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ABSTRACT 

A space-time constant solution to the equations of motion for 

Quantum Chromodynamics with massive quarks is shown to exist. This 

field configuration satisfies several properties that may be of phenom- 

enological interest. 
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Many solutions to the non-Abelian Yang-Mills classical equations of 

motion which generate a non-vanishing field strength have been shown to 

exist. Much of the interest has been focused upon Abelian solutions to 

the non-Abelian equations, where a space-time constant field strength is 

generated by a linear Abelian gauge potential as exists in classical 

e1ectrodynamics.l In non-Abelian theories, an alternative gauge potential 

exists which also generates a space-time constant field strength. These 

configurations are space-time constant gauge fields which give rise to a 

non-vanishing field strength through the commutator term of the field 

strength tensor.2 These different gauge potentials which are associated 

with identical field strengths can give rise to very different physics,3 

which is a simple manifestation of the Wu-Yang ambiguity.4 In this note, 

a space-time constant solution to the equations of motion for QCD with a 

-flavor doublet of color triplet massive quarks will be shown to exist, 

and some interesting properties exhibited. 

The SU(3) invariant action of QCD with massive quarks is given by 

J d4x Fa F"' + 
w a / d4x $(i$ + gA -ml+ , (1) 

with 

Fa = a A" 
iJ.v I.lv 

- avA; + gfabCAbAC 
IJV 

, 

(3) 

and Ta the fundamental representation matrices of SU(3). The equations 

of motion are obtained by extremizing the action with respect to each 

independent variable, yielding 

(i;b + g& - m)$ = 0 (4a) 
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$(-it + gC - m) = 0 

DabFw 
v b = gh'T"$ t 

where 

ab 
DV 

= tiabav + gf acb c Av . 

(4b) 

(4c) 

When the fields satisfying (4) are required to be space-time constants, 

the partial differential equations become simply algebraic, 

kP - m)$ = 0 (4a' > 

s;(gA - m) = 0 (4b') 

gf 2 acbfbde +;A; = g$y’TaJ, . (4c') 

Before solving (4'), the following additional constraint will be imposed 

upon the solution. We will search for a set of fields that is an extremum 

of the QCD action which generates the vacuum fiel.ds necessary to motivate 

the remarkably successful work of Shifman, Vainshtein, and Zakharov 

(SVZ) . 5 They identify the vacuum correlation of the gluon field 

<$&,tO> = $ (gllggav - g,,vgaB) (6) 

as the origin of the leading power corrections to perturbative QCD, 

with A a positive quantity. The ansatz for our solution will first be 

required to satisfy the restrictions of (6). 

By performing contractions of the free Lorentz indices in (6), and 

introducing the standard definitions 

ET z Fa a-l a 
Oi ' Bi = 2 cijkFjk 

it is straightforward to show that Eq. (6) implies 

-2" . za = ga . iB" = A 

za x rt" = 0 . 

(7) 

(6’) 
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The fields of (6') are necessarily complex, with the possible solution 

+-a E +a = fiB . (In distinction with electrodynamics, it is thought that 

complex fields may have physical relevance in non-Abelian gauge theories, 

provided the action and energy remain real.6) Translating this condition 

onto the space-time constant vector potentials, and using Fa = gf abcAbAc 
1J.v lJV 

gives 

f abcbc * AOAi = + $ fade c ijkA;q l (8) 

Gauge invariance allows space-time constant gauge rotations of the 

A;-fields. A global SU(3) rotation can diagonalize the matrix A" ' 
lh 

which chooses an orthogonal set of at most four 4-vector AL-fields. It 

is then easy to see that all the conditions necessary to satisfy the SVZ 

requirements as written in Eq. (8) are incorporated by the ansatz 

A4 
P = (X,0,0,0> 

AZ = (O,iX,O,O) 

A: = (O,O,iX,O> 
(9) 

A; = (O,O,O,iX> 

with all other A; set equal to zero, and using the standard form for the 

structure constants. It remains to show that this ansatz yields a solu- 

tion to the equations of motion for the appropriate choice of A. 

The equations of motion given by (4') must be self-consistently 

solved for the fermionic fields and the gluonic fields as given by the 

ansatz of (9). This is done in a straightforward fashion by making 

explicit the individual color components of the fields. Using the Gell- 

Mann form for the SU(3) generators7 and denoting color components by 

subscripts, Eq. (4a') becomes 
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g44+3 - igA5$3 - 2mql = 0 

gp6*3 - ig47$3 - 2mq2 = 0 

gh4VJ1 + igA5$l + gP692 + ig47$2 - 2m$, = 0 , 

(10) 

or, more simply 

$, = & (X,-M,)+, 

$2 = & (A,-ti,)+, 

(A, + ih5) (A, - ib5> + (4, + ih7> (4, - i8L7) - $ 
3 

+, = 0 (11) 
g 

Implementing the ansatz of Eq. (9), we quickly find that A = m/g, and 

two independent fermionic solutions to (11) exist which differ only by 

their spin eigenvalue. Assigning the two different solutions to the two 

different fermion flavors (denoted by superscript u,d), yields the explicit 

-solution 

1 

+;t = 0 d -1 

$1 =N 

[I 

1 

-1 

-1 

1 

G [I =N -1 $; = 0 

1 

1 

1 
G; = N -1 [’ -1 

1 

-1 1 [1 +; = N -1 

1 

with N an overall normalization. u,d Similar analysis of (4b') gives $ a = 

t$i'd) t* Note that $ # +'y" for classical anti-commuting Fermi fields 

viewed as integration variables in the functional integral formulation 

(12) 
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of QCD.8 $ and II, are totally independent variables, which is necessary 

to have a sensible integration theory. 

The last equation of motion that must be satisfied is (4c'), which 

reduces to 

3m2 
2g A; = ;I; Y,, Ta J, (13) 

for the gluon fields given by (9). It is simple algebra to verify that 

the fermionic solutions of (12) satisfy this equation for N2 = 3m3/8g2. 

Using Eq. (7), the non-zero components of the field strength 

generated by the above solution are 

1 im 2 

EZ = 2g 

EY 2 
im 2 

-- - 2g B2 Y =; 

(14) 

E8 = ifim2 
X 28 

&-d$ . 
X 

The existence of these non-zero fields at an extremum of the QCD 

action perhaps implies a complicated vacuum structure. At the tree level, 

operators are observed to have non-zero vacuum expectation values (VEV). 

In particular, for the above solution, 

<g2F;vF"a)> = 6m4 

& llvclB <FEVFzB> = 0 
(15) 

<<iif” l za+IBa l ?ia>> = 0 

<s$> = 6 m3/g2 
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It is straightforward but tedious to also verify that the solution 

exhibited has a symmetry where, for any of the A; + -A;, another solu- 

tion exists which yields the same VEV's as (15). The interesting 

implication of this symmetry is that <Fa uv> = 0 as all extrema of the 

action are summed. 

The above field configurations may be of physical relevance for 

several reasons. It is possible that the solution may lead to a more 

fundamental formulation of the work of Shifman, Vainshtein, and Zakharov 

by illuminating details of the field potentials leading to the field 

strength vacuum expectation values. Also, this solution is an inherently 

non-Abelian field configuration, which satisfies the equations of motion 

by having a fermion background field as the source term. The fermion 

background field also satisfies the equations of motion in a self- 

consistent fashion, thus allowing for our gauge invariant result. This 

is in marked distinction to other work with inherently non-Abelian fields 

where an external source is necessary to support the configuration, and 

thus manifest gauge and Lorentz invariance lost. 

It is not expected that the true physical vacuum would be frozen in 

the appropriately averaged configuration of (14). Entropy effects would 

be expected to dominate at large distance scales, and perhaps localized 

domains of different orientations could coexist on this larger scale. 

While these interpretations are pursued, it is also important to analyze 

quantum fluctuations about these configurations to determine the vacuum 

stability properties. These topics are currently being investigated. 
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