(p~) = -pL+2tan-’ ( 
P’L $tanl) , 

6,(pl) = -pL+2tan-’ ( 
P’L $tanT). 

(3.2~) 

(3.2b) 

The above lead to the following expressions that correspond to (2.12) and (2.15), 

I 

;(-P+Pf)L+; arg (I_ (C,$~~m2w’L) 

for pl > m0 (3.3a) 
G(PI) = 4 

-;p L + (f - ; c0s-l;) +i arg(l-(EIi$~e-2d) 

I for m0 > p1 > mm (3.3b) 
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where m E \/I rnz- m&j. We choose cos -’ to take its principal value so that 

G(pl) is continuous at p1 = mo. This G(pl)-has the limit -4 for p1 -+ moo. 

However, G(pl) should be understood to be zero at p1 = moo and sharply falls 

offto-iaspi+m, + 0. That is, the level density pc has a -ib(pl - moo - 0), 

not given in (2.8), which contributes to the integral (2.3). It is straightforward to 

see that otherwise we encounter a contradiction. Namely, for L + 0, G goes to 

0 except for p1 5 moo + m4L2/mca (p 2 m2L) where G - -i (see Fig. 2(a)). 

Thus, (2.8) gives pc - +i S(pl - moo - 0) as L + 0. This contributes an extra 

amount other than the pure volume energy piece (2.10) to the Casimir energy. 

The -1 S mentioned above cancels its contribution as L -+ 0. The existence of 

this gap at p1 - moo can be understood from the finite L1 formalism. Imagine 

that we keep LI finite and use the Poisson formula (2.19) and (2.21). The discrete 

spectrum is given by the derivative of the following 

PLl k4Pl) 
GLl(Pl) = 2n + 7 

1 1 [ PLl 6o(Pl) + 5 + 7 1 + 1s + + F(p1) . (3.4) 

For large L1, F(pl) rapidly oscillates around G(pl) with the amplitude - 1 and 

-the period - n/Ll, as illustrated in Fig. 2(b). As L1 + co, the integrals including 

F(pl) (but not its derivatives) converge to the integrals with F(pl) replaced by 

G(pl). For integrals with dF/dpl, such as (2.3), F should be replaced by G 

with the right boundary value G(m,) = F(m,), which in our case if zero (see 

(2.2) and (3.2)). Th ere ore, f G should be zero at p1 = mm, and for Ap - n/L1 

( APl - n2/2m,L:) it recovers to its value given by (3.3b). 

The pp-integration in (2.3) can be carried out to yield the following expression, 

where 

E c=A 
J dP1 PYP(P1) , (3.5) - 

A-- = 
2(4n)% ' 
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Let us denote the nontrivial part of the Casimir energy per unit “area” as e,, 

EC = (volume energy) i LiW2iii . - - (3.7) 

Substituting (3.3) into (2.8) and partially integrating over p, we find that the 

contribution of p1 > mo to e, is 

co 
d-l 

ec+ = A(Bl + y tan-’ --$) - / ($y:2 / dp 
m 

(3.8) 
where arg/?r denotes the second term in (3.3a) and the first two terms comes 

from the boundary value of G, 

Bl 
1 

c---m d-l 
2 O * (3-Q) 

Similarly from mo > p1 > moo, we obtain the following 

m 

Dl 
1 z---m d-l 
2 CO+ 

J 
0 

(3.11) 

In the Appendix, we evaluate e,+ and e,- separately. For EC, it is enough to 

notice that the third terms in (3.8) and (3.10) combine into one integration in 

the complex p-plane, 

G / t$i:2 Tic dp 24& &(I - (q>4e-2iP’L) . (3.12) 
-co+ir co 

The integral can be rewritten as an integral along the cut on the positive imagi- 

nary axis, Imp(= k) > Jp+mz, Integrating pp first, we arrive at the follow- 

ing expression for e,, 
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ec =S(mf~,m,)+T~(mo,in,,L)~~. - - 

S(mo, mm) = A(& + 01) 

mod-l+ rngl 
m 

=A- 2 
( 

+ 
J 

dp 2 (p2 + m”,)? 

0 
7r dG?=jT 

00 

Tl(m0, mm, L) = F 
J 

& /4k2 - m&)(d-3)/2 

x ;I 1 

( ( 
- m-k 4e-2L@3 

m > 

(3.13) 

9 (3.14) 

(3.15) 

For L -+ co, 2’1 decays exponentially (see the Appendix for the derivation and 

further expansions), 

Tl (3.16) 

The S-term is called the “surface” energy term, since it remains finite for L + 00 

and is proportional to the “area” Lis2. 

(ii) m0 < mm 

In this case, we have a discrete spectrum (mo < p < m,) in addition to the 

continuous spectrum (m, < p). For a continuous spectrum (3.2)-(33a) applies. 

The discrete spectrum is given by the following eigenvalue equations, 

P’L pItan =p’, Atan 
p’L 1 -=--* 

P’ 2 P’ 

These equations are equivalent to the following, 

(3.17) - 

% n, (3.18) 



Corresponding to (2.24), we obtain, 

G(pl) = i ptL + (a - 5 cm-1 !!.J + 5 arg (I_ (p’ fmiP’):-2+‘L) . (3.19) 

We choose the overall phase of arg such that G(mo) = 0. The G(pl) given by 

(3.4) and (3.19) h as a discontinuity l/2 at p1 = moo, 

G(m,-O)=G(m,+O)+a. (3.20) 

For the same reason as in case (i), this discontinuity should contribute to the 

spectrum. That is, p(pl) has an extra -i 6(pl 
. 

-m,) not given by the derivatives 

of (3.3a) and (3.19). 

It is now straightforward to show that the nontrivial part e, of the Casimir 

energy has the following contributions from the continuous spectrum and from 

the discrete spectrum: 

e,,=A(Bz-n,g’( [$I-:+;)) 

m P 0 

(3-21) 

B2 
1 

z---m d-2 
2 O"' 

(3.22) 

m 

D2 
1 

c---m d-l + 
2 O J 

dp’(p’2 + rni)? (3.24) 
0 
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We find that the sum of the above is written as follows 

- 
ec = S(mw, m) + F&m, moo, L) (3.25) 

where S is defined by (3.16) (note that the arguments are exchanged) and T2 is 

expressed as an integral along the positive imaginary axis of p’, 

co 

T2(m, md) = f’ 
J 

dk’k’(kt2 - ---Pi 
m 

mo 
(3.26) 

After changing the variables by kn - rni = k2 - rn& = q2, we find that T2 and 

Tl of (3.16) represent the following same function T in different regions of the 

parameter space, moo > mo and mo > mm, 

T(mo,moo, L) = F ’ 
0 

(3.27) 

-Therefore, the asymptotic behavior of T2 is the same as (3.16) for mo # 0. 

Otherwise, it behaves as follows (for the derivation, see the Appendix), 

Tz(O, moo, L) -+ - w/2k(4 1 
+)d/2 Ld-1 + ’ * ’ (3.28) 
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4. Conclusions 

We have presented a formalism suitable for the evaluation of the Casimir 

energies of membrane (or slab)-like configurations in d-dimensional infinite space- 

time that give different masses, mo and moo, to a quantized scalar field inside 

and outside the membrane (Fig. 1). This formalism directly deals with the 

mode summation and does not allow any arbitrariness such as contact terms. 

An approximation scheme, which is valid when the mass variation at the center 

of the membrane is small, has been given. This formalism has been applied to 

the cases with sharp boundaries, (3.1). The level density p(p1) of the continuous 

spectrum is found to be a smooth function dG(pl)/dpl plus -!6(pl -moo), minus 

half of an isolated state of zero asymptotic momentum. The Casimir energy A?!?, 

is expressed as a sum of the volume energy, the surface energy S and a thickness 

dependent term T. These terms have the following properties: 

(i) The volume energy is merely a (one-loop correction to the effective poten- 

tial) x (the volume). Almost all the W divergences in the Casimir energy are 

absorbed into this term and removed by usual renormalizations of the coupling 

constants of the basic theory. 

(ii) The surface energy is found to be unique; it is given by 

Lpd-2S(max{m~,mco}, min{me,m,}) (see (3.14) and (3.25)). This agrees with 

the physical intuition that it belongs to the boundary. In other words, a sharp, 

flat boundary that separates the regions of masses ml and m2 (ml 2 m2) has a 

surface energy per unit area of 1 S(ml, ma). If one calculates the Casimir energy 

for a spherical case, one should find this surface energy. The general definition 

of S is given in (3.15) and is illustrated for d = 4 in Fig. 3. In particularpI 

S(m, 0) = C( d)md-’ , (4.1) 

(4.2) 
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I 1 1 --- 
?r 4 

N 0.0683 for d=2 

I&($-l) N 0.00201 for d=4 . 

In general, S is finite for d < 5 and divergent for d 2 5.’ This divergence is due 

to the boundaries being sharp.[7] A finite thickness, A, of the boundaries should 

render S finite of order of !Jn A for d = 5 and A5-d for d > 5. 

(iii) the T-term is given by (3.27). It is finite for any d as long as L # 0. For 

L = 0, we have 

T(L = 0) = -S , (4.4 

which agrees with E,(L = 0) = 0.t (see Fig. 4). This can also be shown directly 

for mo = 0 or moo = 0. Therefore T(L = 0) is divergent for d 2 5 because of 

the sharp boundary. This may become clear by considering the small L behavior 

of T as given in the Appendix, (A.17) 

for d = 5 , 

for d 2 6 . (4.5) 

That is, T diverges to -co as L -+ 0. The divergence of S corresponds to 

this behavior of T through the formal relation (4.4). When we have “mild” 

boundaries of thickness A, the mass function m2(q) goes to a constant function 

mm smoothly for L + 0. Therefore, T would be cut off at L - A to yield finite 

* Due to the dimensional regularization, the divergence in S does not show for d = 7,9, . . . . 

This merely is an artifact. These divergences become clear when we discuss S in relation 

to T in (iii). 

t One might still suspect that S has some arbitrariness since it is independent of L. However, 

this relation shows that S is well deflned and also physically relevant. 
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values, - enAford=5and - A5-d for d > 5. Th’ 1s agrees with the expected 

behavior of S for finite A. - 

Finally, we shall show that our results for general mo and moo reproduce some 

known results for special cases. The case mo -t 0 is almost trivial[7]. In this 

case, since the space is divided into two regions without any tunneling between 

them, the Casimir energy should be independent of L. Our T term satisfies this 

property; it simply vanishes (see (3.16)). For mco + 0, the Casimir energy is 

calculated by Hayes[8] for d = 2 and by Ambjgrn and Wolfram[Q] for arbitrary 

d. Correcting some minor errors and changing their notation to ours, Ambjorn 

and Wolfram’s result (their (2.17) and (2.18)) reads as follows 

co W-9 

+ (4r)di(d,2) Ldl--l 
1 _ e-2dw . 

0 

The first term is the volume energy. The second term, the surface energy term, 

corresponds to our S in (3.25), which is the following 

m 
+ r(y) 

( 
mkl + mf-l _ 

J 

dp 4 (p2 + mi)y - 
4(47r)V > 

(4-V 
0 

7r JW * 

In the dimensional regularization scheme, the first and third term disappear for 

moo -+ 00, because in this limit their only well-defined values in the analytic 

d-plane are zero. This way, our surface energy reproduces theirs. For the third 

term, it is easy to see that our T as given in (3.27) has a well-defined limit for 

moo ---+ 00; it is exactly the third term in (4.6). 
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APPENDIX 

In this appendix, we derive several expressions that are useful for discussion 

in the main body of this paper. 

(i) First, we discuss the behavior of the e,+‘s and the e,-‘s for me > mco 

case, (3.9) and (3.11). The following expansion formula is useful, 

. 

arg(l--a)= q.h+-$= 2 f Im(atj) for 1~21 < 1 . - 
j-1 

For L + 00, the terms other than B1 in (3.9) decay in powers of l/L. For the 

third term, this is seen by applying (A.l) to the integrand, 

7 = i 2 (!I$)rjsinfjp’L . 

j-l 
(A-2) 

By carrying out the trivial pp integral and changing the integration variable p to 

p’, we arrive at the following expressions 

fj(p’) E p’(pn + mu)?” . (A.41 

When we expand fj(p’) in powers of p’, each term can be integrated and re- 

summed. As a result, we obtain the following 

+ 8q(3) - y) 

(A-5) 
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---- A similar evaluation for e,- of (3.11) results in a power series expansion in l/Lm, 

e,- = A Dl + O($-) . ~~- (A4 

Calculation of the first three coefficients (i.e. up to the 1/(mL)5 term) shows that 

they are the opposite of those in (A.5). In fact, all the coefficients in the power 

series expansions in (A.5) and (A.6), except for the constant term, are opposite 

of each other and yield an exponential damping as L + 00, (3.16). Note that 

each coefficient is divergent due to A, which comes from the integration of the 

parallel momentum dp d-1. The divergences in the constant terms A& and AD1 

cancel each other for d < 5. The other divergences cancel each other completely 

and yield the finite expression (3.15). 

(ii) For the second case, moo > mg, the eg’s are evaluated similarly. For e,+ 

of (3.21)’ the only difference is that the lower limit of the integration is now m 

instead of 0 in (A.3). The expansion is obtained by expanding fj in p’- m. The 

result is 

e,+ = ABJ + Amg’ cul(Lm) + (d - 1) 

- cd - 1$a3(Lm)(m;~,,, + ‘(A)] ? 00 
where the Q’S are of order 1, periodic in Lm (period n), and have vanishing 

average, 

al(z) z y - f ) 42) c %((y - 5>' - f) ) 

c?3(2) z 2&(-$ l - y) (Y f 5 - [j) * 
(A4 

(The generalized zeta function &z, a) is defined by Cr=, (u + n)-Z) As in the 

mg > moo case, the expansion of e,- yields 

ec- =m2 -Am&’ cul(Lm) -*a* , 
[ 1 (A-9) 
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i.e. the series in (A.7) and (A.8) cancel each other. The Q, given (A.8) has a dis- 

continuity of -1 as Lm increases and passes an-integer times T.-This corresponds 

to the appearance of a new discrete level. At this point, e,- of (A.9) increases by 

Amd-’ and e 00 C+ of (A.7) decreases by the same amount. The sum e, however is 

a smooth function given by (3.26). 

(iii) Next, we discuss the behavior of the function T, which is an increasing 

function of L defined in (3.27). For large L, it can be evaluated by expanding the 

h ix3 

00 
dk’gj( k’) em2jLk’ . (A. 10) 

After expanding the gj’s in k’ - mo, we find that the jth term contributes to T 

as follows, 

which is valid for mg # 0. For mo = 0, we have 

vi 1 1 0 
-od/2 p Ld-1 (1+“‘) * (A. 12) 

(A.ll) 

Therefore, for nag = 0 the leading contribution comes from all j, while for 

mo # 0, the j = 0 term is the major term. The resulting asymptotic behavior 

of T, including some higher order terms, is given by the following, 
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T= 

- 
, 

1 mo-mm, 2 
-2 mg+m, ( 

) (z)ye-2m0L - ~- 

I 
(1+ (d - I)($$ - $-)i + o(h)) 

for mo # 0, moo # 0, 
x 4 

( 
1 W/2) 4 - 

( > 
-+w~+o(~)) 

rd.jA &GZ 

\ for mo # 0, moo = 0, 

-- 2(d - 1) + 2d(d - 1) 
m,L (mwL)2 + o((mtL)3 ,> 

I forme=O,m,#O. 

(A. 13) 

The behavior of T for L - 0 is obtained by considering the high “momentum,, 

limit. The integrand of T behaves as - qd-se-2Lg for large q. Therefore, T(0) 

is divergent for d 2 5. This agrees with the behavior of S through (4.4). For 

d 5 3. T(L) behaves as follows for small L, 

T(L) = -S+T’(O)L+... (A. 14) 

where 

T’(O) = 
r -$ ( > 

8( 4~)~/~ 
(d - 2)m$, - drnirnk2 + 2m,d 

> 
. (A.15) 

The above T’(O) have an IR divergence for d = 2, moo = 0, in which case 

T(L) = -S - -$ceh+--- (A. 16) 
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For d 2 4, we have W divergences in T’(0). Consequently, T(L) behaves as 

follows 

T(L) = 

The author would like to thank Dr. Michael Peskin for helpful discussions. 

‘-S-(mi-mkJ2LenL+... 
32n2 

for d = 4 

i Cmf - m2,)2 en L + . . . 
256~~ 

for d = 5 

I+j+m~ - m2,)2 1 

4(4+/2(d - 3)(d - 5) Ld-5 + ’ - - for d 2 6 

(A. 17) 
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FIGURE CAPTIONS ~-. - 

1. Three separate regions are considered in which the scalar field has dif- 

ferent masses mo and mco. They are separated by an infinite “plane” 

boundary, where character is arbitrary for Section 2 and sharp in Sec- 

tion 3. 

2. (a) G(pl) for a small L. 

(b) The oscillating function F(pl) defined in (3.4) for a small L. 

3. The surface energy S(ml, m2) for d = 4. 

4. The e, for d = 4, mo = 0. 
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