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ABSTRACT 

We exactly evaluate the energy eigenvalues of 

the Schwinger model, and find that due to a nontrivial 

cancellation the fermion eigenvalues are eliminated. 

The eigenspectrum of the interacting theory reduces 

to that of a free massive boson field. We then 

exactly evaluate the energy of the fermion-string- 

antifermion state and the string tension. We discuss 

the relation of the string tension to the Wilson 

criterion of confinement. 
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1. INTRODUCTION 

The Schwinger model is QED in one space and one time dimension. 

It has been studied extensively1 and is now being studied numerically.' 

Exact results3 provide a useful check to computer calculations, and 

in this paper we derive some exact results that are amenable to numerical 

studies. 

Although a number of authors1 have shown that the gauge field picks 

up a mass due to its interaction with the fermions, there has been, within 

the author's knowledge, no calculation for the energy eigenspectrum of 

the interacting theory using the path integral and showing the cancella- 

tion of fermion eigenenergies. 

This paper is essentially a continuation of Ref. 3, and we will use 

the notation and results of Ref. 3 extensively. We evaluate the eigen- 

energies in Section II. In Section 111 we calculate the energy of the 

fermion-string-antifermion state and lastly,,in Section IV we discuss 

the string tension and the Wilson criterion for confinement. 

II. ENERGY EIGENVALUES 

Let H be the Hamiltonian operator for Schwinger QED, En the eigen- 

energies and In> the orthonormal eigenfunctions. That is , 

<OnjHjhm> = En 6 (2.1) nm 

The fermion eigenfunctions using the anticommuting variables has been 

discussed in Ref. 4. 

Consider the 'partition function' for finite time , 
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Z(T) = Tr(e-'H') (2.2) 

c -TE = e n 

n 
(2.3) 

where the sum is over all the eigenenergies. The time ? plays the role 

of inverse temperature and Z(T) can be evaluated using finite temperature 

methods.5 

To evaluate Z(r), we consider the finite time action for Schwinger 

QED in two-dimensional Euclidean space, with the boson (fermion) varia- 

bles being periodic (antiperiodic) with period r. In effect the field 

theory is defined on a cylinder of infinite length. 

The finite-time Euclidean action is defined using the two component 

spinors q,$ and the gauge field AU, and we have for coupling constant g, 

S = - ---$ jdt j- dx (aPAy- BvAU) 2 + jdt j dx GY,, ($,+iA,,)+ 

0 0 

E SB + SF + SI 

Note: 

. 

A,$Lx) = A$t+T,x) 

$(t,d = - $(t+T,x) 

Ut,x) = - j;(t+T,x> 

and 

dx - 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.7') 

s dx . (2.8) 
-03 
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We have the path integral for the partition function 

Z(T) = n n s 
dAli(t,x) d$(t,x) d$(t,x) exp (2.9) 

t=O xv - 

We repeat the calculation of Ref. 3 to perform the fermion integra- 

tion. To do so, make the change of variables3 ~~~~ = -&10 = 1) 

A = Euv avs + a,,@ 
1-I 

(2.10) 

where s and @ are pseudoscalar and scalar fields respectively. Note s 

is gauge-invariant. The measure of the gauge field transforms as 

T L 

I7 n dAU(t,x) = det J 
ds(t,x) d$(t,x) , 

t=O xv t=O x 

(2.11) 

where 

a2 =aa 
1-I ?J 

The determinant of a2 is defined on functions periodic in t with period T. 

For the action, we have3 

s = - -$ j,t /dx(a2s)2 + j,t fix ($~,a~p+Gp-f5+aps) (2.12) 
0 0 

where we have decoupled 9 from the fermions by performing a gauge- 

transformation and have used 

(2.13) 
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To perform the fermion path integral, we need the finite-time fermion 

propagator given by 

Gr(t,x) = i c einT &(t-nT) 6(x) 

= 
c e 'I-L' G(t- n?,x) , (2.15) 

where 
tY 0 + XYl 

G(t,x) = $ --- 
x2 + t2 

Hence, for t2 + x2 = a2 + 0, we have 

GT (t ,x) = G(t,x) + @(a> , 

. 

(2.14) 

(2.16) 

(2.17) 

which shows that the short distance behavior of GT is the same as the 

T = m case. 

Note in Ref. 3, the axial vector current coupling $yP y,$ au S was 

regularized and the fermion path integral was then performed using the 

axial anomaly. The only property of the fermion propagator which entered 

in the axial anomaly was its zero-distance behavior, which is unchanged 

for finite time as in (2.17). Hence we have, as in Ref. 3, 

exp tS'1 - I7 I7 

t=O x 
s 

dT d$ exp (SF+ SI) (2.18) 

= exp I- & [dtdx[aVsj2,/ detR(i) . (2.20) 
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Note that the fermion determinant det,(d) has to be evaluated over the 

functions antiperiodic in time with period T. 

To perform the boson integration, we drop the redundant integration 

over 4 (which is equivalent to choosing the Landau gauge), and have, 

for m2 = g2h, 

Z(T) = (det$) (det a2) i n lds(t,x) 

t=O x 

x exp { - --$ [dt dx[(a25i)2 + m’(is)‘]\ (2.21) 

(det a2)(detF 8 ) 
= - 

J--? detF(%) det 8 
= 

From standard results5 we have for d = l+l , 

detF d = n ch 
P 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

To have well-defined products over the momentum p, let x&CO,Nl with 

periodic boundary conditions. Then p = (27r/N)R, R = 0, 1, . . . N-l. 

We now show that in the product m l detF($), there is a cancella- 

tion which removes the fermion eigenenergies. Note that 
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J det a 2'detF d = r1 sh L 1~1 p (2 

= exp 

1 ' 
C !?n(l-e-Tlp 

P 
‘1 ( + 2Rn l+ e-r 

(2.26) 

+3r 
2 

. (2.27) 

We have for the first two terms in (2.27), for N -+ m, using Ref. 6 

N 1% [Ln(l-e-Tlp~) + 2~n(l+e-~~p~)] = 5 [-< + 2 $1; o 

-CO 
(2.28) 

and hence 

m*det F 
(2.29) 

where the term linear in the exponential is simply the zero-point energy. 

Note the fermion determinant with its negative energy solutions has 

cancelled and the fermions have been eliminated from the eigenspectrum. 

We therefore have from (2.23) and (2.29) 

(2.30) 

P (2.31) 

Dropping the vacuum energy, we obtain 

Z(T) = fit exp - r 

1 

C nPJp2 + m2 

np=O P 1 

(2.32) 
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Comparing (2.32) and (2.3) we find that the eigenenergies are 

E[n] = c np jm , np = 0, 1, l eq l (2.33) 

P 

We see that the eigenspectrum is simply the equally spaced energy levels 

of the free massive boson field. The integers n denote the number of p 

particles np with momentum p that are in the system. These massive 

excitations of the field are the bound states1 of the fermion-antifermion 

pair interacting via the gauge field. The eigenfunctions of the inter- 

acting theory are Ian> z Q 
P' 

np> with eigenenergy cp rip/x,, and 

form a complete basis for the Hilbert space of states. 

The fermion-like negative eigenenergies have been eliminated from 

the spectrum due to its interaction with the gauge-gield, and the can- 

cellation in (2.28) reflects this. The absence of fermionic energy levels 

is the first indication that the fermions are confined. 

III. THE MESON STATE 

By the meson state, we mean the fermion-string-antifermion gauge 

invariant state. Before calculating the energetics of the meson state, 

we briefly review the definition of energy for a field theory. 

Recall from quantum mechanics the energy of an unnormalized state is 

E (3.1) 

where H is the Hamiltonian. To use the above definition for a quantum 

field, a suitable limiting procedure has to be used since the states are 

generally not normalizable. Also, since we are using the path integral, 
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we derive the Hamiltonian from the action functional. Let lx,> be a 

state close to I@> such that 

lim lx,> = IQ> 9 (3.2) 
E-+0 

Then 

E = lim 
E+ 0 

= lim 

c 

lim a <XlewtHIQ> -- 
E'O t-t0 at <xl@> ) 

(3.3) 

(3.4) 

The amplitude <xlexp (-tH)[O> can be evaluated using the path 

integral, and hence the energy can be obtained using (3.4). 

We are interested in the energy of the gauge-invariant fermion- 

antifermion state separated by distance L. In the Schrodinger 

representation 

(3.5) 

where Ifi> is the vacuum state (see Fig. 1). The state Ix> is obtained 

by infinitesimally displacing the fermion and antifermion in IQ>. For 

notational simplicity, we will treat Ix> as identical to IQ> and intro- 

duce E at the end. Let 

Q = <QlevtHIQ> (3.6) 

Then in the Heisenberg representation, we have 

Q = <Q/~,to) \ 
exp 1-i [ Al(t,x) dx\ Jl(tL) $(oL) 

x exp ii [ Al(O,x) dxi ~(oojl~> (3.7) 
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where the Heisenberg operators are appropriately time-ordered for t > 0. 

We can represent Q as a path integral using the infinite-time action and 

have' (see Fig. 2): 

(3.8) 

The action in (3.8) is the infinite-time action obtained from (2.12) 

and Z is also the infinite-time partition function; the bracket denotes 

integration over all boson and fermion field variables, and Jo, $ and Ap 

in (3.8) are the field variables. 

Introducing the regularizer E and performing the path integral3 

gives 

Q, = <xle-tH(@> (3.9) 

1 1 = 
27l 2 t2 + E 2 R(t,L) + P(t) (3.10) 

where 
2 2 

R(r,L) = - F 
s 

% 
l- exp {ipot) I I 

2 1-exp CiplL) I 
2 

(271) p:(p2 + m2) 
(3.11) 

p(t) = zg2 
s 

d2p 
l- exp {ipot) I - 

or> 2 p2(p2 + m2) 

2 

= 2[y + Rn (F) + Ko(mt)] (3.12') 

and y is Euler's constant. The term R(t,L) comes from the gauge-field 

variables, and the term P(t) from a combination of the gauge-field and 
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., 

fermion variables. Note for L -t 0, R(t,L) -t 0 and we recover the result 

given in Ref. 3. 

We have the following exact properties of R(t,L) and P(t): 

R(O,L) = '0 , P(0) = 0 , 

_ aR(t,L) 
I at t=() 

+L¶ - w(t) 
at I 

= o . 
t=O 

Using (3.4) for the energy, and taking the limit of E + 0 gives 

aR(t ,L) E=- at AL . 
t=O 2 

(3.15) 

The expression for energy is exact and is a gauge-invariant quantity. 

(3.13) 

(3.14) 

We see that energy increases linearly with distance, and the string 

tension, i.e., the energy per unit length, is g2/2. 

It is obvious that the state I@> is not an eigenstate, given its 

complicated time dependence. To understand how the state IO? is con- 

structed, we expand it in the energy eigenfunction basis. Let 

Then, 

= c jcn12 exp I-tEn 1 

in) 

(3.16) 

(3.17) 

From (3.10) we have for mL >> 1 (a = g2L/2m), 
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2; 
Q = e 

8~~ 
exp -a+cre -mt + 1 - mtK,(mt) + 2K (mt) + @ 

0 

e2’ -mt N- 
8n2 

ew -a+ae . 

18) 

(3.19) 

In obtaining (3.19) we have kept only the leading order terms in mL, 

and in effect have disregarded eigenfunctions with nonzero momentum p. 

We call this the static approximation, and a detailed study shows that 

this approximation has the leading order effects. 

Ignoring the overall constant, we have 

m 

Q = ewa -nmt e 

n=O 

(3.20) 

Hence, from (3.17) and (3.20), 

En = nm (3.21) 

ICn12 = e-a (5) , C ICn12 = 1 - (3.22) 

n 

As expected, only the static eigenstates in p=. > z In> with energy 

nm contribute to IO>; note I@> is a Poisson distribution in In> and 

Hence 

IO> = 5 ‘n In> 
n=O 

E = <@IHI@> (3.24) 

= m C njCnj2 = ma 
n 

+L 

(3.23) 

(3.25) 

(3.26) 
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Note the static approximation gives the correct expression for the 

energy. Using the properties of the Poisson distribution, we have for 

the energy dispersion 

AE = <@1ii210> - E2 (3.27) 

= m2 c n2]Cn12 - E2 
n 

(3.28) 

= mE . (3.29) 

The dispersion in the energy is large and is proportional to the 

energy of the state. Hence in any numerical calculation it would be 

difficult to separate out the energy of the state from the background 

statistical fluctuations. We can see the origin of this large fluctuation 

by expanding the ICn12 about its maxima, and assuming all the coefficients 

are real we obtain, up to a normalization constant 

I@> = 2 exp (- & (n-a)2 1 In> . (3.30) 

n=O 

We see that IQ> is peaked at the state IN> with integer N = a, and has 

a spread of 2a which gives rise to the large dispersion for E. 

Identifying the eigenstates In> as n pairs of fermion-antifermion 

bound states, we have the interpretation of (3.30) that the excited 

meson state is, with the largest amplitude, a state of N w mL pairs. 

That is, for large L the string 'breaks' instantaneously into a number of 

pairs proportional to the length of the string. See Fig. 3. 

Hence, if we view the state I@> as a case where the quarks (fermions) 

are well-separated and attempt to see the single quark, we will end up 
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observing the bound-state pairs and not the isolated fermion. Once the 

fermions constituting the meson are separated by a distance larger than 

-1 
m , pair production takes place. Hence we conclude that the fermions 

-1 are permanently confined within a distance of m , and no isolated single 

-1 fermion can be seen for separations much larger than m . 

This view of string break-up has been discussed by other authors' 

and our calculation provides a quantitative basis for this. 

IV. STRING TENSION AND CONFINEMENT 

We define the string tension p as the change in the energy of the 

string when the length is varied. That is 

(4.1) 

where E is the energy and L the length of the string. For the meson 

state I@> we have from (3.15) 

1-I =< . (4.2) 

We now discuss the connection of p with the Wilson loop integral. 

Consider a square contour of length L and width t and with enclosed area 

I' (.see Fig. 4). Then, using the results of Ref. 3 we have [using (2.10) 

and Stokes theorem], 

W = (wji j!Y)+J ) 

= (exp (i 4 a2s ) ) 

(4.3) 

(4.3') 
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W = exp ( R(t,L) + R(L,t) 
1 , (4.4) 

where R(t,L) is given by (3.11). 

For large loops and large time, we have 

i 

2 
W = exp - $--m (t+L) + @( eBmt, ewmL 

'I 
. (4.5) 

We see that W does not have exp I- area) Wilson behavior,7 and 

the string tension u cannot be extracted as the coefficient of the area 

term. The reason for this is the string 'breaks' into (t+L)-pairs and 

gives the exp {- perimenter} behavior for the loop; in other words, 

fermion pair creation removes the Wilson behavior for the loop. 

The Wilson loop in the absence of the fermions can be obtained by 

setting m=O in R(t,L), and we obtain the exact result 

2 
W = exp 1 1 -9 tL 

= exp I 
1 

- utL 
1 

(4.6) 

and the string tension is the coefficient of the area term. Hence 1~ can 

be obtained by studying the large gauge field loops in the absence of 

fermions, and the introduction of fermions does not spoil the result, at 

least in Schwinger QED. Note that in the presence of the fermions, for 

small loops, i.e., t,L << 1, we again have 

W r exp - 
i 

utL + d t2,L2 
( 'i 

. 

We hence have the following picture for confinement in Schwinger QED. 

The small gauge-field loops show the Wilson exp {- area} behavior. As 

the loops are made larger and larger, due to the Wilson behavior of the 
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pure gauge loops large energy is required to make these loops, and 

instead the system produces pairs of fermion-antifermion, breaking the 

string and giving the exp {- perimeter} behavior.8 The string breaks, 

I.e., crosses over from the area to perimeter behaviour at the character- 

istic length scale of the system, -1 which for Schwinger QED is m . See 

Fig. 5. 

In summary, the behavior of the large gauge field loops in the pure 

gauge theory determine whether or not there is confinement of the funda- 

mental fermions, and the Wilson criterion is appropriate. However, in 

the presence of the fermions, confinement can be equally studied by 

looking at the energy of the fermion-string-antifermion state, which 

involves looking at the short time behaviour of the system. Both these 

approaches can be used for evaluating the string tension and give the 

same result in Schwinger QED. 
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FIGURE CAPTIONS 

Fig. 1. Meson state. 

Fig. 2. Time evolution of the meson state. 

Fig. 3. Eigenfunction expansion of the meson state. 

Fig. 4. The Wilson loop. 

Fig. 5. Breaking of the string. 
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