
SLAC-PUB-2994
October 1982
04

A FASTBUS CONTROLLER MODULE USING A MULTIBUS MPU*

S. R. Deiss
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

Abstract

The architecture, adaptability and performance of
SLAC's single board controller module will be
detailed. Example uses with an 8086 MPU and with a
68000 MPU will be given. Details of circuit design
and software interface will be provided.

Introduction

In FASTBUS systems there are many tasks that
could benefit from the availability of a single card
microcomputer. All experiments involve a large ele-
ment of slow-real-time equipment monitoring and con-
trol tasks to be contrasted with high speed data
acquisition. Such tasks are ideal for an MPU. A
single card MPU has the added advantage of being
totally self contained with no need for power or
chassis mounting beyond that provided by the FASTBUS
segment itself.

At SLAC we have developed a working prototype of
this kind of device called the SLAC FASTBUS
CONTROLLER, or simply SFC (Fig. 1). The SFC is a
'universal MPU controller' in the sense that it is
designed to accept any IEEE 796 (MULTIBUS) MPU card
into onboard Pl and P2 connectors.3 Therefore, any
microprocessor which has a single card computer
implementation on MULTIBUS can be plugged into the
SFC to make a FASTBUS controller.2 This list
includes Motorola's 68000, Intel's 8086, and Nation-
al's 16032 as well as several 8 bit microprocessors.
The SFC board provides all functions of a MULTIBUS
motherboard. To the 796 BUS MPU the SFC interface
logic responds as a standard IEEE 796 I/O slave (D16
116 VO L).

Fig. 1. SFC Wirewrap Prototype with 68000.

* Work supported by the Department of Energy, con-
tract DE-AC03-76SF00515.

Furthermore, the 796 bus signals can be routed
via the FASTBUS auxilliary connector to an adjacent
FASTBUS slot in order to allow use of some of the
many MULTIBUS peripheral controller cards. One must
only ensure that maximum MULTIBUS length is not
exceeded.

FASTBUS Master Capability

The SFC performs FASTBUS address or data cycles
on command from the MPU. All defined FASTBUS oper-
ating modes are supported. The MPU expresses its
command as a read or write to MULTIBUS I/O space.
256 bytes of I/O space are required for the SFC.
The FASTBUS command is memory mapped within this 8
bit space. That is, the 8 bit I/O address is
decoded into AS, DS, MSO, and MSl. The MLJLTIBUS
data bus simultaneously carries 8/16 bits of FASTBUS
AD lines. Therefore, in two MLJLTIBUS cycles a 16
bit MPU can completely read or write the 32 FASTBUS
AD lines plus specify any type of FASTBUS address or
data cycle to be performed. !!PU's like the 68000
and the 16032 can move a 32 bit longword with one
MPU instruction. Thus with one instruction the MPU
can perform a complete 'primitive' cycle on the
FASTBUS.

The SFC does away with much of the software over-
head usually associated with performing a FASTBUS
cycle under MPU software control. MULTIBUS and
FASTBUS are both asynchronous. Hence, it is natural
for the MPU to wait for the FASTBUS AK or DK
acknowledge signal to return.from the slave or
ancilliary logic before it is given the MULTIBUS
XACK* signal to terminate the MULTIBUS cycle. The
MPU does not have to assert the strobe, move the
data, and then read, test and branch to see if the
operation was successful. This is done automati-
cally by the SFC for the MPU.

The MPU supplies the command and the data for the
FASTBUS cycle. The SFC issues the strobes, waits
for acknowledges, manages a timeout counter, checks
for parity errors and non-zero slave SS response
codes, etc. while the MPU waits for the XACK*.
When the FASTBUS cycle finishes or times out the SFC
sends back the XACK*. The XACK* is accompanied by a
bus error (BERR) interrupt if anything unusual hap-
pened that requires MPU intervention (parity error,
SS non-zero, timeout). Such events are relatively
rare. By handling their occurence with an interrupt
instead of a status check after each operation, the
MPU's FASTBUS utilization increases dramatically
while the code efficiency in terms of FASTBUS opera-
tions per byte of code also improves.

As an example implementation, the SFC interface
logic was tested using an early prototype of the SUN
68000 from STANFORD University.5 This is an 8MHz
MPU with 256K of parity RAM, 32K ROM, 2 level memory
protection and address translation unit, serial I/O,
parallel input port, 5 timers and the MULTIBUS
interface. Each of its MULTIBUS cycles included
about 300 ns of overhead for address translation and

(Presented at the Nuclear Science Symposium, Washington, D.C., October 20-22, 1982.)

MULTIBUS access plus 300 ns more of SFC address
decoding and handshaking between MULTIBUS and
FASTBUS plus slave response time (approx. 50ns). In
this case the SUN MPU could do a FASTBUS address or
data cycle in 2 us if using registers, or in 3-5 us
if using on board RAM. In some modes data transfer
burst rates approaching 1MHz are possible. 'However,
5 us per 32 bit data transfer is a good number to
use for comparisons which includes some time \for
loop overhead, error recovery overhead, and operand
effective address calculation.

The SFC has begun undergoing tests with an INTEL
iSBC 86/12A (8086) MPU board.4 Detailed timing can
not be given as yet. However, the performance seems
to be on the same order of magnitude as the SUN
68000 processor board described above. There is
some speed loss due to 8086 instruction set and reg-
ister architecture. The 86/l'& will be combined
with the SFC to provide a single -board backup com-
puter for the liquid argon system in the MARK II
detector at SLAC. The software development will
include an implementation of the FASTBUS Standard
Subro;tine Package for use by the application soft-
ware.

Following is a sample of the assembly coding that
would be required for a 68000 to do the following:
arbitrate, check for mastership, address cycle,
read-modify-write, drop AS, drop GK.

;LOAD BASE ADDRESS OF SFC
M0VE.L t$lFOOOO,AO

;SET ARB. REQ. BIT IN CTL. REG.
BEG BSET 7,7(AO)

;SEE IF BUS MINE IN MASTER STS. REG.
CHEK-BTST 5,4(AO)

;LOOP HERE UNTIL BUS MINE
BEQ.S CHEK

;ADDRESS SLOT $11 SLAVE
M0VE.L #$ll,$EO(AO)

;READ 1 WORD FROM DATA SPACE
M0VE.L $FO(AO),DO

;DOUBLE THE WORD
ADD.L DO,DO

;WRITE THE WORD BACK TO THE SLAVE
M0VE.L DO,$FO(AO)

;TAKE AS DOWN
M0VE.B #$0,$40(AO)

;TAKE GK DOWN
END BCLR 7,7(AO)

The I/O address to FASTBUS command map is given in
detail elsewhere along with explanation of all con-
trol and status register bits.l But as can be seen
everything is done as an address displacement off of
the SFC base address. In a real programming envi-
ro%ent these address constants would be replaced by
predefined mnemonic assembler constants. All of the
above operations might be redefined as macros of one
or two instructions. For example, the three
instructions starting at 'BEG' might make a macro
called 'GETBUS' while the last instruction at END
might be a macro called 'DROPBUS'. If that were
done, the above code would read as follows in macro-
ese:

START
BEG GETBUS

GEOADR $11
READDATA DO
ADD.L DO DO
WRITEDATA DO
ASDOWN

END DROPBUS

This entire BEG..END sequence takes place in
approximately 19 us as long as no BERR interrupts
occur (Fig. 2). The status register used for error
recovery is arranged for a mask-shift-indexed branch
through a table of error routine entry points.
Thus, recovery should be quick and table management
overhead should be low.

2,dDIV

Fig. 2. Random Read-Modify-Write with Arbitration.

The SFC has arbitration inhibit logic which can
be activated with a jumper. It also has a special
'SCRAM' option which if set causes the SFC to drop
GK and AS/AK lock in the event of any error condi-
tion. This was done so that one would have a simple
failsafe mechanism that ensures that the SFC can not
tie up a segment in some loop involving an error.
In addition to the previously mentioned BERR inter-
rupt there is a general interrupt (GINTR) which is
the *or* of incoming SR, taking mastership, and
being selected as a slave. All three interrupt
sources are enabled as one with one control bit.

It has been seen how one can move 32 bits of
FASTBUS AD lines plus specify a FASTBUS command with
one MPU instruction. This results in at least two
MULTIBUS cycles not counting those for fetching of
the instruction and the fetching or storing of the
data. The above mode is called the interlocked
CYCLE mode. The SFC issues the FASTBUS strobes
after all outgoing write data has been received from
MULTIBUS or, alternatively, on the first MULTIBUS
cycle involving a FASTBUS read. It will also work
with 8 bit MPUs that only move a byte at a time. It
just takes twice as many MULTIBUS cycles in that
case. The SFC can be jumpered to expect either
LSB's first or MSB's first in back-to-back cycles
that move a 32 bit longword. Thus, it will work
with either a 68000 or a 16032 type word order.6

There is also a COMMAND mode in which no data is
moved on the MULTIBUS data lines. The I/O address
bits contain the command as usual, but there is no
new data. This feature can be used to clear AS or
to take DS down at the end of a block transfer with
an odd number of words. Or it can be used to write
a repeated data word. One loads the AD register
with a word, and then issue DS write commands. That
way there is no need to move 32 bits over MULTIBUS
for each FASTBUS data cycle. In this mode the MPU
still waits for the AK/DK response from the bus.

-2-

Finally, there is an OVERLAPPED command mode sim-
ilar to COMMAND mode except that the SFC DOES NOT
wait for the slave's acknowledge before sending the
KACK* back to the MPU. This allows pipelining
between the MPU and the SFC . The next word in a
block can be fetched while the last is being moved
on FASTBUS. Or,, something useful could be done
while waiting for a slow module or while waiting for
an address connection involving multiple segments
and SI's. For diagnostics one could do an overlap-
ped command as master involving the SFC itself as
the slave. Then one has control over slave SS
response as well as slave response latency.

FASTBUS Slave Capability

The SFC defines its slave characteristics through
software emulation. Once selected it enters a soft-
ware state machine loop: 1) wait for command ready,
2) read command bits (RD, MS), 3) mask-shift-indexed
branch to the appropriate command handler, 4) make
DK, SS response, and 5) go back to step 1 until de-
selected.

The SFC hardware provides support for address
recognition, but after that the slave is under soft-
ware control. The SFC will respond to geographic
addressing, general broadcasts, pattern selects,
sparse data scan, SR scan, and logical addressing.
Wait is generated automatically upon detection of a
logical address within range. The slave software
must further examine the IA to make sure it is valid
and then make a pseudo DK response to set the SS
code, drop WT, and let the AK go on. The IA can be
8,13,18,23,28, or 32 bits wide. After being
selected the SFC generates WT on DS up (MSO=O) or
DSt (MSO=l).- Also it toggles DK correctly during
block transfers so that the slave software does not
have to monitor DK. Thus, all the slave has to do
is issue the proper SS response, update its internal
state, and supply read data, if any.

During broadcasts WI is generated for DS, but the
software DK command does not result in a DK. It
only clears the WT and optionally sets SS. There is
an AUTOMATIC SLAVE option which if set inhibits nor-
mal WT generation and produces DK automatically.
This is useful for self diagnostics and .for stand
alone demonstrations.

The slave only responds with interlocked CYCLES
or with a COMMAND. There are no OVERLAPPED slave
commands. There can be no BERR during a slave
response. In defining the slave device to be emu-
lated the user does have to consider that some CSR's
in FASTBUS control space require hardware supports
not provided by the SFC thus making them impractical
to simulate.

FASTBUS Host Capability

With the SFC the programmer can assert GK and RB
in order to preempt a segment and take it over as a
HOST. The only CSR's supported in hardware are the
logical address register and the arbitration level
register, and both of these can be accessed and
loaded by the SFC.

Therefore, if it were desirable from a systems
point of view, one could use an SFC together with a
powerful 16 bit MPU as the FASTBUS HOST. This pro-
cessor would have responsibility for maintaining the
data base used in managing a multi-segment system as
well as for initialization and diagnostics.7 By

splitting out the HOST function from the main data
aquisition computer one can arrange a minimal backup
that assures equipment integrity during downtime.

Self Diagnostic Capability

The SFC can address itself geographically, logic-
ally, or in a broadcast. The automatic WT genera-
tion controls are turned off in all these cases
except for logical addressing. Thus the software
can test all of the master handshake logic, the
slave handshake logic, all address recognition
logic, wait generation logic, and timeout counter
operation. Typically the diagnostic software would
put the SFC in auto-slave mode and then perform read
and write CYCLE's to itself. To test WT generation
the software would logically address itself and use
OVERLAPPED commands so as not to hang up when WT is
asserted. The same approach works for testing
proper operation of the timeout counter.

Logic Design

The SFC uses an entirely asynchronous design to
translate MULTIBUS handshakes into FASTBUS and back.
The interface hardware is about l/3 TTL and 213 ECL
or level translators. The bulk of the logic is con-
tained in PAL devices programmed with a high level
PAL equation assembler. The balance of the logic
consists of registers, drivers, and receivers, with
a small amount of random logic for arbitration and
signal conditioning.

Future Plans

A PC version of the SFC is in preparation. Every
effort willbe made to produce a single width mod-
ule. This presents some problems due to the width
of the MULTIBUS connector. Customized female Pl and
P2 connectors will have to be made a part of the PC
implementation.

Another feature of the PC version will be a small
wire wrap area on board where the user will be able
to kludge in small amounts of customization logic.
One of the first uses for this area will likely be
to add a high speed sequencer for the SFC. Detailed
timing analysis shows that if driven from a high
speed RAM instead of through MULTIBUS with all the
attendant address decoding and handshaking, the SFC
may be capable of a speed/throughput increase of
nearly an order of magnitude for such sequences.
The PC version will have a local 32 bit TTL bus plus
jumper posts to wrap to in order to simplify adding
such a sequencer later.

Acknowledgements

The author wishes to thank B. Bertolucci, D. GUS-
tavson, R. Larsen, and H. Walz for assistance in
interpreting the FASTBUS specification.

References

1. 'SLAC FASTBUS Controller - Summary Spec',
S. Deiss, SLAC, S/5/02.

2. 'FASTBUSTentative Specification', U.S.
NIM Committee, 617182.

-3-

I

3. 'Proposed Microcomputer System Bus Standard
(P796 Bus)', IEEE Computer Society, October 1980
with December 1980 errata.

4. 'ISBC 86/12A Single Board Computer Hardware
Reference Manual', INTEL, 1979.

5. 'The SUN Workstation', Bechtolsheim and Bask-
ett, Stanford U., C.S. Dept., 4/30/81.

6. 'DB16000 Development Board User's Manual',
National Semiconductor, 1982.

7. 'Software for Managing Multicrate Fastbus
Systems', Deiss and Gustavson, SLAC, NSS, 1982.

'Standard Routines for FASTBUS',
SofF;are Working Group, NSS, 1982.

FASTBUS

