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ABSTRACT 

We consider N= 1 supersymmetric systems of nonlinear fields and 

gauge fields in 3+1 dimensional space-time. The nonlinear fields take 

values on Kahlerian complex manifolds. In a Lagrangian formulation of 

the systems based on Grassmann manifolds, which is a class of Kshler 

manifolds, we show explicitly that both gauge symmetry and supersymmetry 

are spontaneously broken. A general argument, in terms of counting of 

-degrees of freedom, further shows that spontaneous gauge symmetry 

breakdown is also necessarily accompanied by supersymmetry breakdown 

in systems based on other classes of Kahler manifolds. The resulting 

particle spectrums of the systems have remarkable massless sectors 

consisting of gauge fields and fermions only. 
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1. INTRODUCTION 

Nonlinear realizations of an internal continuous symmetry group (G) 

which become linear representations when restricted to a given continuous 

subgroup (H) had been applied, and extensively studied, in connection 

with pion dynamics and its generalizations. Fields forming nonlinear 

realizations are self-interacting scalar/pseudoscalar fields which take 

values on the coset space G/H. There exist1 standard form of nonlinear 

realizations, and a systematic procedure for constructing Lagrangian 

densities which are invariant under the nonlinear field transformations. 

The method applies to global as well as local internal symmetry groups, 

and puts little constraint2 on the choice of G and H. 

It is plausible that dynamical symmetry breakdowns may happen in - 

supersymmetric theory, leading to the formation of composite Goldstone 

particles analogous to pions of low energy hadronic physics, which may 

be described as supersymmetric nonlinear fields. Supersymmetric 

generalization of the nonlinear fields has been considered by several 

authors. 3 Indeed, idea of nonlinear realization plays an important role 

in a recent formulation4 of the SO(8) supergravity. 

Not all the nonlinear fields can be supersymmetrized. In 3+1 

dimensional space-time, and for N=l supersymmetry, the supersymmetric 

generalization is restricted5 to chiral supermultiplets whose scalar 

components take values on a special class of complex manifolds termed 

Kahler manifolds.6 This necessary condition greatly reduces the choice 

of G and H. For example, for G = S0(2m), H must be U(m) so that G/H is 

a Kghler manifold. Thus supersymmetry has an effect of circumscribing 

the possible patterns of dynamical symmetry breakdowns. 
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Some work has been done to study systems in which the supersymmetric 

nonlinear fields are coupled to supergravity. In this paper we study 

supersymmetric systems containing both nonlinear fields and gauge fields. 

The specific class of Kzhler manifolds involved directly in our Langrangian 

formulation and analysis are called Grassmann manifolds (G 
p,q)' 

G 
P94 can 

be represented as a coset space SU(q+p)/SU(q)x SU(p)xU(l). The gauge 

fields are those associated with SU(q+p). 

In Section II, after defining Grassmann manifold G 
PY9 

as a certain 

class of complex matrices, and the supersymmetric generalization of these 

matrices, we construct an action in N=l superspace. The action is super- 

symmetric as well as invariant with respect to the SU(p+q) gauge 

transformations and auxiliary local U(p) transformations.8 Demanding 

that the action be stationary with respect to variations in the auxiliary 

-U(p) gauge fields leads to a constraint equation. The explicit expression 

for the Lagrangian density, after integration over super-coordinates 0 

and 5, is obtained in the Wess-Zumino gauge. 

In Section III we perform a point transformation on the constrained 

chiral supermultiplet to get rid of superfluous degrees of freedom. 

By also consistently redefining other fields in the system, we eventually 

arrive at a unitary picture. It is then clearly visible that the SU(q+p) 

gauge group is broken into SU(q) x SU(p) xU(1) subgroup. The 2pq gauge 

fields, which correspond to the 2pq broken group generators, have eaten 

all the nonlinear scalar fields, just the right number, and become massive 

vector bosons. Of the 2pq two-component gauginos corresponding to the 

broken group generators, half of them absorb the fermionic super-partners 

of the scalar fields and consequently become pq four-component massive 
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fermions, and the other half remain massless, forming a (q,p) repre- 

sentation of the SU(q) x SU(p) gauge group. The other massless particles 

are the gauge fields and gauginos of the unbroken SU(q) x SU(p) xU(1) 

gauge group. Thus the mass spectrum reveals that supersymmetry is also 

spontaneously broken. Indeed we calculate the energy of the ground state; 

it turns out to be greater than zero. 

What would happen if the nonlinear fields take values on Kghler 

manifolds other than the Grassmannian? We argue in Section IV that 

spontaneous breaking of supersymmetry will still happen. We then discuss 

the unbroken subgroups (H), and the representation contents (F- plus one 

adjoint) of the massless fermions that would result in our systems, when 

the nonlinear fields take values on different classes of irreducible, 

compact, symmetric Kghler manifolds. Two remarkable cases are 

I H = Spin(l0) xU(1) and 1=x; and (ii) H = Eg XU(1) and J-=27. 

We also discuss a number of other topics related to the findings reported 

above in Section V. 
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11. LAGRANGIAN FORMULATION OF THE SYSTEMS 

We shall construct in this Section Lagrangian densities for the 

systems in which the nonlinear fields take values on Grassmannian complex 

manifolds G The 
P94 

where p and q are two positive integer indices. 

manifold G 
P94 

has pq complex dimensions. It can be represented by 

px(q+p)-dimensional complex matrices A with the identification that, for 

any A, A and VA, where v is any nonsingular p xp-dimensional unitary 

matrix, are to be taken as equivalent. 

For the purpose of constructing a supersymmetric theory, one replaces 

the complex matrices A by px(q+p)-dimensional matrices (a) whose elements 

are chiral superfields. We shall retain A to denote the scalar components 

of the-superfields, and use $ and F to denote the fermionic components and 

the auxiliary fields.q The equivalence relation is incorporated into the 

theory in a form of an auxiliary local U(p) symmetry. The auxiliary 

symmetry reduces the number of actual, independent chiral superfields in 

the theory to p(q+p)-p2 = pq. The action for a system of purely 

Grassmannian nonlinear superfields islo 

IO = 
/ 

d4x d20 d2g Tr (1) 

where 1-1 is a mass characterizing the system, and V are the U(p) gauge 

superfields in a form of p xp-dimensional matrix. The action is super- 

symmetric as well as invariant with respect to the local U(p) trans- 

formation: 
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and 

ev -iA t 
-+ e eV eiA 

(2) 

where h are chiral superfields parametrizing the group U(p). Besides 

these expected symmetries, we observe that the action is also invariant 

under a global SU(q+p) transformation: 

0 -t Qe -is1 

t 

(3) 
Cat-+ e iR !2 

with fl taking values on SU(q+p) algebra. The action required for a 
- 

supersymmetric system of Grassmannian nonlinear fields interacting with 

SU(q+p) gauge fields then naturally suggests itself to be the following: 

-u2V + QteV@eU ) + $ Tr[WWs(B)+~s(e)]} 

(4) 

where U and W-are respectively the supersymmetric generalizations of the 

gauge fields and field strengths of the SU(q+p). Note that in funda- 

mental representation, we normalize the generators (Ta> such that 

Tr(Ta Tb) = $?jab. The action I is obviously supersymmetric and invariant 

with respect to the U(p) x SU(q+p) gauge transformations. &dying 

variational principle on I with respect to variations in V leads to a 

constraint equation, namely 

/ 
dfj e(l-B)v cp e” Qt eBV = p2 1 

P (5) 
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where ll 
P 

denotes a p xp-dimensional unit matrix. Consequently the action 

I can be expressed as 

I = /d4x d29 d28 (Tr(-u2V) + ?j Tr[WW6(8)+w6(0)]) (6) 

with the V to be determined by the constraint Eq. (5). 

The constraint equation takes its simplest form in Wess-Zumino (WZ) 

gauge. The validity of WZ gauge is insured by the U(p) xSU(p+q) gauge 

invariance. In WZ gauge we write 

(74 

(7b) 

Thus wehave V"=O=U" for m 2 3, and the exponentials in Eq. (5) become 

polynomials. Equating coefficients of various powers of 8 and 8 at both 

sides of Eq. (5) yields the following: 

AAt = u2n 
P 

d = 0 = A$ 

FAt = 0 = A-g 

u2Vp + $cr'v + iATpAt + AUvAt = 0 

(84 

(8b) 

(W 

(ad) 

A&$ - fi I@" - L AU a'$+ + iShA = 0 
45 1J 

(Be) 

(80 
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and, of course, the adjoint of (8e). The first three constraints are 

necessary for defining Grassmannian nonlinear superfields; the others 

determine VP, Av, 1 
V' 

and Dv. 

Substituting Eq. (8) in Eq. (6) we finally obtain the expression 

for the Lagrangian density 

where 

and 

(lob) 

F 
I-lV 

is simply the field strength of SU(q+p) gauge fields and V is 1-I 

given by Eq. (8d). 
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111. PHYSICAL CONTENT OF THE SYSTEMS 

Let us now install the SU(q+p) gauge coupling constant (g) in the 

theory. This is achieved by first scaling each field in the Lagrangian 

density of Eq. (9) by a factor 2g and then discarding an overall factor 

of (2d2 from the resulting Lagrangian density. The new expression, 

after some rearrangements, is 

g(x) = Tr 

+ FFt + gADAt + ifig(JlhAt - Ax?) 

with - 

+ igpXo'X - ( ho"C$x) - .+ FuvFUV + DD (11) 

GpA = auA + igAUp + igVpA (124 

Gii* = av+ + igiUu + igVli+ (12b) 

gph = apx + ighU - igUv,X (124 
1-I 

and 

F = au - avuv + ig[Uu9Uv] (124 
I.rV 1-I v 

v =-zf (+o'lv + iAypAt + 2gAUuA') 
l (12e) 

u u 

In order to explore the physical content of the systems we shall replace 

A and JI (F=O obviously) by unconstrained fields. We find it useful to 

make the following polar decomposition: 

and 

A z$ge i'( 0 i lp) eiS 

(13) 



- 10 - 

where exp(i$) and exp(iS) take values respectively on U(p) and 

SU(q+p)/SU(q) XSU(P) xU(l) and x is a pxq-dimensional matrix of two- 

component fermions. They are uncostrained. It is easily seen that the 

constraints AAt = u2/4g2, and A$ = 0 =IJJA~ are well respected by the polar 

decomposition. 

The apparent degrees of freedom associated with $, though not con- 

strained, are superfluous; their contributions to the Lagrangian density 

eventually cancel completely because of a local U(p) invariance associated 

with the composite gauge fields V . 1-I On the other hand, 5 associate with 

genuine degrees of freedom, their contributions do not cancel but are 

summarized and absorbed by a new definition of the SU(q+p) gauge fields 

and gauginos. The new gauge fields U' 
1-I 

are given by the following, 

igu' E ige iS u e-iS _ ei5 a e-iS 
1-I 1-I 1-I 

and the new gauginos h' by 

Xl = ieis xe-is . 

(14) 

(15) 

We will also use subscripts N, E, W, S to denote the four submatrices, 

being of dimensions qxq, qxp, pxq, and p xp, respectively, of 

(q+p) x (q+p)-dimensional matrix. 

In terms of unconstrained fields, the Lagrangian density, after 

elimination of the auxiliary fields F and D, takes the following form 
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Lzyx) = - + Tr FLvF'uv + 2i Tr + igX'U; - 1 
+ i Tr allx + igxU;, - igUL,x o'i 

C( ) 1 

(16) 

It is clear that massive gauge fields are fi U' 1.IE and 47 U' ,,w (U,',E and U;w 

are adjoint of each other), with mass squared n2/8. Meanwhile fermionic 

partners of the nonlinear scalar fields, namely x, combine with gauginos 

fi Xi to form pq massive four-component fermions of mass u/2. The other 

degrees of freedom, including gauge fields U' 
I-IN 

and LJ' 
US' 

and gauginos 

Xr;, AS and Xh, remain as massless particles. The gauge group SU(q+p) 

is spontaneously broken to SU(q) x SU(p) xU(l), as manifested on the mass 

spectrum of the particles. The most remarkable phenomenon is, however, 

that supersymmetry is also spontaneously broken in the systems. It is 

shown both by the mass spectrum and by the presence of a nonzero positive 

ground state energy, namely the constant p4pq/64g2(q+p) in P(x) of 

Eq. (16). The constant results from Tr(gADA++DD) term of Lagangian 

density of Eq. (11). 
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IV. G~~mwzfmoN ~0 SYSTEMS BASED ON OTHER &LER MANIFOLDS 

Algebraic manipulations in the last section demonstrate explicitly 

spontaneous supersymmetry breakdowns happening in the systems of 

Grassmannian nonlinear fields interacting with gauge fields. The breaking 

of supersymmetry is intimately tied to that of gauge symmetry. Let us 

show the necessity of this connection by an argument based on counting 

of degrees of freedom. 

Consider a supersymmetric system of nonlinear fields taking values 

on a coset space G/H, assuming to be a K&hler manifold, and gauge fields 

of gauge group G. The number of degrees of freedom is Ni = (4xdimG + 

2xdimG/H). If the gauge group G is broken to H, assuming that gauge 

fields-corresponding to generators of G/H eat the nonlinear scalar fields, 

without triggering a spontaneous supersymmetry breakdown. Then we would 

expect at least the number of massless vector supermultiplet to be dim H; 

each vector supermultiplet contains one gauge field. The total number of 

degrees of freedom would then be at least Nf = 4xdimH + BxdimG/H because 

each massless vector supermultiplet has four degrees of freedom but the 

massive one has eight. Since Ni -Nf = -2xdimG/H, the assumption of 

having gauge symmetry breaking G-+H without supersymmetry breakdown is 

therefore false in the systems we are interested. 

Let us continue the above line of reasoning but admit that super- 

symmetry breaks while the gauge group G breaks to H. Thus Nf = Ni = 

4xdimH + 6xdimG/H. After symmetry breakings, a half of the degrees 

of freedom form the massive and massless gauge fields, the remaining 

half are fermionic: (2xdimH + 2xdimG/H) for gauginos, and lxdimG/H 
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for fermionic partners of nonlinear scalar fields. They form definite 

representations of the unbroken gauge group H: an adjoint plus repre- 
* 

sentations r and r for gauginos, and a r for the other fermions. - [r is 

representation content of the nonlinear scalar fields.] Assuming that 

the mechanism for generating masses for gauginos is Yukawa coupling, which 

is supersymmetric counterpart of minimal gauge coupling of nonlinear 

fields, then gauginos in adjoint representation and I' representation would - 

remain as massless particles while the other fermionic degrees of freedom 

become massive. 
. . 

What are the available subgroups H and representations r? Kahler 

manifolds expressible as G/H with G being a compact, connected, simple 

Lie group are classified into six classes.ll They are (i) G/H = 

SU(q + p> /SU(q) x SU(p) x U(l) with number of complex dimensions dim cG/H = 

¶P¶ so r is a (q,p) representation. (ii) G/H = SO(2q)/U(q), dimcG/H = 

dq-1)/2, so r is a second rank antisymmetric tensor representation. - 

(iii) G/H = Sp(2q)/U(q), dimcG/H = q(q+1)/2, so r is a second rank 

symmetric tensor representation. (iv) G/H = SO(q+2)/SO(q) "U(l), 

dimcG/H = q, _ so p is a vector representation. (v) G/H = E6/Spin(10) xU(l), 

dimcG/H = 16, so r is a spinor representation 3. - (vi) G/H = E7/E6XU(1), 

dimcG/H = 27, so f is a minimal representation 27. Except in case (iv), 

r are always complex representations of non-Abelian part of H. H carries - 

a U(1) factor, which is a necessary condition for G/H to be Kshlerian. 

Generalization of our work to cases where G is noncompact will not 

be a simple task, if it is possible at all. This is so even in cases 

without supersymmetry. We simply want to make a remark here that 

mathematically noncompact, irreducible, symmetric Kghler manifolds can 
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also be classifiedll into six classes parallel to the compact cases, and 

have a list of H and I' identical to the above one. 

V. CONCLUSION AND DISCUSSION 

We have shown in this article that there exists a class of models 

in which spontaneous breakdown of gauge symmetry is necessarily accompanied 

by spontaneous breakdown of supersymmetry. What we consider are N= 1 

supersymmetric systems of the nonlinear fields interacting with gauge 

fields in (3+1) dimensional space-time. The systems have a rich geometri- 

cal structure in the sense that the nonlinear fields take values on Kghler 

manifolds G/H, G is also the gauge group to be broken. Explicit Lagrangian 

formulation of the systems based on the first class of Kshler manifolds, 

namely, the Grassmannians, is achieved. It may be useful to do so for 

systems based on other types of K;ihler manifolds,ll and we see no obstacle 

of principle against it. 

The above mentioned connection between breakings of gauge symmetry 

and supersymmetry is in strong contrast to what happens in renormalizable 

supersymmetric Yang-Mills theories. In such theories, if the chiral part 

of scalar potential, which is polynomial of scalar components of chiral 

superfields only, does not break supersymmetry then the presence of gauge 

interactions does not change this situation whether or not there is gauge 

symmetry breaking, if any. The reason is that the chiral part of the 

potential is invariant with respect to complex extension of the gauge 

group.12 Interpreted along the line of reasoning used in Section IV, 

the complexification doubles the number of would-be Goldstone particles 



- 15 - 

so that there are enough degrees of freedom for forming massive vector 

supermultiplets and thus not conflicting with supersymmetry. 

Our result should not be taken as implying that supersymmetry will 

break down whenever there is an interaction between gauge fields and the 

nonlinear fields. For example, if we modified the systems such that the 

gauge group were H, or smaller subgroups, instead of G, there would be no 

breakdown of supersymmetry nor that of gauge symmetry. However, for 

modified systems with gauge group X such that G 3 X 3 H, one obtains 

breakdowns of both gauge symmetry and supersymmetry. Lagrangian densities 

for modified systems can be easily obtained by modifying that of the 

original systems. For example, in the Grassmannian cases, the modifica- 

tions are achieved by taking U of Eq. (4) to be that of the desired gauge 
- 

groups. 

The resulting particle spectrums of our systems have some remarkable 

properties. First one notices that a well known sum rule13 for masses is 

violated, at least in the Grassmannian cases. Secondly one notices that 

there is no scalar particle, the spectrums consist of only gauge bosons 

and fermions. In particular, the massless sector consists of gauge fields 

of H, their corresponding gauginos, and a r representation of other - 

gauginos. In most cases r are complex representations (see Section IV - 

for a complete listing) of non-Abelian part of H. Since r runs through 

representations 16 and 27 respectively for the cases where the non-Abelian - - 

part of H is Spin(l0) and E6, one cannot resist speculating on a possible 

connection between the r gauginos and quarks and leptons.14 But in this - 

respect our systems appear to be incomplete; they cannot accomodate the 

phenomenon of repetition of the family-structure of quarks and leptons. 
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We also observe that the systems presented are nonrenormalizable, as 

manifested by, for instance, the presence of a quartic fermion inter- 

action term in the Lagrangian density, Eq. (16). 
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