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ABSTRACT 

Some general properties of the gluon propagator are studied -in the 

axial gauge with emphasis on its infrared and ultra-violet behaviour. 

In space-like gauges we derive a Lehmann representation and consequently 

a Kallen sum rule for Z3. We investigate in some detail the apparent 

inconsistency between Z3 > 1 (antiscreening and the origin of asymptotic 

freedom) and the positivity of the Hilbert space due to the absence of 

ghosts which suggests Z:, < 1. We show that in time-like gauges there is 

no Lehmann representation so that the propagator is no longer analytic 

in its virtual mass parameter. General positivity coupled with these 

results restricts certain IR singularities from being any worse than 

they are in QED so consequently it is not possible to use the IR 

behaviour of the propagator in this gauge (whether time-like or 

space-like) as a signal for confinement if the Wilson loop is used as 

the criterion. We also show that a judicious use of the renormalization 

group involving a variation of the axial gauge parameter allows one to 

drive the theory into the IR in such a way that the effective coupling 

constant is the asymptotically free one! We use this result to show 

that the presence of non-perturbative contributions of the generic form 

e- c/g2 associated with instantons leads to a power law correction to the 

IR behaviour of the propagator. 

-2- 



1. INTRODUCTION 

Although non-Abelian gauge theories and, in particular, quantum 

chromodynamics (QCD) have now come of age there still remain many 

unanswered basic questions. 1 Most of these inevitably concern the issues 
* 

of confinement and the nature of the physical spectrum. It is generally 

believed that non-perturbative effects such as instantons play a central 

role in understanding these problems. The best known aspect of QCD is 

its large momentum behaviour which can be calculated reliably since the 

theory is asymptotically free. It is the purpose of the present paper 

to modestly investigate some of these general problems by studying the 

simplest non-trivizl object in the theary, namely the gluon propagator. 

Although this is a gauge-dependent object, its properties presumably 

reflect the general physical features of the complete theory. 

Our original motivation for this work was to understand a result of 

Oehme and Zimmerman2 who claimed that QCD was not a consistent theory 

unless there were a minimum number of flavors. This result was based on 

a contradiction between the positivity of the gluon spectral function 

and the constraints of asymptotic freedom. Although this calculation 

was performed in a covariant gauge where the Hilbert space contains 

ghost states, a positivity constraint was derived by projecting onto a 

positive definite subspace. In the axial gauge,3 on the other hand, the 

Hilbert space is positive definite from the outset and so any subtlety 

due to the projection is avoided. 9 We were thus motivated to study the 

propagator in this gauge to see whether a similar contradiction arose 

and investigate its origins. This gauge is, in any case, an attractive 

gauge to work in since it is conceivable that its positive definiteness 
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occur in covar 

qL could conce 

could lead to results that are not transparent in other gauges. 

Furthermore, the gauge parameter is an arbitrary four-vector nu which 

gives rise to a new kinematic variable qL(E n-q, say>, which does not 

iant gauges. Rather than being a nuisance the presence of 

ivably be exploited by allowing it to vary. It is well 

known that the price paid for a positive definite Hilbert space (no 

ghosts) is to sacrifice Lorentz invariance and this manifests itself as 

an unphysical gauge singularity. Because the treatment of this 

singularity plays a crucial role in solving the "paradox" we derive a 

prescription for treating it by performing a gauge transformation from a 

covariant propagator to its axial gauge counterpart. 

The phenomenon of asymptotic freedom is often described as the 
- 

anti-screening of the colour charge, by analogy with the screening of 

electric charge that occurs in quantum electrodynamics (QED). Thus, it 

is the polarization of the vacuum that is responsible for screening. 

Indeed there exist:: a rigourous argument due to Kallen showing that the 

magnitude of the physical charge (e) is always less than the bare one 

(eo).5 The argument is based on the Lehmann sum rule for the photon 

renormalization constant (Z3): 

Q) 
z3=1- 

I 
pl(q' )dqZ 

0 

The identification 23 = (e/eoIz and the positivity of the photon 

spectral function pl, both guaranteed by gauge invariance, then leads to 

a proof of screening (Za < 1).6 In modern parlance, screening is 

intimately related to the fact that QED possesses an infrared (IR) 

stable fixed point at ez = 0; Z3 < 1 simply corresponds to a positive 
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D-function. 1 In QCD the situation is more complicated because in an 

arbitrary gauge 23 t (g/golz nor is the relevant spectral function 

positive definite. Nevertheless asymptotic freedom (i.e. an 

ultra-violet stable fixed point at gz = 0) is a gauge invariant concept 

corresponding to (g/goJ2 > 1. The argument of Ref. 2 seems to suggest 

that in a positive sector of a covariant Hilbert space a conventional 

Lehmann sum rule leads, via Kallen’s argument, to a violation of this. 

In an axial gauge, houever, the problem is even more transparent since 

positivity in the complete Hilbert space is guaranteed by the absence of 

ghosts.+ Furthermore in this gauge the divergent piece of Zo CE (Zo)divl 

is gauge invariant and related to (g/goJ2 so we have precisely the 

conditions required for Kallen’s theorem to be valid; consequently 

(zj)div < 1, corresponding to screening rather than anti-screening! In 

this case, however, the solution to the paradox is known; it was pointed 

out by Frenkel and Taylor7 that if one takes into account the subtle 

gauge singularity of the axial gauge then in perturbation theory 

(z3)div > 1 as it mUSt. This suggests that there may well be a similar 

subtlety in the covariant case that allows anti-screening to develop. 

Because of the subtle nature of this result we present a somewhat 

more general and detailed version of the argument given in Ref. 7. In 

Section 2 we give ihe general definitions of the propagator and its 

spectral function relevant to the axial gauge. In Section 3 the 

analogue of the Lehmann representation is derived. We show that the 

conventional form is valid only in space-like gauges; put slightly 

differently, this says that the gluon propagator is an analytic function 

of q2 at fixed qL only if nz < 0. In such gauges the canonical 
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commutation relations then lead in the usual way to the standard sum 

rule, with the analogue to p1 now being a function of q2 and q2L. In 

Section 4 we study the positivity constraints on the spectral functions 

-that follow from the ghost-free nature of the gauge. Again we find that 

the situation depends critically on whether n2 is space-like or 

time-like. In space-like gauges we find that p,(q2,q2L)/q2L 2 0 whereas 

there is no such constraint when nz > 0. As already remarked this 

appears disastrous since it naively leads to a contradiction with 

asymptotic freedom. The crucial observation of Frenkel anti Taylor’ was 

that in the usual interpretation of qm2 L this singularity is not a 

positive definite quantity. The conventional prescription is as a 

principal value and this is not a positive definite concept. Thus, 
- 

P~(qz,q2L) 2 0 provided q2L # 0; however, when q2L = 0 it is in fact 

:-negative. Now, on pure ly dimensional grounds, the limit q2L + 0 

corresponds to a q2 + w , the region relevent to asymptotic freedom. 

Thus it is not surprising that the nature of the gauge singularity at 

q2L = 0 provides the solution to the screening paradox. Indeed this 

observation allows us to generalize the argument of Frenkel and Taylor 

and make a Kallen-like proof that (in pure QCD> (Zo)diy > 1 independent 

of perturbation theory. 

At the other end of the energy scale we encounter the problem of the 

IR behaviour of the propagator. As already remarked this is expected to 

involve non-perturbative aspects of the theory. k!e can make use of the 

freedom to vary qL to learn about this region, for, just as q2L + 0 

corresponds to q2 + co, so q2L + Q) corresponds to q2 + 0. Indeed a 

judicious use of tile renormalization group allows us to relate this 
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region to the same region but with an asymptotically free couolinq 

constant. Unlike the ultra-violet region, however, small coupling here 

does not necessarily drive the theory into its perturbative regime. In 

fact we show that the presence of an instanton-like non-perturbative 

term* of the form e-c/s2 leads to a pouer change in the IR behaviour, in 

marked contrast to ordinary perturbation theory which usually only 

induces logarithmic corrections.’ Thus, if a highly singular IR 

behaviour of the gluon propagator is interpreted as a signal for 

confinement, then this suggests that instantons are, indeed, the 

physical origin. In a recent paper9 we have, in fact, shown that, in 

spite of its gauge dependence, the singular nature of the gluon 

propagator can be used as a criterion for confinement. More 

specifically, we proved that if the gLV term in the propagator is more 

singular than l/q2 in any one oauqe then, for pure QCD, the gauge 

invariant Wilson 10op’~ behaves like e-*, where A is the area of an 

asymptotically large loop. The propagator need not be singular in all 

gauges; all that is required is that it be highly singular in at least 

one gauge. Since the area law is generally accepted as the criterion 

for confinement in pure QCD, a demonstration that the gG2, term be highly 

singular in some gauge is therefore tantamount to a proof of 

confinement. There has been extensive work in the axial gauge on the IR 

behaviour of the propagator particularly by Baker, Ball and 

Zachariasen. l1 They attempt to solve a truncated form of the 

Schwinger-Dyson equations by looking for a self-consistent solution and 

claim that this leads to a l/q4 behaviour. Their truncation involves 

keeping only one invariant piece of the g”” term [the Abelian-like 
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piecell and it is th is that 

possibility that such a behav iour for the full gwV term does no\ 

is singular; there, of course, rema ins the 

survive 

in the full theory. Unfortunately this appears to be the case. Indeed, 

-it can be shown that the positivity of the relevant spectral functions 

together with the proven analyticity properties make it impossible for 

the ctw* term to be more sinaular than l/q2 in the IR. This behaviour is 

obviously not sufficient to infer an area law for the Wilson loop and we 

therefore conclude that it is not possible to prove confinement (at 

least via the Wilson loop) from the IR behavior of the qluon propaqator 

in the axial qauqe. It is, of course, conceivable that confinement 

could be related to the truncated propagator via some criterion other 

than the Wilson loop so in this sense the work of Ref. 11 may well be 
- 

relevant to the confinement issue. It should be noted that there 

-appears to be no such constraint in other gauges since positivity no 

longer remains valid-l3 Ironically, positivity does not constrain the 

singularity structure of the truncated propagator considered in Ref. 11 

and this is, in fact, allowed to develop a highly singular behaviour. 

The point is that this is only one piece that contributes to the 

confinement criterion. This argument has the further consequence that 

our renormalization group discussion on the role of instantons is not 

strictly relevant to the confinement problem. Nevertheless the general 

conclusion that instantons induce IR power singularities remains valid 

and is presumably related to the singular behaviour discovered in 

Ref. 11. 

-8- 



2. DEFINITION AND GENERAL FORM OF THE PROPAGATOR IN THE 
AXIAL GAUGE 

In the axial gal!ge defined by nuAu = 0 the conventional generating 

functional may be written in a particularly simple forrn'+*lb namely 

a i$[ 5??+ JawA"aId'x 
$68 AaU e 6CnwAaU1 

W[J] = 
i$5Z?ddlix 

,f gAaw e G[nwAawl (1) 

where 9 E l/4 (FwV)2, FwV being the standard non-Abelian field tensor: 

F =t.w 5 buAaV - >,A=, + gfabCAbwACy 

In this gauge the theory requires no ghosts so that the gluon Hilbert 

space, SVG, is positive definite. In terms of (1) the gluon propagator 

is defined to be 

62WCOl 
&Al? =b(x - y) E - 

GJawL(x) 6JbV(y) (2) 

This can be related in the usual way to a time-ordered product of the 

fields: 

&LY =bcx - Y) = <OIT[A=w(x) Aby(y,l lO> (3) 

The normalization inherent in (1) [i.e. dividing by ‘*<OlO>‘*l will 

conventionally be suppressed; note, however, that its presence tells us 

to the gluon 

ied with the 

in Section 3. 

be denoted 

that the vacuum state used in (3) is the vacuum appropriate 

Hilbert space, C%s, This is not, in general, to be identif 

physical vacuum state; we shall return to this point below 

The momentum space representation of the propagator will 

by 

Dcrv ah(q) f $d'+x eiqsx &,ab(x) (4) 
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Below we shall derive a Lehmann representation for this object and 

relate it to its spectral function defined by 

PWV ah(q) E Jd#x eiqax <OICAa,~x),Ab,tO>l~O> (5) 

These objects are, of course, gauge dependent and therefore their 

general Lorentz decomposit ion varies from gauge to gauge. In the axial 

gauge, for example, the most general form for pwv is given by 

pclv ab = _ P @  
[ 

w-b + nw9Y n2quqv 
gfiv - +- 

n-q (n-q12 1 

[ q.h 
+ Ptab %l,Y - - 

n2 I (6) 

The scalar functions pi depend on the invariants qz, n-q and n2; there 

is, of course, an analogous decomposit ion for Dlly leading to two 

corresponding scalar functions Dl,z. Below we shall elaborate on the 

variable dependence of these functions when discussing the 

renormalization group equations. Since their dependence on the colour 

indices is trivial (0: Sat,) we henceforth drop these indices. 

Before deriving the Lehmann representation we should say a few words 

about the essential difference in structure between the Abelian (QED) 

and non-Abelian versions of the propagator. The Abelian piece of the 

field tensor is Fawy 5 ECIAaV - bVAaW so FaKv = F =CLv + 9fabcAbwACv. 

Now, consider the correlation function 

jd4x eiqex <Ol C~a~~(~),~bpy(013)0> (7) 

which can be trivially related to pPy of Eq. (5). It is straightforward 

to check that its sole dependence on the gauge parameter nW is through 

the nlLnV term in Eq. (61. However, in QED, ruy is gauge invariant 
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(i.e., it is independent of nUL) and so ~2 (the coefficient of nDny) must 

vanish identically. Furthermore, this also shows that in this case p1 

can only depend on q2 and indeed, below, we shall show that it is 

basically gauge invariant reflecting the gauge invariance of the 

classical long-range l/r Coulomb potential. Note, hotiever, that this 

argument immediately breaks down for QCO since FLV is no longer gauge 

invariant and thus p2 # 0. In fact, this shows that p2 is directly 

sensitive to the presence of the non-linear triple-gluon coupling and 

vanishes only in the free field limit, namely when g + 0. Thus, an 

approximation in which p2 is neglected as in Ref. 11 is inevitably an 

inconsistent one for the non-Abelian theory; this dces not, of course, 

necessarily invalidate results on the IR behavior of ~1. 
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3. THE SPECTRAL REPRESENTATION 

ion we shall derive a spectral representation for DIrv in In this sect 

the axial gauge 

-introduces some 

space-like n2. 

. The fact that the pi depend on n-q as well as q2 

minor complications which lead to a restriction to 

Before beginning the derivation we need to introduce a 

notation for the decomposit ion of an arbitrary vector 8, into its 

longitudinal (L) and transverse (T) parts with respect to n,,.: we define 

n-B 
IP L E 

I I 
- r+ 

n2 

an d 

Thus I??L = (n*B)2/n2 and B2 = B2~ + B2T. Furthermore n*BT = BT'BL = 0. 

Consider the correlation function ..- 

p+wv(q,n) E .fd4x eiqex <OIAw(x> Ay(0)lO> (8) 

We shall assume that there exists a comPlete set of states IN> which 

spans .%s (one of which is the vacuum state IO>). This set of states is 

not, in general, to be identified with the physical spectrum IN,> which 

is complete in the physical Hilbert space Z',; in general 2, may or may 

not overlap with Xs. Note that the physical states IN,> are not 

compl.ete in Y~G (and vice-versa; the "unphysical" states IN> are not 

complete - in fact, they are expected to be over-complete --in ZZ',,>. In 

pure QCD, where one presumes colour confinement, the IN,,> states which 

span X,, will be colour singlets and will also lie in xs and therefore 

overlap a sub-set of the set IN>. 

Introducing then the complete set IN> in (8) leads to 

Ptwv(q,n) = 1 <OlAwIN> <NIAvIO> (2n)'b(')(q - pN) 
n (9) 
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with the restriction that qo = p" 2 0. Now, from Eq. (5) pllv clearly 

satisfies a crossing property 

. pu,y(q,n) = - Pcrv(-q,n) (10) 

Furthermore it can be trivially related to P+DLY: 

buv(q8n) = ptDy(q,nI - ptlrV(-q,n) 

The inverse of this reads 

p+uV(q,n) = e(q0) pbv(q,n) 

(11) 

(12) 

or, inverting the transform, 

s d’q 
<OjA,Jx)AV(0)IO> = ~ emlqex 6(q0) ptiy(q,n) 

(2TTI4 (13a) 

s 

d’+q co 
‘q’xkqo) 

s 

iqL*YL 
= - e‘ dyL e PI~Y(9z~Y L) 

(2TrIb -co 
(13b) 

where we have introduced the longitudinal Fourier transform, jj,V(q2,yL) 

of P&92DqL). I5 In terms of the canonical advanced (retarded) Green's 

functions 

A',,(x,l.l s d4q $2) - - q + eiiq-x 0 

(2n)’ 
(qo) b(q2 - u2) 

we can express Eq. (13) as 

(14) 

<OIA,(O)A,(x)IO> = dq2 
J J 

dyL ijClv(q2ryLI A+(x-yL~q21 
0 -co (15a) 

The crossing property, (101, leads to a crossed version of (15a): 

03 

s s 

a, 
<O~A,(O)A,(x),O> = dq2 dyL ij,,(q2,yL) A-(-x+vLlq’) 

0 -03 (15bI 

We have thus far been a trifle cavalier about the tensor nature of plLy 

in the integrands of the above equations. In the coordinate 

representation the tensor decomposit ion of pcLv in Eqs. (15) leads to 
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In con ventional derivations of the Lehmann representation as, for 

example, in a covariant gauge5e6, the analogue of pWV does not depend on 

yL and so puy is proportional to b(yL). The resulting combination of 

Green's functions in the square brackets of Eq. (16) is then precisely 
- 

space-time derivatives & acting on the A’ functions. Now, the full 

propagator DUV is related to the time-ordered product of the fields and 

this operation does not commute with the time derivatives arising from 

-the time components of pKy. To proceed further we therefore restrict 

the discussion to the purely spatial components of (15) and consider 

co co 
<OITCAi(X)Aj(O)I10> = dq' 

I I 
dYL Fij(q',YL) 

0 -03 

x Cf3(xo)A+(x-yL,qz) + 8(-xO)A-(x-yL,qz)l (16) 

the standard Feynman function AF(x,K~) whose transform is the canonical 
. 

(q2-u2+ie)-' singularity. This then leads to the conventional Lehmann 

spectral representation. The above argument clearly breaks down in 

axial gauge due to the presence of yL; in general, there is no simple 

representation for the quantity in the square brackets of Eq. (16). On 

the other hand, when np is space-like, yL is space-like and causality 

allows us to replace 8(x0) by 6(x0-yL). In that case one can indeed 

proceed as before and derive 

CJ (D 
<OITCAi(x)Aj(O)I10> = dq2 

I I 
dYL Plij(q’>YL) AF(X-YLt.q’) 

0 -a, (17) 

In momentum space this reduces to the standard Lehmann form: 

Q) Pi(q"tqL) 
Di(q*,qL) = 

I 
dq'2 

0 q'2 - q2 (lea) 
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in which qL acts as a fixed parameter. It should be emphasized that 

(18a) is valid only when nw is space-like (n2 < 0); our derivation fails 

in time-like gauges (n2 > 0) since one can then no longer replace 0(x0) 

-by 0(x0-YL). 

a 
This representation is in the form of a standard dispersion relation 

which expresses the analyticity of the Di as a function of q2 when qL is 

kept fixed. Indeed the conventional Lehmann representation can be 

derived directly from analyticity considerations which follow from the 

causal nature of the commutator in Eq. (5)". From this point of view it 

is only natural to ask why such a proof breaks down when n2 is 

time-like. The standard way of "proving" analyticity is to first 

establish analyticity in qo2 for fixed q2. To do so one notes that a 

typical factor in the integrand of Eq. (1) is of the form eiqoxo 8(x0) 

multiplied by a factor that vanishes outside of the light cone. Thus 

the integral over x is expected to converge provided Imqo > 0 thereby 

defining an analytic function of qo in the upper half-plane. A similar 

argument obviously connects the vanishing of the commutator outside of 

the backward light cone with analyticity in the lower half-plane. The 

two regions can be connected since there is a region along the real axis 

defined by qo2 < q2 where D has no discontinuity. We can therefore 

write a standard dispersion relation in qo2 at fixed ;i2: 

co 
Di(qo2,~2) = 

I 

Pi(q'O' ,?j2)dq'02 

-00 qNo2 - qo2 

[The usual ie prescription is to be understood.] A similar 

(18b) 

representation can be proven in terms of a different component of qu in 

place of qo provided the component is time-like; this simply reflects 
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the possibility of replacing S(xo) in (161, for example, by f3Cn.x) 

provided n2 > 0. If we are in a space-like gauge we can make a change 

of variables qo’2 = q2 + q’2 to derive (18a). If, however, we are in a 

time-like gauge this is not possible since then the integration variable 

is basically the gauge variable q'L; thus, for example, when qo2 is 

varied, both q2 & q2L necessarily vary so one cannot infer a 

dispersion relation in q2 at fixed qL.16 Nevertheless, it should be 

emphasized that even in time-like gauges Eq. (18b) is expected to hold 

and, indeed this can be confirmed directly from Eq. (161." 
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4. THE LEHMANN SUM RULE AND THE EQUATIDNS OF MOTION 

From Eq. (15) we can immediately derive a representation for the 

commutatoris [see Eq. (511: 

I 
d’q 

<OJCAi(X),Aj(O)I]O> = - e-iq*X pij(q) 
(aTI 

io 
dyL ijij(q2>YLI A(X-YLJV~’ 

-co (191 

As before we restrict the indices to be space-like in order to avoid 

introducing kinematical time derivatives into the integrand via the time 

components of pWV. Let us now set x0 = 0; if YL is space-like then 

ACx-y~,w~) 1 xo=o = 0 showing that the imposition of the canonical 

commutation relations 

CAi(X),Aj(O)I 6(X0) = 0 (20) 

is consistent in space-like gauges, On the other hand, for time-like 

gauges (where ye is time-like) setting x0 = 0 does & imply that 

A(x-Y L,CL~) 1 x0-0 = 0; it would therefore be inconsistent to impose 

Eq. (20) as a canonical commutation relation in these gauges! 

A sum rule5p6 can be derived from the observation that in space-like 

gauges (n2 < 01 b~~~x-y~~~~)l x0-0 = iSC3)(x-yL) = ib'2)(l~)S(xL-yL1. 

From (19) this leads to 

I 

co 
I d4x eiqwx <OlCboAi(X),Aj(O)I S(XO)IO> = i dq2pij(q2tqL) 

0 (21) 

That this is not valid in time-like gauges is, of courser intimately 

related to the fact that the Lehmann representation, Eq. (18a1, is not 

valid in these gauges. Indeed it is not difficult to check that the 

left-hand-side of (21) is none other than -i lim q2Dij(q2,qL) which 
q2+- 

is consistent with Eq. (18a) only when n2 < 0. 
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In order to extract information from (21) ue need to explore the 

value of the equal time canonical commutation relation which follows 

from the equations of motion. 7 The canonically conjugate momentum to Air 

-is na, = FaLLo; since flao = 0, Aa o cannot be used as a dynamical variable 

and must be eliminated prior to quantization. The equations of motion 

are 

bUF'va = gfabcFb,uACw (22) 

Note that this contains Gauss' law 

biEai = gfabcibiACi (23) 

where Eai s Faio (the colour electric field) and this must be viewed as 

an equation of constraint since it does not involve time derivatives. 

Its main role here is to allow E=L to be expressed in terms of EaT: 

explicitly 
. I- 

~LE~L = -bT * EaT + gfaboEbT . ACT 

(provided n2 is space-like). 

From the definition of nau one can immediately derive that 

(24) 

~LA=~ = Eat (25) 

Thus, in space-like gauges, Aao can straightforwardly be eliminated in 

favour of transverse components for which canonical commutation 

relations are valid. Thus we impose the following commutation 

relations: 

CA~T(X),A~T(O)I S(XO) = CE~T(X),E~T(O)I 6(x0) = 0 

and 

(26) 

h.h 
CAILT(~),EVT(0)l S(xo) = i guV - - 

I 
S"'(X) 

n2 (27) 
A rather long and tedious calculation employing the equations of motion 

then leads to the additional relation for the transverse components 
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$ dqx eiqex <OICboA ai(X),Abj(0)I S(x,)lO> 

= iSab [Sij - y] + ig2 cxs_dX~X~E(Xl) eiqLXL ~OIAa~(x~~OIAb~~~~~O~ 

-where C = fabcfabC/N. This is what is required to derive the sum rules 

from (21): one easily sees that 

I 

a, 
dq2 A,(q2,qL) = 1 

0 (29a) 

and 

I 

co 

dq2 pt(q2,qL) = L(qL) 
0 

where- 

(29b) 

I 

co iqL.xL 
bij Gab L(qL) = -9' C  dxLxLE(xL) e <OIAai(XL,O)Abj(0)lO> . 

-0J 

The technical origin of the terms xLe(xL) arises from eliminating the 

extra degrees of freedom via Eq. (24) and (25) [i.e. from b'2~S(x~)l. 

Their presence is intimately related to the so-called principal value 

prescription for dealing with the qm2 L singularities in the axial gauge 

which we shall discuss in some detail below. 

It is interesting to note that the conventional form of the sum rule 

for p1 has survived with qL acting simply as a parameter; the existence 

of canonical commutation relations guarantees the constancy of the 

right-hand-side. On the other hand, the sum rule for pz is considerably 

more dynamical in structure; the right-hand-side is not only qL 

dependent but is directly sensitive to the triple-gluon coupling.1g This 

is in agreement with our gauge argument at the end of Section 2 where we 

also concluded that p2 = 0 when g + 0. 

- 19 - 



The conventional Lehmann sum rule forms the basis for a proof that 

QED screens the charge; i.e. that the "physical" charge is necessarily 

smaller than the "bare" one. Crucial in the standard proof5p6 is the 

-positivity of pq. We now turn to a discussion of this in QCD. 
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5. POSITIVITY CONSTRAINTS ON THE SPECTRAL FUNCTIONS 

In QED the positivity of the photon spectral function plays a crucial 

role in proving that the charge is screened.5 In this section we shall 

derive some analogous constraints for the Ai in axial gauge and examine 
a 

how they give rise to anti -screening in QCD. Below we shall further 

examine their consequences for the infrared structure of the theory. To 

derive the constraints we first form the following object:20 

PKP+uvP" = 1 I<Olp-AIN>12(2~)~b'4'(q - PN) 
N (30) 

where pu is an arbitrary four-vector. In covariant gauges the Hilbert 

space is not positive definite and the set IN> contains states with 

negative norm; the presence of such ghosts leaves the sign of (30) 

indeterminate. To circumvent this problem Oehme and Zimmerman2 

projected the fields onto a positive definite part of the Hilbert space 

in order to define positive definite pi. They then claim that 

anti-screening (i.e. asymptotic freedom) is inconsistent with such 

positivity and that only the additional presence of a certain minimum 

number of fermion flavours (101 can circumvent this problem. In the 

axial gauge on the other hand there are no ghosts so that (30) is indeed 

positive definite. We can read off from it the consequent positivity 

properties of the pi and examine the possible conflict with asymptotic 

freedom. 

Combining Eqs. (5) and (30) gives 

[ 

2(n+p)(p.q) n2(p*q)2 

I [ 

(n.pJ2 
-Pl P2 - + + P2 P2 - - 1 2 0 

(n-q) (n*q)2 n2 (31) 

There are three non-trivial possibilities for p: (a) perpendicular to n 

(i.e. n-p = 01, (b) perpendicular to q (i.e. p-q = 0) and (c) parallel 
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to q (the case when p is parallel to n makes pvptcI.VpV E 0). We shall 

also employ the kinematical constraint that q2 2 0; (for q2 < 0, 

p+pv = 0). Let us consider the possibilities one at a time: 

a) n-p = 0: this gives 

(p-q)2 
-p,n2 - + p2(p2 - p,) 2 0 

(n.q12 

Suppose we now set p2=0 in order to learn about ~1: then 

(32) 

(p*q)Z 
-n2 - pl(q2,qL) > 0 

(n.qIz (331 

If n2 > 0 then since n-p = 0, pIL E 0 and the above is trivially 

satisfied; on the other hand, if n2 < 0, pw, though light-like need not 

0. This, of course, presumes vanish and we can deduce that pl(q2,qL) 2 

usual principal that (n*q)-2 2 0 which is violated by the 

prescription. We shall return to this po 

Note, incidentally, that since q2 2 0 it 

int in some deta 

is impossible to 

value 

1 below. 

set 

p2(n.p12 = -n2(p.q12 in (32) in order to deduce any information 

concerning the positivity of ~2, regardless of the sign of n2. 

b> p-q = 0: this gives 

(n.p12 
(P2 - Pl)P2 --p2 10 

n2 (34) 

Because q2 is time-like (2 0) we are not permitted to set 

and isolate p2 in (34); in fact, p2 is necessarily space- 

We are permitted however to set n-p = 0 regardless of the 

deduce that p1 2 pt. Note, incidentally, that we can set 

P2 = 0 here 

like (p2 < 01. 

sign of n2 and 

n2p2 = (n*P)2 

here provided n2 < 0 and reconfirm that p1 2 0; this is a special case 

however since the condition also implies n*q = 0, which we shall study 

below. 
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cl p = q: this gives 

[ 

n2q2 

I[ 

(n.q12 
q21-- Pl - PZ ~ 

I 
10 

(n-q12 n2q2 

Since q2 2 0 this requires 

(n.q12 
Pl - Pt - 2 0 

n2q2 

regardless of sign (n2). For n2 < 0 this is equivalent to 

n2q2 
Pt 2 - Pl 

(n.q12 

(35) 

(36) 

(37) 

Let us summarize these results: 

A. n2 > 0: Neither p1 nor p2 have hefinite sign, as in a covariant 

gauge.- Nevertheless the following restrictions are valid 

Pl 1 P2 . (3Sa) 

and 

n2q2 
- Pl 2 P2 
(n.q12 (3Sb) 

8. n2 < 0: Again p2 has no definite sign, but it is restricted to 

the follolcring range: 

n2q2 
Pl 2 p2 2 - Pl 

(n*q)2 (39aI 

Furthermore 

Pl 2 Q 139a) 

Note that (39a) allows p2 to be zero, as it is in QED2' 

Finally, it should be emphasized that the point n-q = 0 is excluded 

from this discussion since it is a singular point of the gauge and must 
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be dealt with separately. Indeed, as Frenkel and Taylor’ pointed out, 

it is precisely this gauge singularity that allows anti-screening to 

co-exist with the positivity of p1 in axial gauges. Because the gauge 

-singularity is a special point we shall discuss its origins and 

interpretations in some detail in the following section. 
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6. THE GAUGE SINGULARITY 

The basic origin of the axial gauge singularity resides in the fact 

that the breaking of Lorentz invariance along one particular direction 

(nil) induces a fake long-range force and thereby an associated fake 

infinite energy. In two-dimensions this force is, in fact, real and is 

the reason such theories confine. However in higher dimensions such a 

force is illusory and has no explicit physics associated with it. The 

essential features of the singularity have basically nothing to do with 

the non-Abelian character of the theory so, for simplicity, we shall 

talk mainly in terms of QED. We shall examine the character of the 

singularity from that of the gauge nature of the theory as well as from 

the equations of notion. 

In a covariant gauge, the spurious gauge singularities can be dealt 

with on an identical footing to real dynamical singularities with the 

additional proviso that the spin-statistics connection be relaxed; hence 

the concept of ghosts.“’ We can, in principle, thus gain an 

understanding of how to deal with the non-covariant qL singularities in 

the axial gauge by starting in a covariant gauge and making a gauge 

transformation. For example, suppose we are given the spectral function 

in an arbitrary covariant gauge; denote it by pctlv. Its most general 

form is 

[ 

qclqv 
PC,v(9) = -p=(qZl g1*v - B(q21 - 

q2 
1 (40) 

where pc(q2) and R(q2) are arbitrary functions of qt. We can obtain the 

axial gauge value of this, Eq. (61, by the gauge transformation 

All = A’=w - %A 

where h(x) is an arbitrary function of x. Since +A, = 0, 

(41) 
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aLh = A=L (421 

where bL = nwh and ACT E +A,. If we naively replace bL by iqL in 

momentum space then we find that p1(q2,qL,n2) = pc(q2), independent of 

-R(q2), and pz = 0 (as it must in QED). Indeed it is clear that no pure 

Abelian gauge transformation can change the coefficient of gwv and so 

even in non-covariant gauges, p1 is a function of q2 only. This is 

equivalent to the statement that 23 is gauge invariant ensuring not only 

that the notion of screening in QED is gauge invariant but so in 

Coulomb’s law!6 

The naive replacement of bL by iqL ignores long-range surface terns 

and it is just these that are the source of the technical problem. To 

see how they arise we note that the general solution to Eq. (42) can be 

written asz2 

s 

0) 

h(XL,ET) = AC~(~‘~,S~) G(XL - x’L,ETI dx’L + Ao(ji~) 
-CO 

where 

G(x~,l~l E c(xL) + - : [: I :::;;I ’ 
h(-mtS~) + c(ET) h(m,Z~) 

Ao(RT) E 
1 + c(ET) ($3) 

and C(zT) is an arbitrary function. Notice that since 03 
A(oJ,XT) - A(-o~,~T) = s A=L(xL,XT)dxL 

-a¶ (44) 

we cannot simultaneously make A vanish for XL q t 03) without also making 

p(q21 vanish. Denoting longitudinal Fourier transforms by a tilda we 

obtain from (43): 
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1 
ii(qL,:,) = xcL(qL,3T) i' - + KB 6(qL) 

9L 
I (45) 

where K Z A(co,ETI + A(-cD,ST). We have here followed the generalized 

function approach to the interpretation of the Fourier transform of 

singular functionsz3 ;thus P represents the principal value 

prescription. If one carefully follows through the gauge transformation 

of pILv including the surface contributions one finds that it is indeed 

consistent to use the naive expression provided the l/qL singularities 

are interpreted according to the square bracket in (45). Thus, 

1 1 
-+p- + Kn 6(qL) 
qL 9L (46) 

One still has the freedom to impose boundary conditions on A; the 

conventional choiceze is K = ._- 0, corresponding to-A(OJ,zT)--= -h(-c~,BT1. 

This, of course, is just the standard principal value prescription. 

Notice that (46) can be represented as 

(47) 

1 qL + KE 
- = lim 
4L E+O q2L + 62 

and its derivative as 

1 q2L + 2qL KE - e2 
- = lim 
q2L E-+0 (q2L + e2)2 

(qL + Ke12 - l 2(l + K2) 
= lim 

E'O (q2L + e212 (48) 

Thus we see that, not only is the conventional principal value 

prescription (i.e. K = 0) fo r l/q2L not positive definite, but neither 

is any allowable generalization (K # 0). This is important because it 

guarantees that no alternative prescription for dealing with the gauge 
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singularity (i.e. K # 0) can 

as discussed in the following 

does not depend on a specific 

lead to a def ini te sign for l/q2L. Thus, 

section, the origin of asymptotic freedom 

prgscription for the singularity. Note, 

-also, that l/q”L has no imaginary part regardless of the magnitude of K 

and so makes no contribution to unitarity thus preserving the ghost-free 

nature of the gauge. 

Finally, we should point out that the gauge singularity is of course 

manifest in the equations of motionz2 and was, in fact, explicitly dealt 

with when deriving the commutators pertinent to the sum rules. The 

presence of XLE (XL) in Eq. (28) corresponds precisely to the use of the 

standard principal value prescription.. It originates there from the 

need to eliminate Aao as in Eqs. (241 and (251: 
- 

a2 LAO = bLEL = -DT * AT (491 

These equations are precisely of the type satisfied by A and therefore 

have the same consequences and interpretation. 
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7. A PROOF OF ASYMPTOTIC FREEDOM AND ANTI-SCREENING 

In this section we return to a study of the consequences of the sum 

rules, (291, exploiting the positivity constraints derived in Section 5 

while keeping in mind the problem of the gauge singularity discussed in 

Section 6. Let us first recall the standard proof of screening in 

QED.5e6 We have already shown that, in QED, p2 = 0 and that p1 is a 

function of q2 only. Separating out the one-photon contribution to the 

unitarity sum isolates 23, the (gauge invariant) charge renormalization 

constant:25 

I 
43 

23 = l- dq2 pl(s2) 
4m2 (50) 

Here m  is the electron mass. Since p1 1 0 it is clear from this - 

equation that 23 must be less than unity. Thus the physical charge is 

necessarily less than the “bare” charge and we have the phenomenon of 

screening. Physically this is due to the virtual creation of charged 

e’e- pairs which screen the “bare” charge. 

In QCO there are some crucial differences. First, in axial gauge, 

P1* though still positive, depends on qL as well as qt. The analogue to 

Eq. (50) thus reads 

s 03 
z3(qL) = 1 - dq2 p1 (q’,qL) 

0 (51) 

Notice that the second major difference with QED: the continuum 

contribution begins at q2 = 0 since a gluon can create virtual massless 

gluon pairs. Indeed, isolating the one-gluon contribution is, in this 

sense, arbitr&ry a!id misleading since all thresholds pile up at q2 = 0. 

The only reason for doing this is to isolate Z3 with the view to 
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understanding the origin of anti-screening.26 We shall return to this 

infrared aspect of the problem in Section 9. 

Now, as explained by Frenkel and Taylor', Eq. (51) is at first sight 

-paradoxical since the positivity of pl should again lead to the 

-A 
conclusion that QCD, like QED, screens the charge and this is in 

contradiction with asymptotic freedom. However, as is manifest in Eq. 

(331, the positivity of p.i assumes that qL2 is positive and this is 

violated by the prescription for dealing with the gauge singularity. In 

fact, what we actually proved was that 

p,(q2rqL) 2 0 when qL # 0 

but that 

p,(q2,0) 1 0 when qL = 0 

Frenkel and Taylor pointed out that in perturbation theory it is this 

-negative piece which solves the paradox and gives rise to asymptotic 

freedom. We can generalize their argument in a way which naturally 

leads into the renormalization group. 

On dimensional grounds it is natural to introduce the dimensionless 

function d(q2/q2L) E q2p(q2,qL) in terms of which (51) reads 

Z3=lj~d[~ 
(521 

Recall that the sign of the R-function is governed by the (gauge 

invariant) logarithmically divergent piece of (521'~~. Now it is 

obvious that the large q2 behaviour of the integrand corresponds to the 

limit q2L + 0 and this is precisely where the siqn of d chanaes from 

positive to neqative. Thus we prove that 

(z3)div Z 1 (53) 
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corresponding to anti-screening and asymptotic freedom. Notice that 

this result goes beyond perturbation theory in the same sense that the 

original Lehmann proof of screening in QED [(Zo)div S 11 does. Although 

-a straightforward perturbative calculation of d(a?) naturally reproduces 

the standard result, it is worth emohasizino that this arsument proves 

that QCD must be asymptotically free without the necessity of performinq 

any calculation! In this regard we should mention that the whole 

analysis can be directly performed in the gauge n-q = 0 which simplifies 

things considerably. The point is that with this choice, bLAac = 0 so 

Aao decouples from the dynamics and can be treated as a c-number. The 

evaluation of the commutator relevant to the sum rule is now trivial 

because boAai can effectively be replaced by the canonical coordinate 
- 

Ea. 1’ One can then derive a sum rule of the form (501, as in the 
. 

covariant case, and prove that the corresponding spectral function is in 

fact neclative definite leading directly to (53). 

A couple of further comments are worth making before turning to a 

discussion of the renormalization group. The structure of the "paradox" 

implicit in (511, namely the apparent inconsistency of asymptotic 

freedom with the absence of ghosts, is strikingly similar to the uork of 

Oehme and Zimmerman.2 They work in a positive definite sector of an 

indefinite matric Hilbert space thereby maintaining covariance and 

positivity and likewise find an inconsistency. Our experience with the 

axial gauge suggests, though by no means proves, that a similar 

resolution must occur in their work. Thus, one expects that a hidden 

"kinematical" singularity analogous to the qLW2 in axial gauge violates 

the positivity constraint in such a way as to produce anti-screening. 
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Our final comment of this section concerns the sum rule for ~2. 

Recall that, althoi.gh p2 has no definite sign, it is bounded from above 

by ~1. Thus we deduce that L(qL) < 1. Since L(qL) a g2<7i-7i> one might 

-hope to use this to extract interesting bounds on the coupling constant. 

However we have not been able to do so and view this second sum rule as 

of limited value. 
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8. THE RENORMALIZATION GROUP EQUATIONS 

In the argument at the end of the last section where we proved that 

(zs)d iv Z 1 we were somewhat cavalier in treating the hidden cut-off 

-parameter essential for renormal izing the theory. In this section we 

shall concentrate on this aspect of the problem by considering the 

renormalization group equations for the propagator in axial gauge. The 

presence of the exl;ra kinematical variable qL (the "gauge parameter") 

introduces some minor complications, though, as we shall see, it also 

supplies a potentially powerful tool for probing the infrared structure 

of the theory. We shall Nork with the dimensionless function 

[ 

q2 c12L 
d -8 g(CL21 

;' c12 1 f q2D(q2rqL) . 
(54) 

- 

For simplicity we have suppressed all indices. As usual v represents 

';the arbitrary mass scale at which we have chosen to normalize the 

theory. If this scale is changed (e.g. p2 + Ak2) then the 

renormalizability of the theory requires that this be equivalent to a 

resealing of d by a factor Z: explicitly 

q2 q2L r12L q2 q2L 
d -p -t 

[ 
g(y2) 1 [ = Z -, g(h2),A 

I [ 
d -, -, g(h~2) 

P2 P2 P2 xp2 Xl.l2 1 (55) 

Differentiating this with respect to A and setting X q 1 leads to the 

renormalization group equation’ 

[ 

3 b 
-+- + R(g) + 'Y(T,g) 
at bT 1 d(t,T,g) = 0 

(56) 

Here we have introduced t E -An q2/qo2, T E -.L?n qL2/q02, R E bg/bXlx=, 

and Y(T,g) = b/bX RnZ(T,g,XII~=~. The solution to (56) can be 

expressed in various forms; two of the more interesting and useful are 
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d(t,T,go) = dCO,T-t,g(-t)le 
-lof dt' X[T-t',g(-t')] 

(57) 

and . 

d(t,T,go) = dCt-T,O,g(-T)le 
-so' dt' AIT-t',g(-t')] 

(58) 

where g(-t) is the usual running coupling constant derived from R(g). 
9+0 

In QCO R(g) + -bg3 with b > 0 leading to asymptotic freedom.' This is 

reflected in the large q2 behaviour of g: 

t-+m  go2 
g'(-t) -> 

l- 2bgo2t (59) 

Equation (57) implies that the larqe q2 behaviour of d is related to its 

free field behaviour at fixed q2 but wjth q21 + 0 (since T-t + 0~). This 

feature of the axial gauge was exploited in a less arcane fashion in the 

previous section uhen we proved that (Zs)div 1 1. Recall, incidentally, 

that the exponential contributions in (57) and (58) typically induce 

powers of log q2 in the usual way. 

A curious and potentially powerful feature of this gauge is the 

duality exhibited between q2 and q2L as shown explicitly in Eqs. (571 

and (58). Just as the large q2 limit can be approached by making qL2 

small, SO the small q2 limit can, in principal, be approached by makinq 

qi2 larse! For example, take q2L + CC (i.e. T + -00) in Eq. (58) then on 

the right-hand-side we need the value of d for small coupling 

Cg(-T) + 01 and for "t." (= t-T) + co (i.e. q2 + 0). Although this is a 

delicate limit it illustrates how the behaviour in the infrared (at 

fixed couplinq) can, in principle, be related to a similar behaviour but 

with an asymptotically free couplinq constant. Such a connection 

between the ultra-violet and infrared is, of course, inherent in the 
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renormalization group equations. Whether it can actually be exploited 

is not clear since it inevitably involves invoking boundary conditions 

in regions where we have little knowledge. In order to explore this 

possibility and to see whether one can exploit the presence of the extra 

variable qL in the axial gauge we present a possible scenario in the 

following section. 
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9. THE INFRARED BEHAVIOUR OF THE PROPAGATOR, INSTANTONS 
AND CONFINEMENT 

Naively, the infrared (IR) behaviour of the propagator is expected to 

tell us something about confinement; a highly singular behaviour for the 

* transverse part is suggestive of a long-range confining force. On the 

other hand, the propagator is gauge dependent so it is difficult to know 

what meaning, if any, one can ascribe to its IR behaviour. The fact 

that it is gauge dependent does not, necessarily, mean that it does not 

contain physics; rather, it is that the physics is obscure and therefore 

difficult to extract. In QED the problem is easily circumvented since 

j7q(q2) is gauge invariant; indeed one can show that its IR behaviour 

l/r 

lution 

leads to l/q2 for the propagator corresponding to the classical 

Coulomb potential. As already shown earlier, no such s 

emerges in QCD. 

imple so 

Because of this problem attention has generally been focused on the 

gauge invariant Wilson loop lo (01 rather than the propagator: 

cd E <OITr P e 
ig$AawXadxw 

I o> (60) 

Here P is the path ordering symbol which orders the X, matrices around 

the loop integral. For a rectangular loop lying parallel to the time 

axis 0 * e- vtRlt for large t; V(R) can be interpreted as the potential 

energy of a static quark-antiquark pair separated by a distance R. Thus 

it is the Wilson loop rather than the propagator that determines the 

(gauge-invariant) static long-range force. For a non-confining theory 

one expects 0 - e- t whereas for a confining one [where V(R) - R, for 

example1 one expects w - e' A, A being the area of the loop. The area 

law can therefore be taken as a signal for confinement. 
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In a recent paper9 we showed how to relate the physics buried in the 

propagator to the Wilson loop. This is done via the following 

inequality: 

-112 g'$dx,&dyv bab,,.&x-y) bat, 
0 < e (61) 

Notice that this involves bounding a gauge invariant physical object, at 

by a gauge dependent unphysical object. Thus, if in some qauqe, 0 is 

highly singular in the IR, then (61) implies that o 5 emA, indicative of 

confinement. If, on the other hand, it behaves mildly, as in QED, then 

w 2 evt and no conclusions can be drawn concerning confinement. Thus, 

the inequality (61) circumvents the gauge-dependence problem inherent in 

using the behaviour of the propagator as a signal for confinement: 

explicitly, (61) implies that a hishly sinqular IR behaviour of the 

.qluon propaqator in any one qauae is sufficient to prove..confinement. 

Physically it corresponds to the statement that the actual long-range 

static potential is at least as strong as the naive potential derived 

from the gluon propagator. We should exmphasize that the proof of (61) 

involves only that piece of Oclv proportional to gwy (effectively only 

the transverse piece). In QED this piece is unaffected by a gauge 

transformation; in QCO, on the other hand, it remains gauge dependent 

and it is this property that presumably allows a highly singular 

behaviour to develop. 

Most of the work on the IR behaviour of the gluon propagator in QCO 

has been within the context of the Schwinger-Dyson equations. Typically 

these are truncated and self-consistent solutions sought for the ensuing 

equations. There are several claims in the literature that this leads 

to a l/q' behaviou:,' l*13 which, if valid, would superficially, at least, 

be tantamount to a proof of confinement. 
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In this section we would like to explore two aspects of the problem 

within the axial gauge: (a) the constraints imposed on the IR behaviour 

due to analyticity and the positivity of the spectral functions; (b) the 

-possibility that the IR limit can be obtained by taking qLz + w using 

the renormalization group and that a highly singular behaviour is 

correlated with the existence of instantons. 

a. Constraints due to Analyticity and Positivity 

In Section 3 we showed that in a space-like gauge the Di(q*,q 1 

satisfy a Lehmann representation, Eq. (1Sa): 

s 

-23 pi(q'*,qL) 
Di(q*,qL) = dq'* 

0 q'2 - q* (18a) 

This expresses the analyticity of Di(q',qL) as a function of q* at fixzd 

qL. If pi 2 0 then there is no way it can produce a singularity in Di 

stronger than the simple pole already manifest in the integrand. 

Loosely speaking, a singularity can only be made stronger by cancelling 

it against a similar singularity and this is not possible if pi 2 0. A 

simple example is provided by the suggested l/q' behaviour: this 

corresponds to p y b'(q') which is not positive definite. This can be 

generalized; consider the complex variable z = reicnme) where r is its 

modulus and D its phase. The real axis is approached from above by 
E-+0" 

taking the limit D  -> e/r. Suppose D(z) were of the form zmV 

(V arbitrary) so that the complex plane were cut along the positive real 

axis; the discontinuity across this cut is 

E'O 
2ip = disc O(z) = rWV sinv(Tr - 8) 

One can immediately see that this is positive only when Y I 1; 

incidentally when v = 1 we can easily check that this gives the standard 
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b-function, as it should. This argument can be generalized to other 

classes of singularities and is, in fact, a general consequence of the 

positivity. Thus we conclude that for pi(q*,qL) 1 0, 

1 
lim Di(q',qL) %  - 

q*-+o 9* (62) 

i.e. the positivity of the spectral function restricts the propaqator 

from beinq any more sinqular in the IR than it is in QED! Now, for 

n* < 0 we have proven that p1 1 0 provided qL f 0 as is the case here 

since we are not interested in large q*. Thus D,(q*,qL) cannot be more 

singular than l/qz. However, as discussed above it is the combination 

Dt(q*,qL) q D,(q2,qL) - Dz(q*,qL). (63) 

which is relevant for confinement since this is the coefficient of guV. 

However, its spectral function, (PI-~21, was also proven to be positive 

..- 
(independent of qL, incidentally) and so Dt also cannot be more singular 

than l/q*. We therefore conclude that in space-like axial qauqes one 

can learn nothinq about confinement from studyinq the qluon propaaatorf d 

The situation in time-like gauges (n * > 0) is considerably more 

subtle since there is no longer any reason to believe that Di are 

analytic in qz. Unfortunately, however, the argument leading to the 

interpretation of (61) strictly speaking breaks down. Essential in its 

proof9 was the requirement that nw be perpendicular to the loop, i.e. 

nY 9 dxcr = 0. In order to make the connection to the static potential 

and therefore confinement it was necessary to line the loop up parallel 

to the time axis and this necessitates nn $ dxP # 0. Of course, one 

might argue that in Euclidean space such a restriction is unnecessary 

since, there, space and time are on a more equal footing. Thus 
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orienting the loop perpendicular to the time axis can still lead to a 

valid criterion for confinement and one can justify using (61) for 

n* > 0. 
. 

Given that this is valid one might then argue that the absence of a 

Lehmann representation now allows Dl(q*,qL) to develop a highly singular 

behaviour, especially since there is no longer the restriction that 

p1 2 0. However, some care must be taken; as emphasized in Section 3, 

though DI cannot be proven to be analytic in q* it is still expected to 

be analytic in qo* at fixed q*, as expressed in Eq. (18b). In a 

time-like gauge we can, for simplicity, identify qo = qL- As already 

mentioned there is no positivity constraint on p1 so D1 & permitted to 

have a highly singular behaviour in qoz and therefore presumably in qt. 
- 

However we showed in Section 4 that even when nz > 0 pl-p2 2 0 
. 

(regardless of the size of q 1. Thus Dt, the invariant relevant to 

confinement, cannot have a more singular behaviour thzn a simple pole in 

q*. Note that this does not contradict the work of Baker, Ball and 

Zachariasen" who claim to have found a self-consistent behaviour of 

l/q" for the IR structure of Dl(q',q 1. A crucial input into their 

calculation was to set D2 = 0 and look only at Dl. Houever it is the 

combination Dl-Dp that is important for confinement and according to our 

arguments this is always guaranteed to be no more singular than it is in 

QED. Ke therefore extend our conclusions to n* > 0 and claim it is not 

possible to unambiquously learn about confinement from the IR behaviour 

of the sluon propaqator in any axial qauqe. Ue should stress that it is 

certainly not inconceivable, though we believe unlikely, that the IR 

behaviour of D1 can by itself be related to a criterion for confinement. 
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b. The IR Limit from qzi + ca and its Connection to Instantons 

We showed at the beginning of this section that the small q2 limit 

can be derived by taking q2L + Q). On the other hand we have just seen 

-that it does not seem possible to use the axial gauge gluon propagator 

to learn about confinement and this considerably weakens the potency of 

using the large q*L ruse. Nevertheless this limit still seems worth 

exploring since there is evidence" that Dl acquires a highly singular 

behaviour which is presumably non-perturbative in origin. Indeed it is 

expected that this is connected to the presence of non-trivial 

topological excitations (instantons) which permeate the theory.* 

Although the work of Ref. 11 was outside of the domain of perturbation 

theory it made no explicit reference to instantons. We shall now 

explore how the qL2 + Q) limit can be used to show that such 

non-perturbative pieces, lead to a change in the IR pouer behaviour. 

The argument presented is rather schematic and is given simply to 

illustrate how the connection might evolve. 

In perturbation theory the dimensionless propagator can be expanded 

as follows: 

d(t,T,g) = a,(t,T)g2n 
n=O (65) 

In QCD there are well-known non-perturbative contributions and there can 

be expected to add a term of the form'** 

d(t,T,g) = eVc's2 f(t,T) (66) 

This may well be modified by powers of g; however, for the present 

purposes we wish only to concentrate on the effects due to the essential 

singularity in (66). Consider the limit q*L+ OI (i.e. T + -ml; then in 

the right-hand-side of Eq. (58) we only need the asymptoticallyfree 
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value of g. In that case the presence of the anomalous dimension term Y 

will, as usual, only produce logarithmic corrections; these are, in any 

case, independent of t and so we shall ignore them since we are looking 

- for a power behaviour. Substituting (661 into (58) requires 

'* 
e -C/92o f(t,T) Z ewc/g2(-T) f(t-T,(j) (67) 

where logarithmic corrections (as well as ordinary perturbative effects 

arising from (65) have been temporarily neglected). When T -, -OJ we can 

use (59) to obtain the equation 

f(t,T) = ezbct f(t-T,O) (68) 

Notice that go* has dropped out of this equation. We can now take the 

IR limit explicitly, i.e. q* -) 0 or T ? -w, to obtain 

f* e*bct = (q*o/q2)bcv It should be emphasized that the perturbative 

contribution (65) only leads to powers of logarithms as does the 

anomalous dimension term. It is the crucial presence of the essential 

singularity term ewc/g2 that leads to a power law behaviour. This, 

therefore, strongly suggests that the presence of instantons will 

induce, in general, a power law behaviour of the form 

q*-+o 
D,(q*,qL) -> (q20/q2)'+bc 

(69) 
Note, incidentally, that if this argument is valid the scale of the 

power is the same as that which governs the logarithmic scale of 

asymptotic freedom! Obviously if there is some constraint -that forbids 

such a power law behaviour in certain amplitudes, as discussed above, 

then c must effectively be zero. We therefore conclude on general 

grounds that if non-perturbative pieces of the form (66) are present and 

the theory is renormalizable then pieces of the propagtor will have a 

highly singular IR behaviour. 
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SUMKARY 

This paper has been devoted to a genera 1 study of the gluon 

propagator in axial gauge. We have emphas ized throughout the essential 

difference between space-like and time-like gauges; roughly speaking, 

quantization in time-like gauges is considerably more subtle since it 

tends to interfere with the notion of equal time commutation relations 

and causality.27 Consequently, properties such as the Lehmann 

representation can only be proven in space-like gauges. In such gauges, 

however, there is an apparent contradiction between the positivity of 

the Hilbert space and the idea of anti-screening (or asymptotic 

freedom). We spent some time elaborating and generalizing an argument 

of Frenkel and Taylor on a solution to this paradox which revolves - 

around the treatment of the so-called gauge sinqularity. We pointed out 

that their argument survives any permissible generalization of the usual 

principal value prescription and can in fact be put into 

non-perturbative terms. 

Although the IR behaviour is considerably more dynamical than the UV 

we pointed out tha. positivity of certain spectral functions constrains 

the corresponding invariant to be no more singular in the IR than it is 

in QCD. Indeed we showed that the very piece that determines an 

extremum of the Wilson loop falls into this class regardless of whether 

the gauge is time-like or space-like. Thus we claim that all we can 

show from a dynamical IR study of the propagator in this gauge is that 

the force law between static quarks must be at least Coulombic; a not 

terribly useful result. Nevertheless other pieces of the propagator 

that do not contribute to this may well be highly singular. We point 
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out that this can be investigated by taking the limit where the 

parameter qLz + Q). This is made explicit in the appropriate 

renormalization-group equations where we find the interesting result 

-that this limit does indeed drive the theory into the IR iqz + 0) but 

with an asymptotically free coupling constant. This is then used to 

demonstrate that the change in power law behaviour in the IR can be 

directly correlated with the presence of terms eWc/s' presumably arising 

from instantons. This suggests that the non-perturbative power 

behaviour l/q4 found in Ref. 11 can, in fact, be associated with 

instantons, though probably not with confinement. This exercise clearly 

suggests that in covariant gauges where positivity can be relaxed there 

may well be a similar technique based on the renormalization group for 

correlating a highly singular IR behaivour with the effects of 

instantons. In that case one could conclude that this is tantamount to 

a proof of confinement. 
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