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Abstract 

The FASTBUS System Manager software that was 
designed and implemented on an LSI-11 system using 
PASCAL is described. Particular attention is given 
to the file structures, file access mechanisms, and 
basic routing algorithms. Portability to other 
machines and languages is described. 

Introduction 

FASTBUS systems can involve multiple processors 
operating in parallel on interconnected segments.* 
FASTBUS architecture allows the efficient configura- 
tion and operation of such large parallel systems. 
However, powerful software is required to assist the 
experimenter in configuring, initializing, control- 
ling, and maintaining these systems. For example, 
modules that are programmed via downloading must be 
given the addresses of all those other modules that 
they talk to. But these addresses themselves change 
as the system evolves. Furthermore, each Segment 
Interconnect.has a table of address groups for each 
direction of transfer through it. These tables must 
be initialized-properly for the system to allow any 
coherent intersegment communication. 

The FASTBUS SYSTEM MANAGER is a software system 
written in transportable UCSD PASCAL 11.0 for the 
purpose of helping the 

systems.ly7 
experimenter manage large, 

complex It has a data base that 
describes the overall configuration and pertinent 
details about each module. It includes a data base 
editor with an English-like command language. It 
can generate route maps that allow all modules to 
talk to all others. With improvements it would be 
able to initialize the system’s SI’s and downloada- 
ble modules and provide configuration management 
tools for running experiments. 

Although this software has many ‘big system’ 
algorithms, it was designed with small systems in 
mind too. While its most likely home would be in a 
large mainframe such as a VAX the FASTBUS SYSTEM 
MANAGER was developed on and currently runs on an 
LSI-11 with a modest amount of memory and dual 8” 
floppy disks. The software would be a very good 
match for such a device as the SLAC FASTBUS 
CONTROLLER.” However, even in the very small envi- 
ronment of an LSI-11 enough code and data can be 
stored to support a system of several dozen FASTBUS 
crates. 

Management Tasks 

It was recognized early that there are many tasks 
involved in monitoring and controlling a FASTBUS 
system.2 

------________________ 

* Work supported by the Department of Energy, con- 
tract DE-AC03-76SF00515. 

SYSGEN 

There has to be a DATA BASE which describes all 
the segments and their contents. This data base 
could contain a minimum of information and a minimum 
of structure if one merely sought to turn the system 
on, let it run a few years, and then turn it off. 
However, since getting the system turned on and 
adjusted right consumes the bulk of the expenditure 
of human effort, it makes sense to include in the 
data base any information that would assist in the 
turn on process and in the maintenance process. 

Using this data, the routing algorithms described 
below can generate SI route maps and allocate 
address space in order to free the experimenter for 
other tasks. However, it is possible that the 
experimenter might desire to completely specify the 
routes and the BROADCAST TREE and assign address 
space by hand. Or, perhaps, there is only a need to 
specify these things manually in one critical part 
of the system. The programs that do the sysgen 
should be sophisticated enough to allow this direct 
specification. It would serve as a set of baseline 
constraints from which everything else could then be 
computed automatically. 

DEADSTART 

As the name implies, when a FASTBUS system or 
subsystem is deadstarted every module, SI, and seg- 
ment has to be set to a known initial state which is 
consistent across all components. Another way of 
saying this is that everywhere there is a bit of 
uncertainty in the system, that bit must be speci- 
fied at deadstart. Considering the number and vari- 
ety of modules in a large system it becomes a sub- 
stantial task just to organize the information 
needed to initialize each one while maintaining some 
common format that an automatic initializer can fol- 
low. 

For example, it is easily possible for a FASTBUS 
crate to contain 25 intelligent modules each of 
which has to be told what to do and how to do it. 
This introduces a related problem of software devel- 
opment cross products. If each of those 25 modules 
is a microprocessor, it is (understatement) a chal- 
lenge to think of a way that the software develop- 
ment process could be unified around a common set of 
cross products. However, even if one does not set 
their sights that high, it is still a challenge just 
to figure out a common format for all load modules 
and linkage information so that one program could 
load the 25 modules with the happy result that they 
can all talk to and understand each other. 

VERIFICATION 

In large systems during developmental stages, it 
would be very helpful if the software could interro- 
gate the system and verify that it matches the 
description in the data base. Often two installa- 
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tion teams might find themselves at cross purposes 
unless each can quickly find out how the other group 
left the system configured. Likewise shift changes 
during development can create havoc without a way of 
finding out the configuration. 

Even after the system is running it often helps 
if one has a way to tell if the replacement module 
plugged in yesterday is really the latest revision 
that it was thought to be. This is especially true 
if the modules are scattered over large distances 
that preclude a hands-on check. 

SYSTEM PAUSE 

If you have subsystems that require some kind of 
synchronization in time, it may be necessary to 
start and stop them in unison. Alternatively, a 
maintenance procedure might be required which 
involves a health hazard unless some part of the 
system is momentarily 'paused.' 

RECONFIGURATION 

In a very large system one might want the flexi- 
bility to move interchangeable components around 
without requiring a whole new sysgen. The problem 
here is the meaning of the term 'interchangeable.' 

For example, can a large memory card be plugged 
in in place of a failing small memory? Does any- 
thing in the data base have to be updated? Do any 
of the modules that talk to the memory have to have 
their algorilhms adjusted? And so on. Again these 
things are not the sort of problems one encounters 
in a running experiment, rather they crop up when 
the. experiment is being installed and brought on 
line. 

ERROR RECOVERY 

If a system has many intelligent modules, these 
might be capable of some self-test or of subsystem 
monitoring and testing. If one of these watchdog 
modules sees an error or a pending disaster, it 

might inform the system management software in 
expectation of some kind of intelligent diagnostic 
action. 

All extremes are imaginable, ranging from a 
report of a failing memory module detected by too 
many parity errors to a request that the system 
dynamically reroute itself around one particular 
segment that is suffering from a traffic overload. 

Then there is always the usual startup mainte- 
nance and running maintenance tasks that require 
test procedures to be run on system components. If 
nothing else, one might wish to log errors somewhere 
for adjustment of experimental results even when no 
automatic recovery can be performed. 

These are some of the major tasks one would hope 
to be anticipated in the design of an on-line 
FASTBUS management system. 

The FASTBUS SYSTEM MANAGER 

In 1980 the committment was made to develop a 
prototype of this kind of software system. The pur- 
pose of the prototype would be primarily to serve as 
an existence proof for some of the routing algor- 
ithms required by FASTBUS. However, secondary pur- 
poses included gaining experience with different 
ways of partitioning and structuring the data base 
required to serve all of the above tasks. 

PASCAL had been chosen as the unofficial 'publi- 
cation language' of the FASTBUS Software Working 
Group. That plus the availability of UCSD PASCAL 
for LSI-11's and familiarity with it made it a natu- 
ral choice for a pilot prototype. It had the added 
advantage of being a transportable system requiring 
minimal hardware support. Thus, it was thought that 
others might be able to transport the software to 
other environments for further prototype develop- 
ment. 

The FASTBUS SYSTEM MANAGER, or FSM, described 
herein was written during July through October of 
1980. It was subject of discussion at the 1980 NSS 
meeting in Orlando, FL.3 Based on that discussion 
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and other considerations a few new features were 
added and a live demonstration was given at SLAC in 
January of 1981.I This demonstration was further 
fine tuned and presented as part of a larger FASTBUZ 
demonstration at the,1981 NSS in San Francisco, CA. 

Figure 1 provides an overview of the entire FSM 
as it presently exists. The primary overlay pro- 
vides global procedures and common data structures 
for all the secondary overlays of which there are 
four. 

The data base EDITOR overlay provides a simple 
means of making changes to the data base that is TTY 
compatible. It can accept interactive commands or 
input can be directed to it from one or more files 
that were prepared with some other editor. Like- 
wise, its output can be sent to the terminal or it 
can be sent to a log file so that the user has a 
record of what has been done to the data base. 

The ROUTER overlay takes the latest data base 
information and 1) makes address space assignments, 
2) generates compacted route maps, 3) makes a broad- 
cast tree, and 4) generates several optional list- 
ings. 

The LOADER overlay performs a simulation of the 
deadstart process. At the time the code was written 
no SI hardware was available to make the actual 
device drivers needed to do a real system initiali- 
zation. Also additional work is needed to design a 
universal load module format. This is desirable so 
that one loader overlay or program can initialize 
any kind of device using a device independent repre- 
sentation of -the sequence of operations needed to 
load or otherwise initialize it. 

The fourth and final overlay is an optional 
site-specific utility overlay. At SLAC this overlay 
contains utilities for uploading and downloading 
files to and from WYLBLJR, for emulating a terminal 
on WYLBUR, and for making listings on a small local 
printer. 

Data Base 

Not counting listing files and editor input 
files, the data base logically consists of four 
major files: 1) The NETWORK file, 2) the NAME file, 
3) the ROUTE MAP file, and 4) the LINKAGE file. 

The network file, NET, contains all the system 
interconnection information and everything needed by 
the routing algorithms (Fig. 2). This file is a 
random file of fixed length records of 5 variant 
types. The directory variant contains global infor- 
mation telling which record describes the host seg- 
ment, which is for the broadcast source segment, 
where the first record is in the linked list of seg- 
ments, the head of a list of free records, and the 
head of a list of modules or SI's which exist, but 
have not been plugged in. The free variant is just 
a blank record containing a pointer to the next in 
that chain. The segment variant incudes: optional 
segment address and amount of address space 
required, pointer to first SI in the list of same on 
that segment, pointer to a list of modules for the 
segment, pointer to the next segment following this 
one. An SI variant in the NET file contains: the SI 
group field size, a type of transforming or non- 
transforming, arbitration vectors for both sides of 
the SI, segment slots for both sides, segment num- 
bers for both sides, next segment numbers for both 

sides (each side of the SI is in a list of SI's for 
the segment it is plugged into), pointers to the 
route map tables in the MAP file for the two sides 
of the SI, and a pointer to the next SI in the chain 
of SI's which all have the same size of group field. 
A module variant contains an optional address (rela- 
tive to the segment address) and address space 
allocation, a segment number, a slot, a pointer to 
the next module on that segment, and a code number 
for an initialization routine. 

All of the above variants contain a common area 
that holds a search heuristic. This consists of the 
first, middle, and last characters of the object's 
full name and the length of the name. When an 
object is referred to by name during editing, it is 
this template that is used to match against. Once a 
match is found the object's full name is retrieved 
from the NAME file to confirm the match. This was 
done so that little paging would be required for 
NAME file records which are large. More will be 
said about paging below. 

As can be seen the NET file contains multiple 
linked lists. The routing algorithms are linked 
list oriented, and a special list processing subsys- 
tem was written to provide uniform linked list pro- 
cessing, no matter what the list. The list process- 
ing functions are 1) get the head of the list, 2) 
get the next record in the list, 3) insert a record 
in the middle of a list, 4) remove a record from a 
list, and 5) find a record in a list. The list rou- 
tines all require the list type as a parameter in 
order to know where to look in the record for the 
list pointers. 

The NAHE file, NAM, contains for each object the 
information which is used infrequently or not at all 
during routing. This file is referenced most heav- 
ily by the EDITOR (Figure 3). As before, there is a 
directory variant and a free variant. The directory 
only contains pointers to the heads of lists of free 
records and used records. The free record is blank 
other than the chaining pointer. The rest of the 
records in the name file are of one variant that is 
used for segments, modules and SI's. This record 
variant contains: a chain pointer to the next, a 
pointer to the corresponding record for it in the 
NET file, a pointer to a diagnostic (unused), a 
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pointer to an initializer (unused), a pointer to an 
error recovery routine (unused), a 32 byte name 
string, and 4 12-character strings for manufactur- 
er's part number, serial number, inventory number, 
and requisition number. 

NAME FILE STRUCTURE 

The thinking behind the three unused pointers is 
that someday the data base could be extended to 
include additional files of initialization, diagnos- 
tic, and arror recovery procedures. The only 
assumption made about these files is that the infor- 
mation in them could be readily accessed with a 16 
bit pointer. For example if each of those files was 
organised as random with fixed length records, the 
pointer might tell where the desired record sequence 
starts. Much additional space is reserved in these 
records for future additions such as pointers to 
maintenance manuals, user notes, and other things 
not yet thought of. 

The ROUTE MAP file, MAP, contains condensed rep- 
resentations of all the route maps. In a large sys- 
tem the NET and NAM files quickly expand to many 
hundred K bytes of data. If the raw route maps were 
stored, they could waste a lot of space. Consider 
12 bit SI's. One hundred of them requires 200 X 
4096 X 3 bits at least. Clearly compaction is nec- 
essary. 

Maps are stored as a boolean array with one boo- 
lean for each segment in the system. For each seg- 
ment the boolean value tells whether or not that 
segment's addresses are passed through this SI. 
This way 100 SI's now requires 200 X N bits where N 
is the number of segments. This is roughly a 120 
fold space savings in a 100 segment system. The 
cost is that the system initializer has to expand 
these maps at load time using the LINKAGE informa- 
tion that tells where things were put in address 
space. 

Finally, the LINKAGE file is output by the router 
along with the route maps. This file tells the 
address space allocation for each segment, and 
within each segment, for the modules. This file is 
written to disk in a peculiar order that directly 
corresponds to the order in which system components 
would be initialized. The route maps are likewise 
ordered. As a result these two files can be read 

efficiently at initialization time in order to 
expedite a fast load of the system even with floppy 
disks. 

Data Structures 

At execution time several additional data struc- 
tures come into play. Space does not permit mention 
of all of them, but a couple of them stand out as 
unique and powerful. 

In this implementation the compromise took the 
form of a simulation of virtual memory built into 
the file access mechanisms for the NET file and the 
NAM file. Whenever a record from either of these 
files is accessed, the record number is first passed 
through a function which returns a revised number - 
not the record number in the file - but the number 
of the record in a HEAP resident cache array of 
records. In other words the funtion has deliberate 
and predictable side effects. The function scans 
the cache for the record. If not there, it looks 
for a free cache slot to put it into. If none, it 
pages out the oldest record in the cache using a LRU 
algorithm (assuming the oldest record is flagged as 
having been dirtied). Then the record being refer- 
enced is paged into that free cache slot, and the 
slot number is returned. The code making the refer- 
ence has to be written to indirectly reference file 
records through the cache array using record numbers 
that are converted by the cache management funtions. 
The other requirement is that the referencing code 
must flag the pages that it will dirty when it ref- 
erences them by using a negative record number. 

The result of this approach is to make record 
access expressions slightly more cumbersome to read 
while eliminating the need for the program code to 
optimize its disk accesses with some kind of buffer- 
ing. Without this simplification the code could 
never have been written in such a short time frame. 

ROUTER 

The task of the router is to find the shortest 
reversible unique route between every possible pair 
of segments. This is done so that every segment can 
send messages to every other and vice versa. When 
two routes are available that are of equal length, 
the router chooses the one which has the largest 
minimum size SI along the path, ie., the smallest 
window. The reason for using the smallest window is 
that when systems contain more than one size of SI, 
they naturally partition themselves into clumps 
which have to be allocated address space in quanta 
that correspond to the size of next smaller SI that 
forms the partition boundary. By always choosing 
the paths that avoid coarser (smaller) SI's where 
possible, one avoids address space fragmentation 
later. Further algorithm work remains to find a way 
to use the clump partitioning information in the 
allocation of address space. 

The route map generator overlay uses three square 
matrices allocated from the HEAP. The 3 matrices 
include a PATH matrix which shows at each row/column 
intersection which segment to go through first on 
the route connecting the segments represented by the 
row and the column. When initialized PATH shows 
which segments are directly connected by an SI. 
Path also shows what size the smallest SI is on the 
route. During each iteration the router spreads out 
one further level using the new segments that it 
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found after the last iteration. Each time it 
updates a NEWS matrix that tells it what new paths 
were found if any. It then checks a running total 
matrix, RTM, that tells it if any segments remain 
unconnected. The touting is successful when RTM is 
all filled in. There is a failure if an iteration 
results in no news and RTM still has blanks. 

The routing algorithm serves two more purposes. 
It can optionally generate a broadcast tree after 
the routes are generated. This is done by using a 
backtrack algorithm which works back from all seg- 
ments toward the broadcast source segment until 
either it is reached or some other segment already a 
part of the tree is crossed. 

The other purpose of the router is to assign 
address space to segments and to the modules within 
segments. This algorithm works for systems in which 
all SI's are the same size (all systems to date), 
but it needs refinement to work in the general case 
of systems with many SI sizes. The algorithm uses 
the same basic scheme to assign space for segments 
and for modules. The same subroutine is used for 
both. As the data base is scanned to initialize the 
data structures needed in routing, a temporary file 
is written out that has address space allocated for 
the modules within a segment. At the same time a 
dynamic array is built that contains 2 linked lists 
of segments: a list of those fixed at addresses by 
user request, and a list of segments free to move 
about. As soon as all the data has been read in the 
mobile segments are merged in with the fixed ones 
taking the largest mobile segments first. When this 
process is complete the temporary file is read back 
in and updated with the segment address space allo- 
cations. This new file is then written out as the 
linkage file. It is used later to expand route 
maps. It is the basis of the deadstart (LOADER) 
routines. It also is the source of the load map 
which is produced for both the user, and for use by 
any cross software development packages that need 
external references resolved. 

The load map tells for segments their base 
address and their high address. For modules it 
gives their logical address and their geographical 
address. For SI's the load map only specifies a 
geographical address for each side of the SI. 

The EDITOR 

The data base editor allows the user to perform 
several functions: create segments, modules, and 
SI'S, edit their descriptions later, delete them 
when necessary, plug modules and SI's in, and unplug 
them, specify a HOST segment and a BROADCAST source 
segment, make listings of selected data base items, 
and dump out data base contents in a ready made for- 
mat that can be used to recreate it later if some- 
thing goes wrong. 

The editor command parser is a simple state tran- 
sition system driven by the first 3 letters of com- 
mand keywords. A list of noise words is recognized 
and ignored. A list of ignorable characters is also 
dropped from the input. There is also a list of 
context words which are used as search heuristics. 
For example when the user says 'PRINT SEGMENT A', 
the system sets a context variable to indicate that 
the referent is a segment. When the data base is 
scanned for the information to print, only segments 
will be checked to save search time. Even then the 
previously mentioned heuristic is used to speed up 
the search further. 

The LOADER 

The loader is simplified because the MAP and 
LINKAGE files were previously written out in an 
order conducive to system initialization. That is, 
the route maps and module references are stored in 
exactly the order needed at load time. This order 
consists of a depth first algorithm starting from 
the HOST. 

When a segment is first encountered, it is reset. 
Then all of its modules are loaded using the ini- 
tialization code in the NET file. Then the loader 
loops through the SI's on the segment. For each it 
loads the outgoing map and looks at the far side 
segment to see if it has been initialized. If it 
has not and if the reverse map contains the HOST, 
the loader then recursively starts loading the far 
side segment. When the above test fails, the loader 
will continue to the next SI in the list on the seg- 
ment until all are finished. Then it can back up to 
the segment it was working on when it was sent on to 
this one. The recursive approach requires two 16 
bit words to be pushed down for each level of recur- 
sion. 

Current Work 

FNAL was supplied with copies of source code and 
documentation for assistance in applying FSM techni- 
ques to the CDF FASTBUS software. As a result rout- 
ing and address space allocation algorithms are 
being revised and the structure of the data base is 
being carefully examined.5 In this system it is 
proposed to integrate the System Management data 
base with the experimental data base in a unified 
system, perhaps using a commercial product. 

Summary 

The FASTBUS SYSTEM MANAGER software has been 
described up to its current state. While it only 
begins to tackle the larger tasks of system manage- 
ment, it has demonstrated that they fall within 
reach of even modest computational environments. 
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