
FASTBUS SOFTWARE PROGRESS. 

David B. Custavson 
Computation Research Group 

Stanford Linear Accelerator Center 

SLAC-PUB-2996 
October 1982 
(1) 

Abstract 

The current status of the Fastbus software development 
program of the Fastbus Software Working Group is 
reported, and future plans are discussed. 

A package of Fastbus interface subroutines has been 
prepared as a proposed standard, language support for 
diagnostics and bench testing has been developed, and new 
documentation to help users find these resources and use 
them effectively is being written. 

Introduction 

The Fastbus system relies on computers for initialization, 
diagnostics, and most normal operations, so computer 
software is an important part of the system. The Fastbus 
Software Working Group has been encouraging the 
production of generally useful software, coordinating 
software development efforts in the various laboratories, 
and developing useful standards in an effort to reduce the 
software burden on the user. Nevertheless, multipro- 
cessor implementations will require some care and more 
sophistication on the part of the programmer than the 
single-processor systems we are used to. 

Standard Subroutine Package 

The primary area of activity of the Fastbus Software 
Working Group in the last year has been the design and 
documentation of a package of subroutines which provide 
a reasonably simple and portable, yet general, interface 
between the programmer and Fastbus. Though details of 
the Fastbus interface are certain to vary from installation 
to installation, just as the applications will vary, the 
existence of a standard subroutine package will reduce the 
effort needed to transfer programs and (more importantly) 
programmers from one system to another. In these days 
of large collaborations, a commonality of language and 
notation is more important than ever. 

Though it is not possible to standardize the software 
interface in complete detail without standardizing the 
hardware of the processor interface as well, at least the 
names of routines, their general mode of operation, and 
the significance of their parameters can be specified. 
This will reduce the number of unproductive variations 
which otherwise would result at each installation. The 
package is being defined in a language-independent way, 
so that it can be applied easily to an implementation for 
any desired computer language. 

Ruth Pordes, of Fermilab, has been the editor for the 
standard subroutines document, which we hope to present 
to the NIM Committee soon for approval. She wil 
present these routines in more detail in another paper 1 

presented at this symposium, and can provide copies of the 
current draft to interested parties on request. 

Hardware Specification Review 

Another major task of the working group has been the 
review and modification 
Specification’. 

of drafts of the Fastbus 
In a system which is so heavily computer 

oriented, it is important to consider the software effects 
of proposed changes to the ‘hardware’ specification. 
Major changes have been made in the areas of status 
responses, control and status register allocation, inter- 
rupt handling, and the handling of reset. These changes 
were considered by the software working group and 
sometimes modified at our request. Though the desires of 
the programmer often conflict with the desire of the 
device designer for the simplest and cheapest solution, 
compromises are needed to minimize the real system cost. 
We think the compromises that have been made are 
acceptable, and have resulted in a practical system. 

Language Support 

Diagnostic and test-bench systems need an interactive 
language so that test programs can be quickly modified for 
the problem at hand. FDL (Fastbus Diagnostic Lan- 
guage) has been developed at the University of Illinois 
(UIUC) as one solution to this problem. FDL is 
implemented in Pascal for portability, but is an interpreter 
somewhat in the style of Basic, with Fastbus procedures 
built in. Forth, a self-extensible language which mingles 
an interpreter, compiler and assembler in a very compact 
package, has been chosen as SLAC’s interactive system, 
and is also being used as the im 

9 
lementation language for 

the Snoop diagnostic software . 

The working group has y sed Pascal as its publication 
language for algorithms , because it is a good language 
for the purpose and is widely available. Most of the early 
users of Fastbus plan to implement their data acquisition 
systems in Fortran, but in the long run a wide variety of 
languages will be used. Fermilab is now implementing the 
system management algorithms in Fortran. 

Fastbus User’s Handbook -- 

The Fastbus Specification is unusual because of the 
amount of explanatory material included. This seems 
appropriate to some degree, because of the relative 
complexity of Fastbus compared to single-processor 
systems like CAMAC, but it is not practical to put all the 
information which users need in that one document. For 
example, the module designer needs a different kin 

Q 
of 

explanation and detail than does the system designer or 
programmer. 

Therefore, we decided to remove most of the information 
which is related to good practice, convention, interfaces 
or software from the Fastbus Specification document, and 
to create a new document with this information collected 
and expanded, called the Fastbus User’s Handbook 
(working title). 

* Work supported by the Department of Energy under contract number DE-ACO3-76SFOOSlS. 

(Invited talk presented at the Nuclear Science Symposium in Washington, D. C., October 20-22, 1982.) 



I 

To speed production of this document, we are not laboring 
over the form and stvle but are trying to at least get 
pointers to the relevant articles collected and indexed for 
easy access. Richard M. Brown of UIUC is the editor of 
this new document, which is nearing its first draft. 

Future Plans -- 

There is a lot of useful work which could be done, but we 
do not have the resources to do everything. We hope to 
provide guidance, help eliminate duplication of effort by 
providing- a forum for communication, and develop 
standards where they are appropriate, but we cannot solve 
many of the specific problems encountered in a particular 
implementation. 

We plan to start work soon on defining the behavior we 
want from a Buffered Interconnect. The Fastbus 
Specification defines a Segment Interconnect, which is 
intimately tied to the details of the-hardware protocols. 
The Segment Interconnect provides immediate feedback 
during Fastbus operations on a cycle-by-cycle basis, 
which allows long-distance communication to act logically 
the same as local communication. This symmetry 
simplifies software and allows simple controllers to 
function effectively. However, the Segment Intercon- 
nect approach to system connect ion can be very 
inefficient because all the segments joined during an 
operation are blocked from any other use, degrading the 
parallelism of the multi-segment system. This problem is 
reduced somewhat for Fastbus by the ease of installing 
additional cable segments as needed. 

Buffered Interconnects avoid this problem by internally 
storing a message or operation, waiting to transmit it until 
the transmission medium is free. However, there is no 
immediate feedback from the true destination. This 
means that higher-level protocols, like those used in 
computer networks, are needed in order to provide 
reliability by using a system of acknowledgments and 
time-outs. The transmission could occur in a variety of 
ways, including serial or parallel lines or cable segments. 

It was important to solve the Segment Interconnect 
problem first, because it involved significant hardware 
design constraints if it was to work properly, and software 
is necessary for managing the system’s interconnection 
routes. The Buffered Interconnect, on the other hand, 
uses the ordinary Fastbus hardware protocols in the same 
way as any other Master or Slave device, but requires 
software standardization if a plethora of ad-hoc message 
formats is to be avoided. 

Network protocols for the Fastbus Serial Network also 
need standardization if that facility is to be widely 
useable. That system is now in a hardware prototyping 
stage, but protocols could be developed at any time, 
perhaps along with the Buffered Interconnect project. 

Interrupts in Fastbus are just write operations using the 
normal protocols, but the content of the data written 
needs to be standardized to avoid future problems. 
Standard formats are needed, e.g., for error-reporting 
interrupts or Host-information-request interrupts. 

The Fastbus Parameter Space, part of each device’s 
Control and Status Register space which is normally 
implemented in PROM, contains a variety of information 
fields useful for system management. It also has 
provision for future expansion using a file directory and 
memory allocation mechanism. Standards for the names 
and contents of certain files will be needed. For 
example, it would be useful if the file ‘FBPHELP’ (if 
present) always contained information useful for learning 
or remembering how to use the particular device. 

Acknowledgments 

The following persons have contributed significantly to 
the work of the Fastbus Software Working Group, through 
personal attendance or written communication: 

Bob Dobinson, Phil Ponting and E. M. Rimmer of CERN 

Jeff Appel, Al Brenner, Steve Cannon, Marvin Johnson, 
Terry Lagerlund, Ruth Pordes and Lou Taff of Fermilab 

Tom Christopher, Martha Evens, W. Kabat, Albert Teng, 
and Tunghwa Wang of the Illinois Institute of Technology 

Richard M. Brown, Bob Downing, Mike Haney, Dave Lesny, 
Keith Nater and Jerry Wray of the University of Illinois at 
Urbana (UIUC) 

Dwayne Ethridge and Dennis Perry of the Los Alamos 
National Laboratory 

Carl Akerlof of the University of Michigan 

John McAlpine of the University of Saskatchewan 

Steve Deiss, Dave Gustavson, Terry Holmes, Connie Logg 
and John Steffani of the Stanford Linear Accelerator 
Center 

Ken Dawson of TR IUM F 

1. 

2. 

3. 

4. 

5. 

References 

R. Pordes, ‘Standard Software Routines for Fastbus 
and their Implementation for a PDP-ll/RT-11 
System, Using the Unibus Processor Interface,’ paper 
presented at this symposium. 

Fastbus Specification, October 1982, U. S. NIM 
Committee, available from L. Costrell, Department of 
Commerce, National Bureau of Standards, 
Washington, DC 20234. 

R. S. Larsen, ‘Status of the Fastbus Standard Data 
Bus,’ IEEE Transactions on Nuclear Science, Vol. 
NS-28, No. 1, February 1981, pp. 322-329. 

L. Paffrath et aJ., ‘Fastbus Demonstration 
Systems,’ IEEE-Transactions on Nuclear Science, 
Vol. NS-29, No. 1, February 1982, pp. 90-93. 

5. R. Deiss and D. B. Gustavson, *Software for 
Managing Multicrate Fastbus Systems, l paper 

presented at this symposium. 

D. B. Gustavson, ‘Fastbus Status from a Svstem 
Designer’s Point of View,’ IEEE Transactions on 
Nuclear Science, Vol. NS-28, No. 5, October 1981, 
pp. 3796-3800. 

See also companion papers on Fastbus by R. Downing, H. 
Verweij and E. Siskind submitted for publication in this 
issue. 

-2- 


