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ABSTRACT 

We consider the effective potential in models in which supersymmetry 

breaks at a scale u but the Goldstino couples only to fields of mass 

M >> p.. We show that all large perturbative logarithms are removed by 

taking the renormalization point to be O(M). This makes it possible to 

calculate the effective potential at large X in those inverted hierarchy 

models where the Goldstino couples only to superheavy fields. A general 

formula for the one-loop logarithm in these models is given. We 

illustrate the results with an SU(nI example in which the direction as 

well as the magnitude of the gauge symmetry breaking is undetermined at 

tree level. For this example a large perturbative hierarchy does not 

form and the unbroken subgroup is always SU(n-l)xU(l). In an Appendix 

we show that O’Raifeartaigh models with just one undetermined scalar 

field always have a decoupled Goldstino when the undetermined field is 

large, but that this need not be true in more general inverted hierarchy 

models. 
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1. INTRODUCTION 

Several authors1’7 have recently considered models in which 

supersymmetry is broken at a scale p midway between the superheavy scale 

M and the weak scale q~~/Tl. In these models the Goldstino may couple 

directly only to superheavy fields, so that supersymmetry breaking in 

the low energy theory is suppressed by powers of l/M. In Ref. 6, 

L. Susskind and the author have analyzed the low energy physics of these 

models by integrating out the superheavy fields to obtain effective 

supersymmetric interactions involving the Goldstino and the other light 

fields. The three scale structure is found to be stable in most cases. 

The method used in Ref. 6 can be applied to the calculation of the 

vacuum energy in these models. Models with broken sypersymmetry 

typically have many degenerate vacua at tree level. Perturbative 

corrections to the energy determine which is the true vacuum of the 

theory. In a model with multiple scales, perturbation theory can lead 

to large logarithms of the ratios of scales. In Section 2 we will show 

that the special structure of the theories considered here leads to a 

simple result: there are no large logarithms in the order ps piece of 

the effective potential when all fields and couplings are renormalized 

at the scale M. 

The original motivation for this work was to control the large 

logarithms in the effective potential for inverted hierarchy models.* 

These models are studied in Sec. 3. For those inverted hierarchy models 

in which the Goldstino couples only to heavy fields, the result of 

Section 2 makes it possible to obtain the effective potential at large X 

by using the renormalization group. The X dependence of the vacuum 
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energy is governed by the R and 7 functions of the theory above the 

scale X. From this a general formula for them coefficient of the one 

loop logarithm in the effective potential can be derived. Our general 

formalism is illustrated with an SU(n) model in which the direction of 

the symmetry breaking as well as the magnitude is undetermined at tree 

level. It is found that this particular model does not develop a large 

perturbative hierarchy for reasonable couplings, and that the one loop 

effective potential determines the unbroken symmetry to be 

SU(n-11 X U(1). 

Section 4 briefly discusses supergravity, which can make a 

significant contribution to the effective potential, some recent papers 

719-11130 on the effective potential in inverted hierarchy models, and 

the extension of the results to hierarchy models in which the Goldstino 

does not decouple. An Appendix derives some general results about the 

scalar potential in O’Raifeartaigh models.12 We show for simple 

O’Raifeartaigh models (those with only one undetermined scalar field) 

that when the scalar field is large the Goldstino couples at tree level 

only to superheavy fields. In more general inverted hierarchy models 

(those with multiple undetermined fields or D-term SS breaking1 this 

need not be true. 
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2. THE EFFECTIVE POTENTIAL 

Start with a general supersymmetric theory, with chiral superfields 

Ai having components (Ain$irFi) and gauge superfields 3, with components 

(V,p, Aa, Da). The Lagrangian is13 

$ tiW&> F + (A+egvAlo + (tWtCi>l~ + h-c.) + &,&Jo (2.1) 

where W(A) is the superpotential, and ri), the coefficient of the Fayet- 

Iliopoulos term, may be nonzero only for U(1) components of the gauge 

group. The tree level scalar potential is 

U(o1(A) = CtW, i (AIl*W, i(A) + 1 ~(D,(A,A+))~ 
i a (2.2) 

D,(A,A*) = - fgaAi*rij’Ai - C;, (2.3) 

One is interested in the radiative corrections to U(A) at values Aio of 

the scalar fields such that the tree level potential (2.2) is 

minimized.” For convenience we restrict our attention to the case 

thatls 

D,(A”,Ao*) = D (2.41 

The Lagrangian may be expanded in terms of the shifted superfields, 

ii/i = pi - AiO . 

The Goldstino superfield is identified as 

i=zF i ‘*it i/f 
i 

(2.5) 

(2.61 

where 

0 Fi =- (W, i(AO))* 

f = 1 lFi”12 
i 

(2.7a) 

(2.7b) 
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It is shown in the Appendix that f is massless at tree level. For the 

models to be considered here the ca and the remaining linear 

combinations of the i’i divide into heavy gauge and matter superfields, 

i”a and ii, and light gauge and matter superfields, ~~~ and ii. From 

(2.4) and (2.61, the only nonvanishing auxiliary field at tree level is 

Fxo = f. Fields of mass O(u), O(u2/M), and zero have been grouped 

together as “light”. The models considered here and in Ref. 6 are 

required to have the property that at tree level i couples only to the 

heavy fields. 

To find the scalar potential, first obtain the full effective 

potential U(A”,Fx,F~irD~a) for all the light scalar fields, dynamical 

and auxiliary. This is defined by summing all graphs with external 

F,rF& and DL~ fields (recall that A0 has already been shifted away in 

(2.5)) and which are one particle irreducible (IPI) with respect to 3, 

L a VL ) and Ci. Including graphs which are one particle reducible (lPR1 

with respect to the heavy fields takes the place of explicitly 

minimizing the effective potential for these fields. Extremizing 

U(A”,F,,F~i,D~a) with respect to the auxiliary fields then leads to the 

seal ar potential U(A”). This gives the same result as would have been 

found by working with the dynamical component fields from the start. In 

the latter case one does not extremize the potential with respect to the 

auxiliary fields, but the set of lP1 diagrams is correspondingly larger, 

since a graph which can only be divided by cutting an auxiliary field 

propagator is 1PI when written in terms of the dynamical fields. 

Supergraphs can be used to best advantage by writing U(AO,F,,FL~,DL~) 

as U(A”,~,Cir~La)~ where 
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f = G2Fx 

ii = e2FLi 

VL A a = f&j2DLa (2.8) 

The effective action then consists in the usual fashion of super-space 

integrals of products of superfields. I6 For example the tree level SS 

effective potential is 

U(A”,?,Ci~~La) q - tk’i>u - (Ci’iiIn 

- i (iiLaaiLaalF + [(iIF + (ji+)r*]f 

+ . . . . (2.91 

where the ellipsis represents terms such as cLiLj]F which vanish for the 

values (2.8). The form of the linear term in (2.9) follows from (2.6) 

and (2.7). From (2.91, 

U(A”,F,,F~i,D~a) = - Fx*Fx - FL~*FL~ 

- f DL~DL~ + (FX + F,*)f (2.101 

which extremizes to 

U(A”I = f2 (2.11) 

reproducing (2.2). It will be shown below that the only significant 

radiative contribution is to the coefficient of F,*F, in (2.101 (except 

when i can mix with other light fields). This would follow immediately, 

by dimensional analysis, if we had only graphs with internal heavy 

lines, but it is necessary to give some attention to graphs with 

internal light lines. 

Radiative corrections to the effective potential are restricted by 

the GRS theorem16 to be D-terms (the result of-Ref. 16 was for lP1 

graphs, but it can be readily extended to any graph that contains a 
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Let us first consider radiative corrections involving only external ? 

fields. Figure 1 shows a one loop correction to the coefficient of 

(i’ilD, Tx’x, in the supersymmetric effective potential. This graph 

gives rise to log(h2/m2), where A is the renormalization point and m is 

the mass of the field circulating in the loop. Since ii coup les only to 

superheavy fields, there will be no large logarithm when A u M. It is 

clear that if i coupled to lighter fields as well, no single choice of A 

would remove all large logarithms. 

Higher order contributions to r x*x will not contain large logarithms 

as long as all internal lines are superheavy and A * I?. The potentially 

dangerous graphs are those such as Fig. 2 with internal light lines. 

Since all external momenta vanish, this graph could have a singular 

dependence on the light internal masses from the region where the 

internal momentum, q, is much less than M. In fact, this does not 

happen. In the small q region the heavy blobs can be replaced with 

1 ,.,.A 
- (xLL+)D 
M (2.121 

plus operators of higher dimension suppressed by further powers of l/M. 

loop). This means that any correction to (2.9) must be at least 

quadratic in F or linear in D. For gauge symmetries which remain 

unbroken below p, the linear D term cannot be induced.17*18 It may be 

induced at O(p) for gauge symmetries broken at that scale, but it can 

always be removed by a small (O(p)) shift in the scalar fields, leaving 

the vacuum energy unchanged.19 Thus, radiative corrections to Eq. (2.10) 

are at least quadratic in the auxiliary fields. 
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With this effective vertex the contribution of the graph to IIx+x is of 

the form 

1 

s 

d’q 
-- 
M2 q2 (2.13) 

for q << M. This is quadratically convergent in the infrared and gives 

an O(1) contribution only for q - M. (Recall that we are studying O(w’) 

in the effective potential, so we need keep only O(l) in Tx+x.) This is 

true as well for all other rx*x graphs with internal light lines. 

Absorbing all heavy lines into effective vertices, there will be at 

least two dimension 5 vertices or one dimension 6 vertex coupling the 

external i to the light internal lines. This makes the infrared 

behavior of the graph under uniform scaling of the light line momenta at 

least two powers better than the canonical logarithmic divergence for 

rx*x, as seen in Eq. (2.13) for the example of Fig. 2.20 Thus, the 

dominant contribution comes when the light line momenta are scaled up 

until at least one is O(M); the line may then be absorbed into.a hard 

vertex and the argument repeated until all light line momenta are O(M). 

The conclusion is that in graphs contributing to I’x*x, all lines are 

either heavy or at large momentum. Other regions are suppressed by 

powers of q/M. From this it follows that: 

(a) There can be no large logarithm in the O(1) part of rJ& when all 

fields and couplings are renormalized at A - M. 

(b) The dependence of Tx*x on the O(B) dimensional couplings must 

bring in a power of T.VM. rxex may be evaluated with these couplings set 

to zero. These properties will be referred to-as (a) and CbI~throughout 

the paper. 
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The next correction to the effective potential is t~‘~D2~lo y Fx*Fx2. 

This is of dimension 6 and any graph with al1 internal lines superheavy 

must give a coefficient -1/M2. The whole term is then of order u6/M2 

and can be neglected. Analysis parallel to that used for I’X*x shows 

that this continues to hold true when there are internal light lines. 

All higher terms with only 2 fields externally are suppressed by 

powers of M as well. There are some infrared divergences, but they do 

not affect this conclusion. For example, Fig. 3 generates 

(~+~fi2~+D2:)o - (Fx*Fx)2 with a coefficient of l/M’ times a large 

logarithm. The whole term is then of order 

v8 
- Rn (M2/~21 
M’ (2.14) 

which is negligible. Other terms have greater infrared divergences, but 

these are spurious, resulting from multiple insertions of operators such 

as tki+iID into a light line. Summing these insertions into the 

propagator just gives a field dependent logarithm, Rn (M2/Fx*FX), in 

(2.14) and leaves the second derivative of the effective potential, 

r x*xI essentially unchanged (by the same logic as (b)). To summarize, 

the only significant radiative correction found thus far is to the 

coefficient of F,*F, in (2.101, and this correction satisfies (a) and 

(b). 

Consider now terms in the supersymmetric effective potential with 

external light fields but no external 2. One knows that (a) and (b) 

need not hold for these terms. However, since they must be quadratic in 

the light auxiliary fields, they can never drive the extremum~ at;Cgy from 

it tree level value 

FLi = DLa = (J (2.15) 
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Thus, by themselves they do not contribute to the effective scalar 

potential. 

Finally consider terms involving both i and the other external light 

fields. Contributing graphs must involve at least one effective hard 

vertex coupling i to the other fields. Suppose first that there is no 

light field which is allowed, by the symmetries unbroken at Ai’, to mix 

with i. Then the effective vertex of lowest dimension is tic’i>D, of 

dimension 5: this has coefficient l/M. All terms involving i plus other 

light fields are thus suppressed by a power of l/M and do not contribute 

at order u’. Then (2.15) holds to order u2 and the relevant part of the 

SS effective potential is just 

U(A”,F,,F~i,D~a) = - rx*,(Ao)F,*F, + (Fx + F,*)f (2.16) 

so that 

U(A”) = f 2/rx+ x(A”) (2.17) 

and the absence of large logarithms in the scalar potential follows from 

(a). 

If i can mix with a light field, say 0, the term 

tf+?)~, = F,*Fy (2.18) 

appears in the effective potential unsuppressed by M and drives a 

nonzero value for Fy. (There is no dimension 4 gauge invariant SS 

operator which contains F,DL~ and so can mix 3 with a light gauge 

field.) If it happens that 0 is also decoupled from the other light 

fields, the argument applied before can be extended. For example, Eq. 

(2.18) becomes 

U(A”) = f2(r?AoIlX*, (2.191 
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as r is now a matrix. This often happens in inverted hierarchy models, 

as will be seen in the next section. If ? couples to light fields, the 

effective potential will contain large logarithms at some order (though 

not before three 10opsl.~~ These logarithms do not make perturbation 

theory invalid, but one must work harder. The heavy fields are 

integrated out with A ++ M, and then the effective couplings are run down 

to the appropriate scale to evaluate other terms in the SS effective 

potential. Incidentally, such Goldstino mixing was also the one case 

found in Ref. 6 for which radiative corrections could induce large SS 

breaking for the light fields. 
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3. INVERTED HIERARCHY MODELS 

In Witten’s inverted hierarchy models*, SS breaks at tree level and a 

scalar field X (or perhaps several scalar fields) is undetermined. The 

one loop correction to the effective potential22 

(-l)F 
l/c 1 loop1 (X) = 1 - mi(Xls Rn (mi(X12/A21 

i 64~~ (3.1) 

breaks the tree level vacuum degeneracy. For some values of the 

parameters, the one loop effective potential decreases as X grows, so 

the stable minimum, if it exists, lies at X >> Wr p being the typical 

scale in the Lagrangian. Thus, one would like to determine the behavior 

potential at large X. Factors of Rn (X2/A2) make 

ion theory invalid in this region. On the other hand, 

factors such as Rn (u2/A2) did not appear in the 

ial, choosing A2 y X2 would make perturbation theory 

couplings were small. 

of the effective 

simple perturbat 

if one knew that 

effective potent 

valid as long as 

Danks2*11 observed that in simple examples of the inverted hierarchy, 

the Goldstino coupled only to heavy fields. In the Appendix, this is 

shown to be true in all O’Raifeartaigh models with a single undetermined 

scalar field. For models in which the Goldstino decouples from light 

fields, the analysis of the preceding section makes it possible to apply 

the renormalization group to the effective potential. Take first the 

standard renormalization group equation22 

a a a a 
A- + C ba - - Xi7ij - - Yk(x)'Ykj - U(XiaA,g) = D 

bb a ha bXj bXj 1 (3.2) 
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where go includes both dimensionless and dimensional couplings. Here 

U(Xi,A,g) is a “reduced” effective potential - a function only of Xir 

which are the undetermined scalar fields and those superlight (mass 

#u2/M) fields with which they can mix. The effective potential has 

already been minimized with respect to the heavy fields and those mass 

-w fields which can mix with the ?i (see Footnote 21). These 

(dependent) fields have been designated Yk(X). The Yk are all O(w) or 

less, while the b/bXj each bring in a factor of l/M (by reasoning 

parallel to Section 2) so the term proportional to Yk(X) in (3.2) can be 

neglected. When the conditions of Section 2 are met, Eqs. (2.17) and 

(2.19) show that U(Xi,A,g) depends on f, which is a function of the 

couplings but not of Xi or A23, and on r, which by (b) is a function of 

Xi and A but not of the dimensional couplings. Thus, 

U(Xi,A,g) = U(Xi/A,Xi/Xj,g) + O(p’/M) (3.3) 

Combined with the standard equation (3.21, this gives to order u’+, 

a a 
Xi(6i j + 7ijl - U(Xi,A,g) = 1 Ra - U(Xi,Ang) 

bXj a &kt (3.41 

Thus, the variation of U along certain curves in configuration space, 

defined by the LHS of (3.41, is given simply by running the couplings. 

For inverted hierarchy models without a decoupled Goldstino, this is not 

the case. For these models the potential depends on ratios of the 

dimensional couplings with Xi or A, and Eq. (3.3) does not hold. 

The 13 functions which appear in (3.21 are always those for the 

unbroken theory above X, not those which apply between X and ~.r. This 

would seem to conflict with the idea that u is-the “fundamental” scale 

of the theory, but it must be ~0.~~ One way to see this is to note 
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that g(X) would be obtained from g(AoI, with Aa >> X, by using the 

B-functions of the unbroken theory. As X varies, g(Ac) is essentially 

constant. (It is defined, for example, in terms of a Green’s function 

at Euclidean momenta MAO, and depends on an external field X only as 

powers of X/Ao). Thus, the change in g(X) is given entirely by the 

R-function. On the other hand, g(X) would be obtained from g(w) with 

the low energy B function, but as X varies so does the initial value 

g(cL) * The point is that u is not really the “fundamental” scale, as we 

continue to apply local field theory down to much shorter distances. 

The initial value of UtXi/A, Xi/Xi, gl may safely be calculated for 

A2 = 1 Xi’, by (a). Again, this would not be true if the Goldstino 

coupled to light fields. To leading order it is just the tree level 

energy 

E(O) (gl = min UCo)(A,gI = min 1 IW,k(A,gIlz 
A A k (3.5) 

To this same order we may use the one loop B-function and neglect the 

Yij in (3.4). This does not change the qualitative behavior of the 

effective potential or the O(1/g2) part of Rn tX,inQI if there is a 

minimum; to get the O(l) part of Rn (Xlin/wL) would require going to 

higher order. The solution to (3.4) is now 

U(Xi,A,gJ = E(O)(g(i Rn (1 Xi2/A2)I 
i 

where 

d 
- ga(tI = Ra(g(tl) 
dt 

(3.6) 

There is a general one loop formula for the RHS of (3.4). We have 
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a 
1 Ra - E(“‘(g) = 1 Iit W,k%3)1* 
a &la a 1 bga-bAi k A=A*in(g) 

(3.7) 

where A”‘“(g) is the point where (3.51 is minimized. The relation 

between coupling constant and wavefunction renormalization16P25 implies 

1 Ra -? 
a 

W(A,g) q Ai’Yij - W(A,g) 
a @3a bAj (3.81 

or 

a a 
1 Ra - W,k(A,g) = Ai$‘ij - W,k(AegI + 7kjW, j(A,g) 
a hi bAj (3.91 

Combining (3.7) with (3.9) and using the fact that Alin is an extremum, 

a 
1 Ra - c’O’(gl = Fk”(7jk* + 7kj)FjoH 
a ha (3.10) 

With the cubic term in the superpotential normalized to be 

l/3 gi jkAiijikr 

1 
7kj q - (SlkRn9jRm - t?'(Cz)kj) 

8Tr2 (3.11) 

Thus, 

1 Xi2 

U(Xj,A,gI 6jk + - [gkR&jRm” - e2(cz)kjl An 8s2 1 1 i - 11 A2 
(3.12) 

This reproduces the one loop results found in Refs. 9 and 26 from 

Eq. (3.1). 
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We now consider an SU(n1 example with adjoint fields i\ and 0, singlet 

2, and superpotential 

wti,?,A, = xi - g~tr(Ci2) + mtr(iii) (3.13) 

with phases chosen to make all couplings real. For SlJ(2) this example 

was considered in Refs. 6 and 26; for SU(5) it was considered in 

Ref. 17. The tree level scalar potential is 

U’“‘(Z,Y,A) = m2tr(A*A) + tr(mY - PgAZ)(mY* - 2gA*Z*) 

et 
+ Ix - gtr(A2)12 + - tr([A,A+l + CY,Y*1)2 

4 (3.14) 

For all values of the couplings the minimum satisfies 

EY,Yffl = 0 (3.15a) 

A= mY/2g2 (3.15b) 

and 2 is arbitrary (it can be made real by an R-rotation). For m2 > 2gh 

there is the further condition 

Y 0 = (3.16) 

which fixes the minimum except for the arbitrary value of 2. For 

m2 < 2gX, the condition is 

Y q y+ (3.17a) 4gx 
tr(Y2) = [ 1 - - 2 22 

m2 (3.17b) 

In this case, up to an SU(n) rotation, Y is an arbitrary real traceless 

diagonal matrix, with magnitude given by (3.17b). There are many 

possible unbroken subgroups. The vacuum energy is 
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I 
A2 , m2 > 2gX 

e(O)(A,m,g) = 

m2X ms 
--- * m2 < 2gh 

54 +I2 (3.181 

The potential in directions which violate (3.15) by significant 

amounts is large (O(Z’) or O(Z2~2)) while that in directions uhich 

violate (3.16) or (3.17) is small (O(u’)).27 In fact, radiative 

corrections make the effective values of the couplings in (3.17b) a 

function of Z, so the trough in the potential, straight at tree level, 

actually bends in the Y-Z plane due to radiative corrections. It can 

even change from the form (3.16) to (3.17) as m2(Z)-2g(Z)h(Z) changes 

sign. We should therefore verify decoupling for all configurations 

which satisfy (3.15). Then Z” is real and arbitrary, Y” is an arbitrary 

complex traceless diagonal matrix, and A0 is fixed by (3.15b); Z” and Y” 

are taken to be >> W. The shifted superpotential is 

w(it,?t,iiJl = -g~tr(Ci8)2 + mtr(A’?‘l 

+ mi’tr(A’wO) + gZ0tr(ji’)2 

+ itch - m2/2g tr(u0)2) - m2/2g tr(?8u01 (3.19) 

blhere w” = Y”/Zo. The Goldstino superfield i is identified as that 

linear combination of f* and q8 which appears linearly in (3.19). It 

has cubic interactions and small (O(lr)l mixing with the heavy .A field, 

consistent with decoupling. 6 It also has interactions with gauge fields 

from the 0 kinetic term. i is neutral under the gauge symmetries 

unbroken by Y”, so the argument of (A.241 shows that the gauge couplings 

of 2 all involve heavy gauge fields. 2 can mix with the neutral 

components of ?, which also decouple by (A.241. The conditions of 

Section 2 are thus met and Eq. (3.3) and (3.4) apply. 
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The RNG improved one loop energy is 

E(‘)(X) = e(“)(X(X),m(X),g(Xl) 

The I3 functions are 

X de e2 
--=-- CA 
e dX 16~1~ 

X dg g2 et 
-- = - (DA + 2) - - CA 
g dX 8u2 4*2 

X dm g2 e2 
-- z---c* 
m dX 8~~ 4n2 

X dX g2 
-- = - DA 
X dX 8n2 

(3.20) 

(3.21a) 

(3.21b) 

(3.21~) 

(3.21d) 

where DA and CA are the dimension and Casimir of the adjoint 

representation. The ratio m2(X)/2g(X)X(X) decreases monotonically, so 

that (3.16) holds at sufficiently small X and (3.17) at sufficiently 

large X. The energy satisfies 

dc(‘) g2X2DA 
X- =- for m2(X) > 2g(XIA(XI 

dX 4s2 

m2he2 mSe2 mc 
z--c +- A CA + - DA for m2(Xl < Zg(Xlh(X) 

4112g 8m2g2 16n2 (3.22) 

The energy and its first derivative, as well as the scalar v.e.v.s.# are 

continuous at m2(XI = Pg(X)X(XI. By (3.221, an extremum can only occur 

for m2(X) < Pg(XIX(XI. The second derivative at an extremum is 

dte( 1) mc 9 
x2 - = - gbDA - - e2g2DAcA - e’cA2 

dX2 extr 321~~ g2 4 1 (3.23) 
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Equations (3.21) and (3.22) are readily integrated. We shall give 

the qualitative results. There are two general behaviors for the 

dimensionless couplings e and g. If initially 

g2 3cA 
-< 
e2 IDA + 4 (3.24) 

then g2/e2 decreases monotonically and both couplings are asympotically 

free. If the inequality (3.22) is reversed, g2/e2 grows monotonically 

and at some scale the positive term in (3.21b) dominates and g diverges. 

For the asympotically free case, the energy always has the behavior 

shown in Fig. 4, rising to a maximum and then falling asymptotically. 

One may check that for (3.241, the second derivative at the exfremum, 

Eq. (3.231, is always negative. Actually, Fig. 4 applies only for 

z >> p.. The scale u may lie anywhere along the curve of Fig. 4a, 

depending on the initial values of the couplings. Only the part of Fig. 

4a to the right of p then applies. Our analysis does not apply to 

x s p; e(X) should be approximately constant in this region. 

For the non-asymptotically free case8 the potential resembles Fig. 4a 

until g(X) begins to grow, then turns up as shown in Fig. 4b. This may 

occur anywhere along the curve, depending on the parameters. When it 

occurs to the right of the maximum, a minimum forms, but in most cases 

this occurs when g(X) is large and perturbation theory is not valid. 

The only time the minimum is perturbative is when it is quite close to 

the maximum, as in Fig. 4c, and then one sees that for a large hierarchy 

the minimum will not be absolute. (Only for a= quite small, 0(10-3), do 

the couplings run sufficiently slowly to put many decades between the 

maximum and minimum in Fig. 4c.1 The superpotential (3.13) does not, 

then, lead to large fixed perturbative hierarchies. Rather, depending 
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on the parameters, the large X potential has one of three general 

behaviors: 

a) it falls indefinitely, with both couplings asymptotically free, 

leading to a time dependent hierarchy; 

b) it rises until g(X) diverges, so the minimum must lie at X - p 

(this is when g(X) diverges to the left of the minimum in Fig. 4); or 

cl it falls until g(X) diverges (as in Fig. 4b1, so a large hierarchy 

may form but only at a scale where the theory is strongly coupled. 

As a final exercise with this model we may determine which subgroup 

is unbroken when the minimum is perturbative, ignoring the fact that it 

is only a local minimum. Equation (3.1) may be used directly, but we 

will do it in a way which illustrates the formalism fo Section 2. We 

have Y” = diag(Y,“,...,Y,o) with Yi” complex and 1 Yi” = 0. We shall 

start by assuming the Yi” are all different, so that the unbroken 

subgroup is CU(l)ln-, . This is the most general case* as the maximum 

number of fields (Z’ and all diagonal components, Yi’, of Y’) can mix. 

After the one loop corrections of Fig. 5, the SS effective potential for 

these fields is 

9’DA 2g2(ZOl2 
1 - - Rn 

8s2 A2 11 
+ 1 [(?‘i+ - t’j’lt3’i - O’j)lD 

i,j 
[I + & Rn [lyio ,,‘j”“ll 

+ (i’)F 
m2 1 m2 

x- 1 (Yi”12 - - 1 (3rilFYio 
. 2g(Z”12 i 2gZ” i (3.25) 

which is accurate as long as A - Z” - Yi”. Extremizing (3.253 with 

respect to Fz and Fy , 
i 
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m2 g2DA 
U(Z”*Yio) q IX - C (Yi”12~2 1 + - An 

2g(Z”12 i 8s2 

m5 
+ C IYi”12 

2g2(Zo12 i 

2g(Z0)2 

A2 11 
m’e2 

1 lYi” - Yj"12 Rn 
64~2g2(Z012 i, j 

(“i’ ;2yjo12] (3.26, 

One can now see that as two or more Yi” become equal, although some 

terms in the SS effective potential (3.25) diverge, the scalar potential 

(3.26) is well behaved. This is an illustration of decoupling at the 

one loop level. The same holds in the limit that all Yi” vanish.27 

The perturbative corrections to (3.26) are even in Im(Yi’), so the 

tree level result, Im(Yi’1 = 0, remains true at the minimum. The 

direction of SlJ(n) breaking is determined by the last term of (3.26). 

Extensive experimentation (we have no general proof) indicates that this 

is always minimized, at fixed c lYi”12~ for the unbroken subgroup 

SU(n-1) X U(l). 
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4. CONCLUSIONS 

We have shown that the radiative corrections to the leading, O(u’), 

part of the effective potential are dominated by the scale M. This will 

not be true, in general, for the nonleading terms, which are important 

in determining the realization of the low energy symmetries. In all 

cases* though, the effective potential should be calculable. It is 

useful to keep the auxiliary fields explicit for as long as possible, as 

in (2.101, so as to take advantage of supersymmetry and 

nonrenormalization theorems. One must then carefully determine the 

scales which dominate the radiative corrections to the various terms in 

the SS effective potential. 

Supergravity fits into the formalism developed here and in Ref. 6. 

Supergravity has two effects of comparable magnitude to those in the 

pure matter theory.28 It gives rise to additional terms (M-terms) in the 

tree level scalar potential, and it gives additional interactions 

between the Goldstino and other light fields, of the same form as those 

from the matter theory, both at tree level and in loops. The analysis 

of Section 2 should then continue to hold, while detailed conclusions 

such as those for the model of Section 3 may be changed with the 

inclusion of the contributions of supergravity. 

While this paper was in preparation we received several papers 

dealing with the effective potential in inverted hierarchy models. 

Yamagishi’, Einhorn and Jones9 and Frampton, Georgi, and Kimlo have 

worked out the one loop term (3.1) from the mass matrices for general 

models, in agreement with Eq. (3.121 from the renormalization group. 

References 7 and 9 study also the renormalization group for the 
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effective potential and investigate the SU(5) example of Ref. 8, finding 

it to be more favorable for developing large hierarchies than the 

example studied in Section 3. Reference 9 makes interesting 

observations about the nature of the scales in inverted hierarchy 

models. It should be noted that all of these general analyses contain 

the assumption that large logarithms are removed by choosing A - X. We 

have found that this is true in inverted hierarchy models in which the 

Goldstino decouples from the light fields, and that this decoupling is 

the case in simple inverted hierarchy models (see the Appendix). 

However, it fails already at one loop in more general models, as can be 

seen from the discussion of Fig. 1, and then even (3.12) no longer 

holds. In the derivation of (3.12) from (3.11, decoupling is needed in 

order to make the replacement Rn X2 for Rn mi’: it is necessary that 

only fields of mass O(X) contribute to the sum. For inverted hierarchy 

models without decoupling, a generalization of (3.12) is obtained by 

keeping only those one loop graphs for r x*x which contain a heavy line. 

In (3.12) one replaces gkRI, with ?jkn Ir and (C2)k-C with (tz)kR, where 

gkRn if any of k, R, or m have mass O(X) 
gkRtn = 

0 if all of k, R, or m are 1 ight (4.1) 

and 

(zz)kR = - ’ x8 T’k,,,= T&= 
4 a (4.2) 

where the sum in (4.2) runs only over superheavy gauge fields. Again, 

in these models it should be possible to control the large logarithms to 

arbitrary order by renormalizing the various terms in the SS effective 

potential at appropriate scales. 
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Very recently we have also received the paper of Banks and 

Kaplunovsky,ll which also discusses the SU(5) model of Ref. 7, 8, and 9 

and touches upon many of the same questions as the present paper, and 

the paper of Hall and Hinchliffe,30 which argues that this SU(5) model 

in fact develops a large hierarchy only for finely adjusted values of 

the coupling constants. 
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APPENDIX A 

A THEOREM CONCERNING O’RAIFEARTAIGH MODELS 

In many examples of the inverted hierarchy, the supersymmetry 

breaking is decoupled from the light fields. This decoupling occurs 

because the trough in the scalar potential is straight and parallel to 

the auxiliary field v.e.v. It is possible to show that these features 

are true in all models of O’Raifeartaigh (F-term) supersymmetry 

breaking. Some of these results have also been obtained by Banks and 

Kaplunovsky,ll and Zumino.2g 

Consider a supersymmetic Lagrangian with superfields ii,i = l,...,n, 

superpotential W(i), and gauge group defined by 

SaAi = igari j"Aj (A.11 

(repeated indices are summed, except for gauge group indices). Here the 

possibility of a semisimple group, with several couplings, is included. 

The gauge group may include U(l) factors, with Fayet-Iliopoulos terms 

CaDa in the Lagrangian. The scalar potential is 

U(A) = W,i(A)(W, i(A))* + f 1 D,‘(A,A*) 
a (A.21 

Da(A,A*) q - 4 gaAi*TijaAj - (a (A. 3) 

The result to be shown is the following: 

Suppose the potential (A.21 has a minimum (it need only be local) for 

a certain value Aio of the scalar fields, such that 

Da(AO,AO*) = 0 (A. 4) 

W,i(AO) q -(FiO)” (A.51 

with c Fi°Fio* E f2 > 0. Define AX by 

AjX = A, m” + xFjO/f (A.61 
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Then for arbitrary complex x, 

(i) Da(AX,AX*) = Da(A”,Ao*I = 0 

(ii) W,i(AX) = W, itAo) = -FiO” 

Thus, the scalar potential is constant along the line defined by (A.6). 

This has a simple corollary: suppose that x is much larger than any 

mass scale occuring in the Lagrangian or any other scalar field v.e.v. 

Then any vertex involving the supersymmetry breaking auxiliary field 

also involves at least one field of mass O(x). 

Proof of (il: Gauge invariance of the superpotential implies 

W,i(A)rijaAj = 0 

Expanding in powers of A’ = A - A”, the zeroth order term is 

Fi’“Y ijaAjO = 0 = AiOS7ijaFjO 

The first order term is 

w ,ij(A”)TikaAko - Fi”*Tija = 0 

The condition that A0 be an extremum of the potential (A.21 is 

FiOW, ij(AO) = 0 

Contracting (A.91 with Fj” and using (A.101 gives 

FiO*r ijaFjO = 0 

From (A.81 and (A.111 it follows that the x-dependent terms in 

Da(AXpAX*) vanish. 

Proof of (ii): For this it is convenient to redefine the 

superf iel ds, First shift away the scalar v.e.v.: 

A’i = Ai - AiO 

NON choose new linear combinations i,fi of the Si’ such that 

i = ~‘iFiO*/f 

that 

(A.71 

(A. 8) 

(A.91 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 
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and the BR, R = l,...,n - 1, are orthogonal linear combinations. The 

transformed superpotential is 

wtt2,b> = W(i) (A. 14) 

Equation (A.51 is now 

W’,X(O,O) = -FX”* = -f (A. 15a) 

W’,R(D,O) = -FRO* = 0 (A. 15b) 

Thus, 2 is the Goldstino superfield. Statement (ii) becomes 

(A. 16a) 

(A. 16b) 

W’,x(X,Ol = -f 

W’,R(X,Ol = 0 

The parameter x of (A.61 is seen 

The form of W’ is quite restr 

just 

to be the scalar field X 

icted. From (A. 151, the linear part is 

W’Iinear = -fi 

In terms of the new fields, (A.101 is 

(A. 17) 

W’, xx(O,O) = W’,~(O,D) = 0 (A. 18) 

Thus, X does not appear at all in the quadratic part of W’. Gonsi der 

now the quadratic part of the scalar potential (A.21, which by 

assumption is non-negative. From (A. 171, (A.181, and the proof of (i), 

it has the form 

bfW’ ,xXx x2 + fW’ ,xu XBA + O(B2) + h-c. (A. 19) 

W/,XxX must vanish, or else (A.191 could be made negative by taking 

BR = D and varying the phase of X. But then W’ , Xa must also vanish, 

for if it did not (A.191 could again be made negative, by taking B 

sufficiently small that the O(B) term dominates the O(B2), and again 

varying the phase of X. In all, then, W’ must have the form 

W’(i,61 = -fc( + O(iV) + O(Xi3) + O(B3) . (A. 20) 
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From (A-201, (A.161 immediately follows. We have assumed a 

renormalizeable, cubic, superpotential, but this argument may be 

extended to general polynomial superpotentials. Zuminozg has proven 

(ii) for general polynom ial superpotentia 1s by more elegant means. 

To see the corollary, note that i coup les to the chiral fields 6 

through the vertex 

; w’, )&,$&i,> F (A.211 

while the large, O(X), part of the mass matrix is 

; xw’, ~,,,(ii&,,) F (A. 22) 

Going to a basis in which the mass matrix is diagonal, it is clear that 

in (A.211 X couples only to fields which have nonzero mass at O(X). i 

also couples to the other fields through 

[hi*c(egv) ik(Fk’/f)X]o (A. 23) 

Expanding the exponential, every interaction term has the structure 

( ....)jga~a7jkaFko (A. 24) 

Since Fk (being parallel to the large scalar v.e.v.l is neutral under 

the subgroup unbroken at O(X), (A.241 vanishes for any gauge field which 

is not superheavy. Thus, all vertices involving X involve fields of 

mass O(X) as well. 

This decoupling can be avoided either by having non-zero D fields or 

by having additional flat directions in the scalar potential beyond that 

required by the theorem and choosing the large v.e.v. in a different 

direction. This simplest way to arrange either of these is to have one 

O’Raifeartaigh model to provide the large v.e.v., plus a separate sector 

of either O’Raifeartaigh or Fayet-Iliopoulos type giving additional SS 

breaking but no large scalar v.e.v. 
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FIGURE CAPTIONS 

1. One loop contribution to rx*x. 

2. Typical contribution to I’x*x with light internal fields. The 

blobs are general superheavy subgraphs. 

3. Infrared divergent contribution to (~‘~D2~‘D2~)n. 

4. a) U(X) in the asymptotically free case. 

b) U(X) with g(X) diverging at Xc. 

c) U(X) tdhen the minimum is perturbative. 

5. a) Radiative correction to (frJir)o. 

b) Radiative correction to (?‘i*?‘i)o. 
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