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ABSTRACT 

Starting from the correlation functions of a particular lattice 

theory a sequence of theories is defined in a consequent way. The 

determination of the sequence of parameters is based on a certain set of 

functions which has to exhibit an attractive fixed point and further 

specific properties. Possible functional dependences are studied with 

respect to the requirements found. It turns out that there is one stan- 

dard dependence which is necessary to allow the prescription of physical 

values at different scales. Then the consequences of this dependence 

are investigated. The surprising result is that the features related to 

renormalization such as running coupling constant, A parameter, renormal- 

ization group equations and properties of S and y functions follow in a 

remarkably transparent and detailed way. Examples are discussed in the 

light of these developments and a remark on the nature of the limit is 

made. 
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1. INTRODUCTION 

The nonperturbative treatment of quantum gauge theories is essential 

for a number of well known physical questions. To realize it, so far the 

only promising way is to use the lattice formu1ation.l This formulation 

provides a particular regularization of quantum field theory which has 

the unique feature not to rely on any perturbation expansion. 

The general requirements for a nonperturbative formulation of renor- 

malization are known. The parameters of the theory must become functions 

of the ultraviolet cutoff in such a way that physical quantities get 

finite limits. To be able to achieve this one needs a suitable critical 

point of the underlying lattice theory. In the analysis of the Monte 

Carlo data of gauge theories the quantity commonly used to fix the scheme 

is the string tension. 2 Recently Creutz3 introduced the interesting 

alternative of considering certain ratios of functions at a finite length 

scale. The ideas involved in this work suggest to start a systematic 

study of the subject. To do this is the aim of the present paper. 

In the present first step it appears appropriate to consider the set 

of correlation functions to be given, as is the situation in the analysis 

of the Monte Carlo data. The systematic investigation then should not 

only provide a better basis for the analysis of such data but also 

faciliatate the task of finding properties of correlation functions ana- 

lytically, allowing to concentrate more precisely on what is actually 

needed. This is important, apart from the limitation of numerical studies 

by the available lattice sizes, because in general one wants to get 

analytical answers to fundamental questions. 

Mathematically a prerequisite of any limit is the definition of a 

sequence. This here means to specify a sequence of theories solely by 
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using the given set of lattice correlation functions, which is well 

defined in the action formulation of a particular theory. The introduction 

of this sequence is the topic of Sec. II. 

A central problem is the determination of the dependence of the 

parameters on the numbering of the sequence, It is based on the prescrip- 

tion of the value of a physical quantity as limit of a sequence of functions 

which must be possible in a consistent way. The requirements for the 

prescription as well as for the used set of functions are investigated 

in Sec. III. 

The next step is to study possible functional dependences which can 

meet the requirements found. In Sec. IV this is done and leads to one 

standard dependence which is acceptable. 

Given the standard dependence the consequences for physical quantities, 

l.e., for features as running coupling constant, A parameter and B function 

are of interest. This is worked out in Sec. V. 

In Sec. VI, then, the properties of correlation functions are 

investigated on the basis of the standard dependence. Renormalized func- 

tions are introduced, the renormalization group equations derived and the 

structure of the occurring quantities is studied. 

Current examples of physical quantities are discussed in the light 

of the obtained results in Sec. VII, and remarks, in particular on the 

nature of the limit, are made. 

II. SEQUENCE OF THEORIES 

The correlation functions of a lattice theory do not really involve 

a length. The factors corresponding to canonical dimensions of fields 

can readily be scaled out. Then the functions have the form I' (nl,...,ns; 
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81' . . ..g r; N 1 ,...,Nd). The integers no are variables characteristic of 

the particular function. They are allowed here not only to specify dis- 

tances between points but also, for example, the two extensions of a 

rectangular loop, The g 
P 

are the parameters of the theory, thus standing 

for bare couplings and bare masses, The finite lattice size is described 

by the integers Ng. 

The limit ultimately needs to let Ng -f a, as well as no -f a, For 

the present purpose it appears appropriate to perform the (less problematic) 

limit N 6 + ~0 first, holding the no and the g fixed. Then the set of 
P 

functions of form T(n, g) remains to be considered, where n stands for all 

components no and g for all g O 
P 

To describe the limit no + ~0 a sequence 

of theories numbered by v = 1, 2, . . . . is introduced letting n and g depend 

on v, such that one has sets of functions of form T(n(v), g(v)). 

The connection to physical length variables can be established by a 

mapping n + x which relates the underlying length unit b to a change of 

no by v), thus generating finer subdivisions for higher v. This means that 

x = a(v) n(v) where 

a(v) = + (2.1) 

and n(v) = v n(1). Conversely, the simplest definition of the mapping 

x -+ n(v) then is 

n(v) = int ( > Y (2.2) 

where for real 01 the function int(a) equals the largest integer which 

does not exceed c(, and in (2.2) this is meant for the components. 

In (2.2) for integer xo/b one has again n(v) = v n(1) where 

n(1) = x/b. For rational xo/b this holds for a suitable subset of v. 

In any case one has 
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n(v) + v t for v,-t- . (2.3) 

Therefore in the following the presentation can be simplified by using 

n(v) = v n(1) , n(1) = t (204) 

throughout, tacitly understanding this in the indicated sense. 

III. PARAMETER DETERMINATION 

To determine the dependence of g on v, which is studied here for one 

component g, a physical quantity is required to have a prescribed limit. 

To get the sequence related to such a quantity, a suitable family of 

functions P(v,g) is constructed or extracted from the functions of form 

T(n(v),g) where now arbitrary values of g are considered. The condition 

P(v&>) -f pg for V)-f-= (3.1) 

then leads to the subset g(v) of the values of g. 

To find necessary properties of the family P(v,g) one has to note 

that according to the construction v is multiplied by x. Thus, to preserve 

the dependence on x in the limit, the dependence on g must be such that it 

can combine with v to give a finite factor. This means that a value g = g6 

has to exist giving independently of v 

gl$; P(v,g> = C , 
B 

(3.2) 

I.e., that the family P(v,g) must have a fixed point. A simple example 

is shown in Fig. 1. 

The easiest way to realize (3.1) is to require equality, 

P(v,gb)) = P6 , (3.3) 



-6- 

which corresponds to what is usually imposed in conventional continuum 

approaches. From (3.3) and the given family P-(v,g), the values g(v) 

follow immediately, 

A look at Fig. 1 now shows that to have steeper curves for larger v 

is necessary in order that 

g(v) + g 
d 

for v + 03 . (3.4) 

This also holds if the slope of the functions is negative. Thus, in order 

that the fixed point can be attractive, one has the condition 

I 
(3.5) 

for g approaching g 
d' 

If the family P(v,g) behaves suitably (as, e.g., in the example of 

Fig. 1) the limit (3.4) can be from g(v) > g zi or from g(v) < gzi. The 

considerations here apply to each of these cases separately. 

If x is scaled by X one gets P(Xv,g) instead of P(v,g), the limit of 

which still must be a physical quantity. One then has 

+,g(v)) + Q(X) for V+,= (3.6) 

with g(v) as determined before and with Q(1) E P 
Ir 

according to (3.1). 

The sequences occurring in (3tih) are illustrated in Fig. 2. The generali- 

zation from integer A to rational ones by restricting to an appropriate 

subset of v is straightforward. Thus finally one can approach any positive 

real value of X. In the following the use of A is tacitly understood in 

this sense. 

The curves drawn in Fig. 2 for various A, so far to guide the eye, 

can be substantiated. Polynomial interpolation gives for any finite 

number of points a unique polynomial, i.e., in the limit a unique, 

infinitely differentiable function. Thus one arrives at smooth curves 

for all X given by 
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P = T(a,h) , g = Y(a,A> . (3.7) 

This allows one to view the procedure in the alternative way, that for 

X = 1 a curve (3.7) is prescribed which satisfies the condition 

r(a,U + Q(h) , y(a,O -+ g 
5 

for a+a 
d 

(3.8) 

and then curves (3.7) for X # 1 are determined in the indicated manner, 

which, under suitable conditions, should have the property (3.8). Then 

(3.3) corresponds to the rather special choice n(a,l) = const, a behavior 

which in general does not persist for A # 1. It is, however, obvious now 

how one can start equally well from a more general curve. Actually only 

an equivalence class of curves satisfying (3.8) enters. 

It is seen that in (3.7) the choice v(a,g) = const is not possible 

because it does not allow the prescription of Q according to (3.8). This 

reflects that the v dependence of g is necessary. 

Consistency requires that one can start from any value X in (3.7) 

getting the same result, i.e., that one can prescribe any curve as the 

one on the basis of which the other ones are obtained. In order that 

this is possible, specific properties of the family P(v,g> in addition to 

those already mentioned are needed. This can be seen by analyzing the 

construction in Fig. 2. As illustrated in Fig. 3, depending on the 

distances, focusing and defocusing of the curves (3.7) for X z 1 can 

occur. Apart from giving reasonable results this can lead to two extreme 

cases. One of these is that n(a,X) + Q(1) for a + a 
d 

independently of X. 

The other one is that r(a,X) tends to the same maximal value for all 

X > 0 and to the same minimal one for all A < 0. Both of these extreme 

cases are not acceptable because they do not allow consistency~ of pre- 

scriptions at different scales. 
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IV. POSSIBLE FUNCTIONAL DEPENDENCES 

The first dependence to be studied with respect to the conditions 

found in Sec. III is 

P(v,d = F(vfk)) (4.1) 

where f has the property 

f(g) -f 0 for g-+g 
d l 

(4.2) 

The approach in (4.2) can be from above or from below, depending on the 

particular function f. In addition it is required that functions h and H, 

with 

h(W) = g (4.3) 

and 

H(Fh)) = u , (4.4) 

respectively, exist. 

It is seen that (3.2) is satisfied with C = :L F(u), and (3.5) 

according to 

jaP(,&“‘/ = IF’(vf(g))f’(g)lv , (4.5) 

where F' and f', because of the existence of H and h, do not vanish. 

Imposing (3.3) for an arbitrary scale X0, from (4.1) and (4.4) one 

obtains 

v+(v)) = H(Q(x~)) (4.6) 

which is finite for g # g 
B 

since f is monotone. Using (4.3) one then 

gets 

g(v) = h( H'Q~o')) (4.7) 

for which, because of h(f) + g 
B 

for f + 0, in fact (3.4) holds; From 

(3.6), (4.1) and (4.6) it follows for the physical quantity at scale A 

that 
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H(Q(Ao))) . (4.8) 

By (4.4) this leads to 

~(~01) H(Q(X~9 = 
x IO 

, (4.9) 

i.e., to a constant ratio. Therefore, (4.8) d oes not depend on A0 and 

one has the desired consistency, 

A second possibility is a "weaker" dependence of form 

P(v,g> = F((anv)f(d) 

with F and f as before. Again (3.2) and (3.5) are satisfied. With 

analogous steps as for (4.1), instead of (4.8) one now gets 

Q(A) = lim F an(hv) 
V)-fo3 Rn(AOv) = 9(X,) . 

(4.10) 

(4.11) 

This is an example of one of the extreme cases discussed in Sec. III, which 

is not acceptable. 

A third possibility is a "stronger" dependence of type 

P(v,g) = F(eavf(g)) with a>0 , (4.12) 

with F and f as before, Equations (3.2) and (3.5) hold again. Instead 

of (4.8) one now obtains 

FCrn) x > x0 

Q(X) = l-2 F av(X - AfJ Q(X,> for x = A0 (4,13) 

F(O) x < A0 

This is an example of the other extreme case envisaged in Sec. III, which 

is not acceptable. 

A slightly different view of the situation is obtained by noting 

that (4.10) can be considered as a dependence on vf and (4.12) as one on 

v - ? (where 'i = -(l/a)!Lnf). Therefore, the three possibilities studied 
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so far have been those based on the fundamental operations of multiplica- 

tion, exponentiation and subtraction, and it has turned out that only the 

multiplication allows consistency, 

To see the general manner of realization one has to note that the 

dependences of the physical quantities in the theory on their variables 

must not be wiped out in the limit. Therefore, these variables necessarily 

enter in the combination 

xu v f,(g) 9 (4.14) 

where all fo in the theory are asymptotically proportional, i.e., 

fu (Ed 

q5 + =w 
for g+g d 

with o<c <m . 
UP 

(4.15) 

A possible residual dependence on g, entering separately, must be such 

that it does not spoil the limit. By a redefinition of functions, the 

asymptotically proportional set of fo may be replaced by an asymptotically 

equal one (for which all c 
w 

= 1 in (4.15)). The types of functions which 

can occur are seen to be asymptotically equivalent to the form (4.1), 

which from now on will be called the standard dependence. 

V. PROPERTIES FROM THE STANDARD DEPENDENCE 

Equations (4.1) thru (4.9) give the definition and some of the proper- 

ties of the standard dependence. By (4.9) a parameter R of the theory 

shows up for which 

R= 
H(Q(ho)) 

AO 
(5.1) 

holds. Then (4.8) reads 

Q(A) = F(XR) . (5.2) 
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R corresponds to a generalization of the A parameter in conventional 

approaches. Q(X) is to be considered as a function of the renormalized 

coupling constant, the definition of which leaves considerable freedom. 

As discussed by Creutz3 the only requirement is that one gets the correct 

weak coupling behavior (which in his example leads to a second power). 

Equation (4.8) can be straightforwardly generalized to the one for 

an arbitrary physical quantity given by 

P&d = F&f(g)) , (5.3) 

which (still using (4.1) to determine g) leads to 

Q,(h) = F, A (t H(q(ho)j) = $&AR) . (5.4) 

The independence of (5.4) of the choice of A0 is the invariance under 

renormalization group transformations. 

If the description is changed to functions ? and g in (4.1) such 

that 

F @f(g)) = :(vh,) , (5.5) 

f and F must be asymptotically proportional (cf. Sec. IV). For 

z = cf (5.6) 

one obtains ?(cu) = F(u), H = cH and therefore 

it =cR , Q(X) = F(XR) = ?(Xg) e (507) 

The change in (5.4) is analogous. 

If a different physical quantity, given by Fb(vf(g)), is used to 

determine the v dependence of g, instead of (5.1) one gets in self- 

evident notation 

R = Hb(4b(Ao9 , 
b xO 

(5.8) 
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(5.9) 

(5.10) 

and instead of (5.4) one has 

Q,(A) = Fa(ARb) Ed 

Consistency of (5.4) and (5.9) then requires 

Rb=R u 

From (5.10) with (4.4) one obtains 

Qb(ho) = Fb x ( xg ~(Qoi))) (5.11) 

for the relation between different functions of the renormalized coupling. 

For g(v) one gets from (4.7) and (4.9) 

g(v) = h ‘0 
x 

~4~0)) 
V > 

, (5.12) 

or equivalently, using (5.1), 

. (5.13) 

(5.13) shows that the curves given by (3.7) and (3.8) now specialize to 

P = T(a,A) = Q(h) for all a , 
(5.14) 

g = y(a,X> = h(aX) witha =0 . 
d 

(5.12) gives the relation between the bare coupling g at scale X 0 and a 

function Q of the renormalized coupling at scale X. 

A 6 function can be defined in the present framework by 

8=-+1 . 

To evaluate (5.15) one has to note that F(H(y)) = y implies 

F'(H(y)) H'(y) = 1. Then (5.2) gives 

B= H(Q) --= H' (Q> --& %nH(Q) -' . 
> 

(5.15) 

(5.16) 
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It is explicit here that 8 depends only on Q(X). In addition it turns 

out that B has to have the specific functional~ structure given by (5.16). 

From (3.2), (4.1) and (4,2) one obtains 

F(u) -f C for u-to . (5.17) 

By (5.2) this leads to 

Q(X) -f C for h-t0 9 (5.18) 

. i.e., to A = 0 at the fixed point value of the function family. It is 

further to be noted that, because of H(Q(X)) = XR, 

~(40)) -+ 0 for A+0 (5.19) 

holds. Since, due to the existence of F, one has H' # 0, it follows from 

(5.16) and (5.19) that 

8'0 for X+0 , (5.20) 

. I.e., that there is a fixed point of (5.15) at X = 0. 

VI. PROPERTIES OF CORRELATION FUNCTIONS 

After investigating the limit for physical quantities now the cor- 

relation functions themselves are studied on the basis of the standard 

dependence. The conditions on the limit are relaxed requiring only the 

form 

r(n(v) ,g(v)) +- p (n(v) ,g(v)) Fa(vf (p(Y))) , (6.1) 

where F a is a function of the type already introduced by (5.3), and where 

p is a contribution which does not have this behavior. 

The first manner to get rid of the p is to form appropriate ratios 

of correlation functions in which the occurring p factors cancel. In this 

way one obviously arrives at physical quantities. Examples of this type 

are the ratios constructed by Creutz2s3 for Wilson loops, where perimeter 

length and number of corners are chosen in such a way that divergent 

factors divide out. 
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The second possibility occurs if the p factors carry no x dependence, 

i.e., if 

r(n(v),g(v)) + p(g(v)) Fa(vf(g(v))) , (6.2) 

in which case the situation corresponds to that of conventional multiplica- 

tive renormalization. Then, using a suitable function Z(\J), one can con- 

sider the limiting behavior 

Z(v) r(n(v> ,g(v>) -+ + (vf (g(d)) F&(g(v)) (6.3) 

which implies that one must have 

Z(v) p (g(v)) + +f(Pw)) l (6.4) 

Z(v) obviously corresponds to an adequate power of the wave function 

renormalization constant. 

For the realization of (6.4), because of (4.3), one can first put 

p(g) = +(fW)) = P(W) l (6.5) 

Then it is obvious that in order to get the property Z(v)o(f) = $(vf), 

one needs power behavior, i.e., 

p^(f) = &f6 f Z(v) = 332 (6.6) 

and 

$(u)=%Q . (6.7) 

Starting from the lattice formulation not involving a length as indicated 

in Sec. II, 6 in (6.6) and (6.7) is the total dimension of the correlation 

function. 

The usual subdivision of 6 in a canonical and an anomalous part 

arises because for correlation functions of products of fields one has 

'i: = (E)" r (6.8) 

where 'i: is the function in the formulation involving a length, .r the 

presently used one, and d the canonical dimension. It is seen that 'i: has 
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to be multiplied by 2 = % v 6-d , where 6 - d is the anomalous dimension, 

to give (6.3). 

Inserting (4.6) one obtains from (6.3) the renormalized correlation 

function at scale A 

G(A;Q(ho) Jo) = (JJ(QOO))) "a(* H(Q(A~))) (6.9) 

or equivalently, using (5.1), 

G(h;Q(Ao),ho) = +(hoR) Fa(AR) . (6.10) 

This follows similarly as (4.8) or (5.4). $I has, however, no 1 dependence 

because it does not depend on x. It is seen that cp and therefore G is not 

independent of the choice of A o, i.e., not invariant under renormalization 

group transformations. 

From (6.10) one obtains 

A0 $- (+Fa) = y$Fcr (6.11) 
0 

where 

d Rn C#J 
' = AO dXo l 

(6.12) 

(To get the conventional form of the definition of y one has to insert 

(6.4) into (6.12) and to keep p fixed.) According to (6.9), (6.11) and 

(5.15) one now has 

a -- 
'0 ah0 G(X;Q,AO) = 0 . (6.13) 

Thus the renormalization group equations follow in a straightforward way. 

By using (5.15), (6.12) can be cast into the form 

Y = -8 Lg2t (6.14) 

from which it is obvious that y depends on Q only. Equation (6.14) can 

be evaluated exploiting the dependence $(H(Q)) and (5.16) which gives 
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y=H!i&&k . (6.15) 

Inserting (6.7) into (6.15) one sees that 

Y=6 , (6.16) 

i.e., that y is, in fact, the total dimension. 

The relation between correlation functions at different scales can be 

derived by using H(Q(aAo)) = aH(Q(AO)) which holds according to (4.9). 

From (6.9) it then follows that 

4(H(Q(AO) ,> 
G(aJ+;Q(ho),Xo) = G(A;Q(aho) ,X0) m o 

The last factor in (6.17) because of (6.14) may be written as 

9(H(Q(Xo) ,> 
q(Q(aho) )J 

= exp[/QIIiO)du $$-I 

(6.17) 

(6018) 

which leads to the form occurring in conventional approaches. 

In concluding this section it is to be noted that instead of inserting 

the explicitly derived relation (4.6) into (6.3) to obtain (6.9), one could 

also in an implicit manner base the scheme on the F, of a function of form 

(6.2). This would be closer to what is done in conventional procedures. 

VII. EXAMPLES AND REMARKS 

The functions introduced by Creutz3 to get physical quantities in the 

present formulation read 

P(v,g) = 1 - r(2v,2v;g) r(v,v;g) 

w2w,u;g))2 
(7.1) 

where P(n n *g) are the correlation functions of rectangular Wilson loops. 1' 2' 

The functions F and G of Creutz are given by (7.1) for v = 1 and v = 2. 

His staircase construction generates sequences of values gs(2') and PI1 

with R = 0,1,2,... by determining gs(2') from 
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p(2,gs(25) = pie1 (7.2) 

and PR from 

P(l,gsd)) = PI1 (7.3) 

after imposing PO in the sense of (3.3). In the case of the standard 

dependence one obtains 

pR = Q@-5 , g,(v) = g(v) . (7.4) 

Otherwise the PL for R > 0 differ from Q(2-'). An estimate of these 

differences needs the knowledge of the functions P(v,g) for larger V* 

The use of correlation length and string tension also fits in the 

present scheme. In these cases the fact is exploited that for large n 

one expects a factorization of the correlation functions which in the 

present formulation is given by (6.1) with Fa having the forms 

and 

Fu(vfukb) 1) = exp (-a(g(v>) ,n,(v) n2(v>) , 

(7.5) 

(To61 

respectively. Noting (2.4) it is seen that one has, in fact, standard 

dependence with f<(g) = l/<(g) and fo(g) = m. According to (4.6) and 

(5.1) one now gets the correlation length b/R 
r 

and the string tension 

@,/Id 2. Within the same theory, fg and fo must be asymptotically pro- 

portional, i.e., satisfy (4.15). Then one has Ro/R = C 
P DP 

reflecting the 

description dependence caused by the use of different functions f. 

From the present point of view the application of (7.1) and (7.6) in 

the analysis of Monte Carlo data looks as follows. In (7.1) a function 

related to a physical quantity with small nV(l) is constructed-and v has 

to be large enough in order that one gets standard dependence. For (7.6) 
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n (v) has to be large enough such that a physical quantity separates in 
1-I 

standard form. Because of (2.4), given a maximal numerically available 

loop size, the limitation in both procedures is essentially the same. 

Finally it is to be remembered that, given a sequence, mathematically 

any limit needs the specification of a topology in which it is to be 

understood. For physical quantities one expects the limit of ordinary 

numbers. For the renormalized correlation functions, which according to 

conventional continuum theory should be distributions, it is possible to 

introduce the related weak topology on the basis of the present formula- 

tion. For this purpose, using a test function $(x), (6.3) with (6.9) is 

written as 

n& (a(v) 1" Z(v) rbb) ,gW > $(x(n(u> )) 
(7.7) 

-f 
"I- dxS G(X;Q,Xo) $J(x) . 

The 1.h.s. of (7.7) defines the action of a sequence of distributions on 

the test function. Then one can exploit the theorem that if the 1.h.s. 

converges for all test functions, the limit defines again a distribution. 

It is to be noted that this concept can be extended to gauge invariant 

functions provided one considers the limit for classes of such functions 

which can be described by a fixed and finite number of variables. An 

example of this is the class of rectangular Wilson loops with two variables. 

The possibility to treat particular forms of loops and strings in this 

manner appears important in view of the fundamental role of gauge invariant 

functions which emerged in a recent analysis4 of gauge fixing. 



- 19 - 

ACKNOWLEDGEMENTS 

This work was begun at BNL and completed at SLAC. Partial support 

by these institutions made this possible, I am very grateful to Mike 

Creutz for discussions which helped to start this work. I wish to thank 

L.-L. Chau and the High Energy Theory Group of BNL as well as Sid Drell 

and the Theoretical Physics Group of SLAC for their kind hospitality. 



I 

- 20 - 

REFERENCES 

IK. G. Wilson, Phys, Rev. D l0, 2445 (1974). 

2M. Creutz, Phys, Rev. D 21, 2308 (1980); Phys. Rev. I&t. 5, 

313 (1980). 

3M. Creutz, Phys. Rev. D 23, 1815 (1981). 

4W. Kerler, Phys. Rev. D 2, 1595 (1981). 



- 21 - 

FIGURE CAPTIONS 

Fig. 1. Example of a family of functions P(v,g). 

Fig. 2. Illustration of consistency considerations with functions P(v,g> 

for I, = 1,2,... and curves r(a,A), y(a,A) for A = 2,1,1/2. 

Fig. 3. Defocusing by a larger distance between P(4,g) and P(2,g) in 

the construction illustrated in Fig. 2. 
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