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Abstract 

The architecture, adaptability and performance of 
SLAC's single board controller module will be 
detailed. Example uses with an 8086 MPU and with a 
68000 MPU will be given. Details of circuit design 
and software interface will be provided. 

Introduction 

In FASTBUS systems there are many tasks that 
could benefit from the availability of a single card 
microcomputer. All experiments involve a large ele- 
ment of slow-real-time equipment monitoring and con- 
trol tasks to be contrasted with high speed data 
acquisition. Such tasks are ideal for an MPU. A 
single card MPU has the added advantage of being 
totally self contained with no need for power or 
chassis mounting beyond that provided by the FASTBUS 
segment itself. 

At SLAC we have developed a working prototype of 
this kind of device called the SLAC FASTBUS 
CONTROLLER, or simply SFC (Fig. 1). The SFC is a 
'universal MPU controller' in the sense that it is 
designed to accept any IEEE 796 (MULTIBUS) MPU card 
into onboard Pl and P2 connectors.3 Therefore, any 
microprocessor which has a single card computer 
implementation on MULTIBUS can be plugged into the 
SFC to make a FASTBUS controller.2 This list 
includes Motorola's 68000, Intel's 8086, and Nation- 
al's 16032 as well as several 8 bit microprocessors. 
The SFC board provides all functions of a MULTIBUS 
motherboard. To the 796 BUS MPU the SFC interface 
logic responds as a standard IEEE 796 I/O slave (D16 
116 VO L). 

Fig. 1. SFC Wirewrap Prototype with 68000. 

* Work supported by the Department of Energy, con- 
tract DE-AC03-76SF00515. 

Furthermore, the 796 bus signals can be routed 
via the FASTBUS auxilliary connector to an adjacent 
FASTBUS slot in order to allow use of some of the 
many MULTIBUS peripheral controller cards. One must 
only ensure that maximum MULTIBUS length is not 
exceeded. 

FASTBUS Master Capability 

The SFC performs FASTBUS address or data cycles 
on command from the MPU. All defined FASTBUS oper- 
ating modes are supported. The MPU expresses its 
command as a read or write to MULTIBUS I/O space. 
256 bytes of I/O space are required for the SFC. 
The FASTBUS command is memory mapped within this 8 
bit space. That is, the 8 bit I/O address is 
decoded into AS, DS, MSO, and MSl. The MLJLTIBUS 
data bus simultaneously carries 8/16 bits of FASTBUS 
AD lines. Therefore, in two MLJLTIBUS cycles a 16 
bit MPU can completely read or write the 32 FASTBUS 
AD lines plus specify any type of FASTBUS address or 
data cycle to be performed. !!PU's like the 68000 
and the 16032 can move a 32 bit longword with one 
MPU instruction. Thus with one instruction the MPU 
can perform a complete 'primitive' cycle on the 
FASTBUS. 

The SFC does away with much of the software over- 
head usually associated with performing a FASTBUS 
cycle under MPU software control. MULTIBUS and 
FASTBUS are both asynchronous. Hence, it is natural 
for the MPU to wait for the FASTBUS AK or DK 
acknowledge signal to return.from the slave or 
ancilliary logic before it is given the MULTIBUS 
XACK* signal to terminate the MULTIBUS cycle. The 
MPU does not have to assert the strobe, move the 
data, and then read, test and branch to see if the 
operation was successful. This is done automati- 
cally by the SFC for the MPU. 

The MPU supplies the command and the data for the 
FASTBUS cycle. The SFC issues the strobes, waits 
for acknowledges, manages a timeout counter, checks 
for parity errors and non-zero slave SS response 
codes, etc. while the MPU waits for the XACK*. 
When the FASTBUS cycle finishes or times out the SFC 
sends back the XACK*. The XACK* is accompanied by a 
bus error (BERR) interrupt if anything unusual hap- 
pened that requires MPU intervention (parity error, 
SS non-zero, timeout). Such events are relatively 
rare. By handling their occurence with an interrupt 
instead of a status check after each operation, the 
MPU's FASTBUS utilization increases dramatically 
while the code efficiency in terms of FASTBUS opera- 
tions per byte of code also improves. 

As an example implementation, the SFC interface 
logic was tested using an early prototype of the SUN 
68000 from STANFORD University.5 This is an 8MHz 
MPU with 256K of parity RAM, 32K ROM, 2 level memory 
protection and address translation unit, serial I/O, 
parallel input port, 5 timers and the MULTIBUS 
interface. Each of its MULTIBUS cycles included 
about 300 ns of overhead for address translation and 
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MULTIBUS access plus 300 ns more of SFC address 
decoding and handshaking between MULTIBUS and 
FASTBUS plus slave response time (approx. 50ns). In 
this case the SUN MPU could do a FASTBUS address or 
data cycle in 2 us if using registers, or in 3-5 us 
if using on board RAM. In some modes data transfer 
burst rates approaching 1MHz are possible. 'However, 
5 us per 32 bit data transfer is a good number to 
use for comparisons which includes some time \for 
loop overhead, error recovery overhead, and operand 
effective address calculation. 

The SFC has begun undergoing tests with an INTEL 
iSBC 86/12A (8086) MPU board.4 Detailed timing can 
not be given as yet. However, the performance seems 
to be on the same order of magnitude as the SUN 
68000 processor board described above. There is 
some speed loss due to 8086 instruction set and reg- 
ister architecture. The 86/l'& will be combined 
with the SFC to provide a single -board backup com- 
puter for the liquid argon system in the MARK II 
detector at SLAC. The software development will 
include an implementation of the FASTBUS Standard 
Subro;tine Package for use by the application soft- 
ware. 

Following is a sample of the assembly coding that 
would be required for a 68000 to do the following: 
arbitrate, check for mastership, address cycle, 
read-modify-write, drop AS, drop GK. 

;LOAD BASE ADDRESS OF SFC 
M0VE.L t$lFOOOO,AO 

;SET ARB. REQ. BIT IN CTL. REG. 
BEG BSET 7,7(AO) 

;SEE IF BUS MINE IN MASTER STS. REG. 
CHEK-BTST 5,4(AO) 

;LOOP HERE UNTIL BUS MINE 
BEQ.S CHEK 

;ADDRESS SLOT $11 SLAVE 
M0VE.L #$ll,$EO(AO) 

;READ 1 WORD FROM DATA SPACE 
M0VE.L $FO(AO),DO 

;DOUBLE THE WORD 
ADD.L DO,DO 

;WRITE THE WORD BACK TO THE SLAVE 
M0VE.L DO,$FO(AO) 

;TAKE AS DOWN 
M0VE.B #$0,$40(AO) 

;TAKE GK DOWN 
END BCLR 7,7(AO) 

The I/O address to FASTBUS command map is given in 
detail elsewhere along with explanation of all con- 
trol and status register bits.l But as can be seen 
everything is done as an address displacement off of 
the SFC base address. In a real programming envi- 
ro%ent these address constants would be replaced by 
predefined mnemonic assembler constants. All of the 
above operations might be redefined as macros of one 
or two instructions. For example, the three 
instructions starting at 'BEG' might make a macro 
called 'GETBUS' while the last instruction at END 
might be a macro called 'DROPBUS'. If that were 
done, the above code would read as follows in macro- 
ese: 

START 
BEG GETBUS 

GEOADR $11 
READDATA DO 
ADD.L DO DO 
WRITEDATA DO 
ASDOWN 

END DROPBUS 

This entire BEG..END sequence takes place in 
approximately 19 us as long as no BERR interrupts 
occur (Fig. 2). The status register used for error 
recovery is arranged for a mask-shift-indexed branch 
through a table of error routine entry points. 
Thus, recovery should be quick and table management 
overhead should be low. 

2,dDIV 

Fig. 2. Random Read-Modify-Write with Arbitration. 

The SFC has arbitration inhibit logic which can 
be activated with a jumper. It also has a special 
'SCRAM' option which if set causes the SFC to drop 
GK and AS/AK lock in the event of any error condi- 
tion. This was done so that one would have a simple 
failsafe mechanism that ensures that the SFC can not 
tie up a segment in some loop involving an error. 
In addition to the previously mentioned BERR inter- 
rupt there is a general interrupt (GINTR) which is 
the *or* of incoming SR, taking mastership, and 
being selected as a slave. All three interrupt 
sources are enabled as one with one control bit. 

It has been seen how one can move 32 bits of 
FASTBUS AD lines plus specify a FASTBUS command with 
one MPU instruction. This results in at least two 
MULTIBUS cycles not counting those for fetching of 
the instruction and the fetching or storing of the 
data. The above mode is called the interlocked 
CYCLE mode. The SFC issues the FASTBUS strobes 
after all outgoing write data has been received from 
MULTIBUS or, alternatively, on the first MULTIBUS 
cycle involving a FASTBUS read. It will also work 
with 8 bit MPUs that only move a byte at a time. It 
just takes twice as many MULTIBUS cycles in that 
case. The SFC can be jumpered to expect either 
LSB's first or MSB's first in back-to-back cycles 
that move a 32 bit longword. Thus, it will work 
with either a 68000 or a 16032 type word order.6 

There is also a COMMAND mode in which no data is 
moved on the MULTIBUS data lines. The I/O address 
bits contain the command as usual, but there is no 
new data. This feature can be used to clear AS or 
to take DS down at the end of a block transfer with 
an odd number of words. Or it can be used to write 
a repeated data word. One loads the AD register 
with a word, and then issue DS write commands. That 
way there is no need to move 32 bits over MULTIBUS 
for each FASTBUS data cycle. In this mode the MPU 
still waits for the AK/DK response from the bus. 
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Finally, there is an OVERLAPPED command mode sim- 
ilar to COMMAND mode except that the SFC DOES NOT 
wait for the slave's acknowledge before sending the 
KACK* back to the MPU. This allows pipelining 
between the MPU and the SFC . The next word in a 
block can be fetched while the last is being moved 
on FASTBUS. Or,, something useful could be done 
while waiting for a slow module or while waiting for 
an address connection involving multiple segments 
and SI's. For diagnostics one could do an overlap- 
ped command as master involving the SFC itself as 
the slave. Then one has control over slave SS 
response as well as slave response latency. 

FASTBUS Slave Capability 

The SFC defines its slave characteristics through 
software emulation. Once selected it enters a soft- 
ware state machine loop: 1) wait for command ready, 
2) read command bits (RD, MS), 3) mask-shift-indexed 
branch to the appropriate command handler, 4) make 
DK, SS response, and 5) go back to step 1 until de- 
selected. 

The SFC hardware provides support for address 
recognition, but after that the slave is under soft- 
ware control. The SFC will respond to geographic 
addressing, general broadcasts, pattern selects, 
sparse data scan, SR scan, and logical addressing. 
Wait is generated automatically upon detection of a 
logical address within range. The slave software 
must further examine the IA to make sure it is valid 
and then make a pseudo DK response to set the SS 
code, drop WT, and let the AK go on. The IA can be 
8,13,18,23,28, or 32 bits wide. After being 
selected the SFC generates WT on DS up (MSO=O) or 
DSt (MSO=l).- Also it toggles DK correctly during 
block transfers so that the slave software does not 
have to monitor DK. Thus, all the slave has to do 
is issue the proper SS response, update its internal 
state, and supply read data, if any. 

During broadcasts WI is generated for DS, but the 
software DK command does not result in a DK. It 
only clears the WT and optionally sets SS. There is 
an AUTOMATIC SLAVE option which if set inhibits nor- 
mal WT generation and produces DK automatically. 
This is useful for self diagnostics and .for stand 
alone demonstrations. 

The slave only responds with interlocked CYCLES 
or with a COMMAND. There are no OVERLAPPED slave 
commands. There can be no BERR during a slave 
response. In defining the slave device to be emu- 
lated the user does have to consider that some CSR's 
in FASTBUS control space require hardware supports 
not provided by the SFC thus making them impractical 
to simulate. 

FASTBUS Host Capability 

With the SFC the programmer can assert GK and RB 
in order to preempt a segment and take it over as a 
HOST. The only CSR's supported in hardware are the 
logical address register and the arbitration level 
register, and both of these can be accessed and 
loaded by the SFC. 

Therefore, if it were desirable from a systems 
point of view, one could use an SFC together with a 
powerful 16 bit MPU as the FASTBUS HOST. This pro- 
cessor would have responsibility for maintaining the 
data base used in managing a multi-segment system as 
well as for initialization and diagnostics.7 By 

splitting out the HOST function from the main data 
aquisition computer one can arrange a minimal backup 
that assures equipment integrity during downtime. 

Self Diagnostic Capability 

The SFC can address itself geographically, logic- 
ally, or in a broadcast. The automatic WT genera- 
tion controls are turned off in all these cases 
except for logical addressing. Thus the software 
can test all of the master handshake logic, the 
slave handshake logic, all address recognition 
logic, wait generation logic, and timeout counter 
operation. Typically the diagnostic software would 
put the SFC in auto-slave mode and then perform read 
and write CYCLE's to itself. To test WT generation 
the software would logically address itself and use 
OVERLAPPED commands so as not to hang up when WT is 
asserted. The same approach works for testing 
proper operation of the timeout counter. 

Logic Design 

The SFC uses an entirely asynchronous design to 
translate MULTIBUS handshakes into FASTBUS and back. 
The interface hardware is about l/3 TTL and 213 ECL 
or level translators. The bulk of the logic is con- 
tained in PAL devices programmed with a high level 
PAL equation assembler. The balance of the logic 
consists of registers, drivers, and receivers, with 
a small amount of random logic for arbitration and 
signal conditioning. 

Future Plans 

A PC version of the SFC is in preparation. Every 
effort willbe made to produce a single width mod- 
ule. This presents some problems due to the width 
of the MULTIBUS connector. Customized female Pl and 
P2 connectors will have to be made a part of the PC 
implementation. 

Another feature of the PC version will be a small 
wire wrap area on board where the user will be able 
to kludge in small amounts of customization logic. 
One of the first uses for this area will likely be 
to add a high speed sequencer for the SFC. Detailed 
timing analysis shows that if driven from a high 
speed RAM instead of through MULTIBUS with all the 
attendant address decoding and handshaking, the SFC 
may be capable of a speed/throughput increase of 
nearly an order of magnitude for such sequences. 
The PC version will have a local 32 bit TTL bus plus 
jumper posts to wrap to in order to simplify adding 
such a sequencer later. 
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