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ABSTRACT

Some general properties of the gluon propagator are studied -in the
axial gauge uwith emphasis on its infrared and ultra-viclet behaviour.
In space-like gauges we derive a Lehmann representation and consequently
a Kallen sum rule for Z3. MWe investigate in some detail the apparent
inconsistency between Z5 > 1 (antiscreening and the origin of asymptotic
freedom) and the positivity of the Rilbert space due to the absence of
ghosts which suggests Zz ¢ 1. MWe shouw that in time-like gauges there is
no Lehmann representation so that the propagator is no longer analytic
in its virtual mass parameter. General positivity coupled with these
results restricts certain IR singularities from being any worse than
they are in QED so consequently it is not possible to use the IR
behaviour of the propagator in this gauge (whether time-]like or
space-iike) as a signal for confinement if the Wilson loop is used as
the criterion. We also shouw that a judicicus use of the renormalization
group inveolving a variation of the axial gauge parameter allous one to
drive the theory into the IR in such a way that the effective coupling
constant is the asymptitotically free one! UWe use this result to shou
that the presence of non-perturbative contributions of the generic {form
e~ ©/%® associated with instantons leads to a pouer law correction to the

IR behaviour of the propagator.



1. INTRODUCTION
Although non-Abelian gauge theories and, in particular, quaﬁtum
chromodynamics (QCD) have now come of age there still remain many
" unansuered basic questions.! Most of these inevitably concern the issues
ot confinement and the nature of the physical spectrum. It is generally
believed that non-perturbative effects such as instantons play a central
role in understanding these problems. The best knoun aspect of QCD is
its large momentum behaviour which can be calculated reliably since the
theory is asymptotically free. It is the purpose of the present paper
to modestly investigate some of these general problems by studying the
simplest non-irivial object in the theory, namely the gluon propagator.
Althoqgh this is a gauge-dependent object, its properties presumably
reflect the general physical features of the complete theory.
- Our original motivation for this work uwas to understagd a result of
Oehme and Zimmerman? who claimed that QCD was not a consistent theory
unless there uwere a minimum number of flavors. This result was based on
a contradiction betueen the positivity of the gluon spectral function
and the constraints of asymptotic freedom. Although this calculation
was performed in a covariant gauge where the Hilbert space contains
ghost states, a positivity constraint wuas derived by projecting onto a
positive definite subspace. 1In the axial gauge,3 on the other hand, the
Hilbert space is positive definite from the outset and so aéy subtlety
due to the projection is avoided." We were thus motivated to study the
propagator in this gauge to see uhether a similar contradiction arose
and investigate its origins. This gauge 15, in any case, an attractive

gauge to uork in since it is conceivable that its positive definiteness



could lead to results that are not transparent in other gauges.
Furthermore, the gauge parameter is an arbitrary four-vector nu‘uhich
gives rise to a new kinematic variable q. (= n-q, say), which does not
“occur in covariant gauges. Rather than being a nuisance the presence of
qL could conceivably be exploited by allowing it to vary. It is well
knoun that the price paid for a pesitive definite Hilbert space (no
ghosts) is to sacrifice Lorentz invariance and this manifests itself as
an unphysical gauge singularity. Because the treatment of this
singularity plays a crucial role in solving the "paradox" we derive a
prescription for treating it by performing a gauge transformation from a
covariant propagator to its axial gauge counterpart.

The phenomenon of asymptotic freedom is often described as the
anti—gcreening of the colour charge, by analogy uith the screening of
electric charge that occurs in quantum electirodynamics (QED). Thus, it
is the polarization of the vacuum that is responsible for screening.
Indeed there existu a rigourous argument due to Kallen showing that the
magnitude of the physical charge (e) is always less than the bare one
(eg).% The argument is based on the Lehmann sum rule for the photon
rencrmalization constant (Z3):

(o]
Zz = 1 - J p1(q2)dq?
o
The identification Z5 = (eseg)? and the positivity of the ﬁhoton
spectral function p4, both guaranteed by gauge invariance, then leads to
a proof of screening (Z3 ¢ 1).% In modern parlance, screening is
intimately related to the fact that QED possesses an infrared (IR}

stable fixed point at e?2 = 0; Z3 ¢ 1 simply corresponds to a positive



B-function.'! In QCD the situation is more complicated because in an
arbitrary gauge 23 # (g/gp)2 nor is the relevant spectral function

positive definite. Nevertheless asymptotic freedom (i.e. an

~ultra-violet stable fixed point at g2 = 0) is a gauge invariant concept

corresponding to (gs/g¢)2 > 1. The argument of Ref. 2 seems to suggest
that in a positive sector of a covariant Hilbert space a conventional
Lehmann sum rule leads, via Kallen’s argument, to a violation of this.
In an axial gauge, houever, the problem is even more transparent since
positivity in the complete Hilbert space is guaranteed by the absence of
ghosts." Furthermore in this gauge the divergent piece of Z3 [E (Z3)4iv]
is gauge invariant and related to (gs/gy)2 so we have precisely the
conditions required for Kallen’s theorem to be valid; consequently
(Z3)div ¢ 1, corresponding to screening rather than anti-screening! In
this case, houever, the solution to the paradox is knoug; it was pointed
out by Frenkel and Taylor? that if one takes into account the subtle
gauge singularity of the axial gauge then in perturbation theory
(23)div > 1 as it must. This suggests that there may uell be a similar
subtlety in the covariant case that allous anti-screening to develop.
Because of the subtle nature of this result ue present a somewhat
more general and detailed version of the argument given in Ref. 7. In
Section 2 ue give ihe general definitions of the propagator and its
spectral function relevant to the axial gauge. In Section-3 the
analogue of the Lehmann representation is derived. We show that the
conventional form is valid only in space-like gauges; put slightly
differently, this says that the gluon propagator is an analytic function

of q2 at fixed q only if n2 ¢ 0. 1In such gauges the canonical




comnutation relations then lead in the usual way to the standard sum
rule, with the analogue to pq nou being a function of g2 and qzi. In
Section 4 we study the positivity constraints on the spectral functions
~that follow from the ghost-free nature of the gauge. Again we find that
the situation depends critically on uhether n? is space-like or
time-like. In space-like gauges uwe find that p1(q2,q2)/q%2, 2 0 whereas
there is no such constraint when n? > 0. As already remarked this
appears disastrous since it naively leads to a contradiction with
asymptotic freedom. The crucial observation of Frenkel and Taylor? uas
that in the usual interpretation of q 2 this singularity is not a
positive definite quantity. The conventional prescription is as a
principal value and this is not a positive definite concept. Thus,
p1(q2;§2L) 2 0 provided q% # 0; however, when g% = 0 it is in fact
“"negative. Nou, on purely dimensional grounds, the limitdqu -0
corresponds to a q¢2 = «, the region relevent to asymptotic freedom.
Thus it is not surprising that the nature of the gauge singularity at
g2, = 0 provides the solution to the screening paradox. Indeed this
observation allows us to generalize the argument of Frenkel and Taylor
and make a Kallen-like proocf that (in pure QED) (Z3)4iv > 1 independent
of perturbation theory.
At the other end of the energy scale ue encounter the problem of the
IR behaviour of the propagator. As already remarked this i§ expected to
involve non-perturbative aspects of the theory. MWe can make use of the
freedom to vary q_ to learn about this region, for, just as g2 > 0

corresponds to q2 = ®, so g2 * o corresponds to q2 » 0. Indeed a

judicious use of the renormalization group allous us to relate this



region to the same region but with an asymptotically free coupling

constant. Unlike the ultra-violet region, houwever, small coupting here
does not necessarily drive the tﬁeory into its perturbative regime. 1In

~ fact we shou that the presence of an instanton-like non-perturbative
term® of the form e"S/9% leads to a pouer change in the IR behaviour, in
marked contrast to ordinary perturbation theory which usually only
induces logarithmic corrections.' Thus, if a highly singular IR
behaviour of the gluon propagator is interpreted as a signal for
confinement, then this suggests that instantons are, indeed, the
physical origin. In a recent paper?® ue have, in fact, shoun that, in
spite of its gauge dependence, the singular nature of the gluon
propagator can be used as a criterion for confinement. More

specifically, we proved that if the guy term in the propagator is more

“singular than 1/q% in_any one aauge then, for pure QCD, the gauge

invariant Wilson loop!® behaves like e- 4, where A is the area of an
asymptotically large loop. The propagator need not be singular in all
gauges; all that is required is that it be highly singular in at least
one gauge. Since the area law is generally accepted as the criterion
for confinement in pure QCD, a demonstration that the gyuy term be highly
singutar in some gauge is therefore tantamount to a proof of
confinement. There has been extensive work in the axial gauge on the IR
behaviour of the propagator particularly by Baker, Ball and-
Zachariasen.'! They attempt to solve a truncated form of the
Schuinger-Dyson equations by looking for a self-consistent solution and
claim that this leads to a 1/q* behaviour. Their truncation involves

keeping only one invariant piece of the gtV term [the Abelian-l}ike



piecel'? and it is this that is singular; there, of course, remains the
possibility that such a behaviour for the full gH? term does nof survive
in the full theory. Unfortunately this appears to be the case. Indeed,

“it can be shoun that the positivity of the relevant spectral functions

together with the proven analyticity properties make it impossible for

the g4V term to_be more sinagular than 1/g% in the IR. This behaviour is

obviously not sufficient to infer an area law for the Hilson loop and ue

therefore conclude that it is not vossible to prove confinement (at

least via the Wilson loop) from the IR behavior of the gqluon propagator

in_the axial gauge. It is, of course, conceivable that confinement

could be related to the truncated propagator via some criterion other
than the Wilson loop so in this sense the work of Ref. 11 may uell be
relev;ht to the confinement issue. It should be noted that there
"appears to be no such constraint in other gauges-since pésitivity no
longer remains valid.'3 Ironically, positivity does not constrain the
singultarity structure of the truncated propagator considered in Ref. 11
and this is, in fact, allouwed to develop a highly singular behaviour.
The point is that this is only one piece that contributes to the
confinement criterion. This argument has the further consequence that
our renormalization group discussion on the role of instantons is not
strictly relevant to the confinement problem. Nevertheless the general
concliusion that instantons induce IR power singularities rehains valid
and is presumably related to the singular behaviocur discovered in

Ref. 11.



2. DEFINITION AND GENERAL FORM OF THE PROPAGATOR IN THE
AXIAL GAUGE

In the axial gatige defined by nM*Ay = 0 the conventional generating

functional may be uritten in a particularly simple form*:'* namely

'lf[ £+ JauAu‘a]dux
JD Az, e 6§ [nHA3,]

WlJd] =
if & dYx
S DAz, e sInMA3,] (1
where & = 1/4 (Fyup)?, Fuy being the standard non-Abelian field tensor:
Fap_'p = buAav - prau_ + gfabcAbuAcv
In this gauge the theory requires noc ghosts so that the gluon Hilbert
space, H'g, is positive definite. 1In terms of (1) the gluon propagator
is defined to be

§21[0]

Euvab(x - y) = - ’ .
842, (x) 8JP,(y) (2)

This can be related in the usual way to a time-ordered product of the

fields:

BupoPix - y) = <O|TLAZ(x) APL(yIT|0> (3)
The normalization inherent in (1) [i.e. dividing by "<0]0>"] will
conventionally be suppressed; note, houever, that its presence tells us
that the va;uum state used in (3) is the vacuum appropriate to the gluon
Hilbert space, #'g. This is not, in general, to be identified with the
physical vacuum state; we shall return to this point below in Section 3.
The momentum space representation of the propagator uill be denoted

by

Dup3P(q) = fd¥x eid.x §,,3b(x) (4)



Below ue shall derive a Lehmann representation fer this object and
relate it to its spectral function defined by

PuvP(q) = fd%x eid-x (0][A3,(x),AP,(0)]]0> (5)

~These objects are, of course, gauge dependent and therefore their

general Lorentz decomposition varies from gauge to gauge. In the axial

gauge, for example, the most general form for p,y is given by

auhy + npay  n?quay
Puvab = - py3P [qu - + ]
n-q {n-q)?2

NNy
+ pp2b [guv - ]

n? (6)

The scalar functions p; depend on the invariants q2, n-q and n?; there
is, of course, an analogous decomposition for Dyy leading to tuo
corresponding scalar functions Dq,2. Below uwe shall elaéorate on the
variable dependence of these functions uhen discussing the
renormalization group equations. Since their dependence on the colour
indices is trivial (« §4p) we henceforth drop these indices.

Before deriving the Lehmann representation we should say a feu words
about the essential difference in structure between the Abelian (QED)
and non-Abelian versions of the propagator. The Abelian piece of the
field tensor is F3,, = A%, - 2pA%, so F3,, = Fouy + gfabcAPuAS,.

Nou, consider the correlation function -
Jd¥x eta x <ol [Fa,n(x),Fbpyto)1| 0D (7
which can be trivially related to pyy of Eq. (5). It is straightforﬁard

to check that its sole dependence on the gauge parameter ny is through

the nyny term in Eq. (6). Houwever, in QED, Fuv is gauge invariant



(i.e., it is independent of ny) and so p (the coefficient of nyny) must
vanish identically. Furthermore, this also shous that in this‘éase P1
can only depend on q2 and indeed, belouw, we shall show that it is
~basically gauge invariant reflecting the gauge invariance of the
classical long-range 1/r Coulomb potential. Note, however, that this
argument immediately breaks doun for QCD since Fuv is no longer gauge
invariant and thus p, # 0. In fact, this shous that p, is directly
sensitive to the presence of the non-linear triple-gluon coupling and
vanishes only in the free field limit, namely when g = 0. Thus, an
approximation in which p; is neglected as in Ref. 11 is inevitably an
inconsistent one for the non-Abelian theory; this dces not, of course,

necessarily invalidate results on the IR behavior of pj.



3. THE SPECTRAL REPRESENTATION
In this section we shall derive a spectral representation fof Dpy in
the axial gauge. The fact that the p; depend on n:-q as uell as q2
“introduces some minor complications which lead to a restriction to
space-like nZ. Before beginning the derivation We need to introduce a
notation for the decomposition of an arbitrary vector By into its

longitudinal (L) and transverse (T} parts with respect to ny: we define
n-g
—| npk

n2

BH - BH

BH

BM

Thus B?| = (n-B)2/n? and B2 = B2 + B2y, Furthermore n'Bf = B7-By = 0.

Consider the correlation function

pruv(a,n) = fd¥x e¥a % (0]AL(x) Ap(0) |0 (8)

We shall assume that there exists a complete set of states |N> which
spans #’g (one of which is the vacuum state |0>). This set of states is
net, in general, te be identified with the physical spectrum INp> which
is complete in the physical Hilbert space J#p; in general ) may or may
not overlap with . Note that the physical states [Ny> are not
complete in G (and vice-versa; the "unphysical™ states |N> are not
complete - in fact, they are expected to be over-complete - in J%}). In
pure QCD, where one presumes colour confinement, the |Np) states which
span JHp will be colour singlets and will also lie in %G and therefore
overlap a sub-set of the set |N>.

Introducing then the complete set |N> in (8) leads to

ptuv(q,n) = ¥ CO|ALIN> <N|AL|0> (2m%6(YI (g - py)
n (9)



with the restriction that q¢ = p® 2 0. Now, from Eq. (5) puv Clearly
satisfies a crossing property .
puv(a,n) = - puypl-q,n) v (10}
" Furthermore it can be trivially related to ptpy:
puv(g,n) = p*uplg,n) - prpyl-q,n) QRD
The inverse of this reads
ptuv(q,n) = 8(qe) puvlg,n) (12)

or, inverting the transform,

d¥q
<OfAL(x)Ap (0] 0> J e 19X §(q) pyuylg,n)

(2m* (13a)
d%q o e iqryy
= e ' X 6(qp) dyy e PuvlaZ,y)
(2m)" -
- (13b)

khere we have introduced the longitudinal Fourier transform, Puv(g?,y)

“of puw(a?,q1).'5 In terms of the canonical advanced (retarded) Green’s

functions

d¥q

e¥1d°% g(qe) §(q2 - p2)

Atp_v(X,uz) = tJ
2m) (14)

We can express Eq. (13) as
0 e}
COfAp (DAL (x)|0> = J dq? J dy L PuvlaZ,y) A*(x-y,q2)
] = (15a)
The crossing property, (10), leads to a crossed version of (15a):
x [v¢]
<0|Av(0)Au(x)|0> = J dqz J dy[_ .P'p_v(qz)yl_) A-(“x+prq2)
0 -0 (15b)
We have thus far been a trifle cavalier about the tensor nature of Puy
in the integrands of the above equations. In the coordinate

representation the tensor decomposition of puy in Egqs. (15) leads to

- 13 -



space-time derivatives 3, acting on the A! functions. Nou, the full

propagator Dpy is related to the time-ordered product of the fiélds and

this operation does not commute uitﬁ the time derivatives arising from
“the time components of pyp. To proceed further we therefore restrict

the discussion to the purely spatial components of (15) and consider

(OIT[Ai(x)A5(0)]|0) = Jw dq? j” dyi Fijlq2,yyp)
0 -
X [6(xg)A*{x-y,q2) + 6(~xp)2 (x-y1,q2)] (16)
In conventional derivations of the Lehmann representation as, for
example, in a covariant gauge®-¢, the analogue of pyuyp does not depend on
yL and so pyypy is proportional to &§(y ). The resulting combination of
Green’s functions in the square brackets of Eq. (16) is then precisely
the s;andard Feynman function O8f(x,p?) whose transform is the canonical
T (q2-p2+ie) ! singularity. This then leads to tHe conveﬁ{ional Lehmann
spectral representation. The above argument clearly breaks down in
axial gauge due to the presence of y; in general, there is no simple
representation for the quantity in the square brackets of Eq. (16). On
the other hand, uhen ny is space-like, y, is space-like and causality

allows us to replace 8(xp) by 8{xo-yi). In that case one can indeed

proceed as before and derive

0 0
<O|TLA ;(x)A (0 T|0> = | dg? J dyL Bi5(a2,yL) Qplx-yL,92)
0 - (17)

In momentum space this reduces to the standard Lehmann form:

w0 pi(q72,qL)
Ditg?,q) = —— dq’?

0 g’%2 - g2 (18a)

- 14 -



in which q acts as a fixed parameter. It should be emphasized that
(18a) is valid only uwhen ny is space-like (n? ¢ 0); our derivation fails

in time-like gauges (n? > 0) since one can then no longer replace 6(xo)

~by 8(xpo-y ).

This representation is in the form of a standard dispersion relation
which expresses the analyticity of the B;j as a function of q2 when q is
kept fixed. Indeed the conventional Lehmann representation can be
derived directly from analyticity considerations which follow from the
causal nature of the commutator in Eq. (5)¢. From this point of view it
is only natural to ask why such a proof breaks down when n? is
time-like. The standard way of "proving™ analyticity is to first
establish analyticity in q¢? for fixed §2. To do so one notes that a
typic;l factor in the integrand of Eq. (4) is of the form ei90%o §(x,)
multiplied by a factor that vanishes outside of the ligﬁf cone. Thus
the integral over x is expected to converge provided Imgg > 0 thereby
defining an analytic function of q¢ in the upper half-plane. A similar
argument obviously connects the vanishing of the commutator outside of
the backward light cone with analyticity in the lower half-plane. The
tuo regions can be connected since there is a region along the real axis
defined by qo? < §2 where D has no discontinuity. We can therefore
write a standard dispersion relation in gqo2 at fixed g2:

o  pilq’e2,5%)dq”’o?
D;i(qp2,g2) =

-0 q'oz - qOZ (18b)

[The usual ie prescription is to be understood.] A similar
representation can be proven in terms of a different component of qy in

place of qg provided the component is time-like; this simply reflects

_15-



the possibility of replacing 8(xg) in (16), for example, by 8(n-x)
provided n? > 0. If we are in a space-like gauge ue can make % change
of variables qo’? = g2 + q’? to derive (18a). 1If, houwever, wWwe are in a
“time-like gauge this is not possible since then the integration variable
is basically the gauge variable q’; thus, for example, uhen gg¢? is
varied, both g% and q?| necessarily vary so one cannot infer a
dispersion relation in q2 at fixed q..'® Nevertheless, it should be
emphasized that even in time-like gauges Eq. (18b) is expected to hold

and, indeed this can be confirmed directly from Eq. (16).17



4. THE LEHMANN SUM RULE AND THE EQUATIONS OF MOTION

From Eq. (15) we can immediately derive a representation for the

commutator'® [see Eq. (5)]):

n dhq

0| LAz (x),A;(0)1]0> e~ ia X pis(q)

J zm®

) )
= dg? J dyL Zijlg2,y) A(x-y,p2)
J0 -® (19)

As before we restrict the indices to be space-like in order to avoid
introducing kinematical time derivatives into the integrand via the time
components of pyy. Let us nouw set xg = 0; if y is space-like then
A(x—yL,uZ)lxozo = 0 showing that the imposition of the canonical
commutation relations
[R;(x),AR5(0)] 6(xo) = 0 (20)

is consistent in space-like gauges. On the other hand,ufor time-1like
gauges (uhere y is time-like) setting xo = 0 does not imply that
B(x-y1,1n2) | xe=0 = 05 it would therefore be inconsistent to impose
Eq. (20) as a canonical commutation relation in these gauges!

A sum rule5-% can be derived from the observation that in space-like
gauges (nZ £ 0) 208(x-y,n%) | xpz0 = 1613 (x-y) = 812N (XPISIx L~y ).

From (19) this leads to

J d¥x et a x <0 [20Ai(x),A;(00] §(x)]0> = i dequij(qz;qL)
0 21)
That this is pot valid in time-like gauges is, of course, intimately
related to the fact that the Lehmann representation, Eq. (18a), is not
valid in these gauges. Indeed it is not difficult to check that the
left-hand-side of (21) is none other than -i 1lim q2D;3;(q%,qy) which

g2
is consistent with Eq. (18a) only when n% ( O.

- 17 -



In order to extract information from (21) ue need to explore the
value of the equal time canonical commutation relation which foilous
from the equations of motion.? The canonically conjugate momentum to Ay

“is [I®n = F3,0; since [Ip = 8, A3 cannot be used as a dynamical variable
and must be eliminated prior to quantization. The equations of motion
are

WFHY S = gf s pcFPupAS, (22)
Note that this contains Gauss’ lau

diE3; = gf2pei BiAC (23)
where E3; = F®;9 (the colour electric field) and this must be vieuwed as

an equation of constraint since it does not involve time derivatives.

Its main role here is to allow E® to be expressed in terms of E3t:
explicitly
JLETL = =27 - E7 + gfPLeEby - ASy ) (24)

(provided n? is space-like).

From the definition of 1, one can immediately derive that
dLATy = E¥ (25)
Thus, in space-like gauges, A®; can straightforuardly be eliminated in
favour of transverse components for which canonical commutation
relations are valid. Thus uwe impose the following commutation

relations:

(AR T(x),AV1(0)] 8(xe) = [EM7(x),EV7(0)] 8(xp) = 0 4 (26)
and
Np Ny
[A1(x),EYT(0)] 8(xo) = i [guv - ] §(%) (%)
n? (27)

A rather long and tedious calculation employing the equations of motion

then leads to the additional relation for the transverse components



J d¥x e¥a X (0] [26A%;(x),AP;(0)] S(xa) |0

q9i9; . iquxy
= iS4p |645 - +ig? ¢ | dxpxpelxy) e <O|A2;(x{,0)Ab;(0)]|0>
q2 -e (28)

"where € = fopef?PCS/N. This is what is required to derive the sum rules

from (21): one easily sees that

(o]
J dq? pq(q2,qL) = 1

0 (2%a)
and
[+a]
J dq? p2(g2,q1) = L(qy)
0 ‘ (29b)
where—
[+ ‘iqL'xL .
6ij5 6a3b L(q) = -g- ¢C dx xrelxy) e (UlAai(XL;O)Abj(U) 0>
-

The technical origin of the terms x_e(xp) arises from eliminating the
extra degrees of freedom via Eq. (24) and (25) [i.e. from 2-2;86(x)].
Their presence is intimately related to the so-called principal value
prescription for dealing with the q % singularities in the axial gauge
which we shall discuss in some detail belou.

It is interesting to note that the conventional form of the sum rule
for p4 has survived Wwith q acting simply as a parameter; the existence
of canonical commutation relations guarantees the constancy of the
right-hand-side. 0On the other hand, the sum rule for g, is considerably
more dynamical in structure; the right-hand-side is not only qt
dependent but is directly sensitive to the triple-gluon coupling.'? This
is in agreement with our gauge argument at the end of Section 2 where we
also concluded that p, = 0 wuhen g » 0.

- 19 -



The conventional Lehmann sum rule forms the basis for a proof that
QED screens the charge; i.e. that the "physical™ charge is necessarily
smaller than the "bare" one. Crucial in the standard proof5:6 is the

“positivity of p3y. We nouw turn to a discussion of this in QCD.

- 20 -



5. POSITIVITY CONSTRAINTS ON THE SPECTRAL FUNCTIONS
In QED the positivity of the photon spectral function plays;a crucial
role in proving that the charge is screened.® In this section we shatll
~derive some analogous constraints for the p; in axial gauge and examine
hou they give rise to anti -screening in QCD. Below ue shall further
examine their consequences for the infrared structure of the theory. To
derive the constraints we first form the follouwing object:2°

PotuvpY = ¥ |<0|p-AlNY]2(2mNsth ) (q - py)
N (30)

where p, is an arbitrary four-vector. In covariant gauges the Hilbert
space is not positive definite and the set lN) contains states with
negative norm; the presence of such ghﬁsts leaves the sign of (30)
indetéerminate. To circumvent this problem Oehme and Zimmerman?
projected the fields onto a positive definite part of the Hilbert space
in order to define positive definite pj. They then claim that
anti—scfeening (i.e. asymptotic freedom) is inconsistent with such
positivity and that only the additional presence of a certain minimum
number of fermion flavours (10) can circumvent this problem. In the
axial gauge on the other hand there are no ghosts so that (30) is indeed
positive definite. We can read off from it the consequent positivity

properties of the p; and examine the possible conflict with asymptotic

freedom.

Combining Eqs. (5) and (30) gives

2(n-p)(p-q) nt(p-q)? (n-p)?
- 22

‘P1[Pz = +
(n-q) (n-q)2 n? (31)
There are three non-trivial possibilities for p: (a) perpendicular to n

(i.e. n:p = 0), (b) perpendicular to q (i.e. p:q = 0) and (¢) parallel
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to g (the case when p is parallel to n makes pHp*uyp? = 0). UWe shall
also employ the kinematical constraint that q2 2 0; (for q2 ¢ 0;
ptuy = 0). Let us consider the possibilities one at a time:
a) n-p = 0: this gives
(p-q)2
-pin2 ——— + pZ(py - p1) 2 0
tn-q)? (32)
Suppose e now set pZ=0 in order to learn about p4q: then
(p-q)2
-n? ———— p4(a%,q) 2 0
(n-q)? (33)
If n?2 > 0 then since n-p = 0, py = 0 and the above is trivially
satisfied; on the other hand, if n? < 0, pp, though light-like need not
vanish and we can deduce that p1(q2,q) 2 0. This, of course, presumes
that (n-gq)"% 2 0 uhich is violated by the usual principal value
prescription. MWe shall return to this point in-some degail belou.
Note, incidentally, that since g2 2 0 it is impossible to set
p2in-p)2 = -n2(p-q)? in (32) in order to deduce any information
concerning the positivity of p;, regardless of the sign of nZ.
b) p-q = 0: this gives
{n-pl?
(p2 - p4dp? - ——— p2 2 0
n? (34)
Because q? is time-like (2 0) we are not permitted to set pZ = 0 here
and isolate p, in (34); in fact, p? is necessarily space—like (p?2 € 0).
We are permitted houwever to set n:p = 0 regardless of the sign of n? and
deduce that p; 2 pz2. Note, incidentally, that we can set n2pZ = (n-p)?
here provided n% ¢ 0 and reconfirm that pg 2 0; this is a special case

however since the condition also implies n-q = 0, which we shall study

belou.
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c) p = q: this gives
n2q? (n-q)2
I | A
(n-q)2 niqg?
" Since g2 2 0 this requires
(n-q)?

p1 = pz ——— 2 0
n2q2

(353

(36)

regardless of sign (n?). For n? ¢ 0 this is equivalent to

anZ
P2 T — py
(n-q)2

Let us summarize these results:

37

A. n%? > 0: Neither p3 nor p; have definite sign, as in a covariant

gauge.” Nevertheless the following restrictions are valid

P12 p2
and
n2q2
— p1 2 p2
(h-q)2
B. n%2 ¢ 0: Again p; has no definite sign,

the following range:

n2q?
p1 2 pz 2 — py
{n-q)?
Furthermore
p1 2 0

Note that (39a) allous p, to be zero, as it is

(38a)

(338b)

but it is restricted to

(3%a)

(3%a)

in QED2!

Finally, it should be emphasized that the point n-q = 0 is excluded

from this discussion since it is a singular point of the gauge and must
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be dealt with separately. 1Indeed, as Frenkel and Taylor? pointed out,

it is precisely this gauge singularity that allous anti—screeniﬁg to

co~exist with the positivity of p; in axial gauges. Because the gauge
“singularity is a special point uwe shall discuss its origins and

interpretations in some detail in the following section.
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6. THE GAUGE SINGULARITY
The basic origin of the axial gauge singularity resides in fhe fact
that the breaking of Lorentz invariance along one particular direction
(np) induces a fake long-range force and thereby an associated fake

S L3 - P i . J e -
tny L

wo-dimensions this force is, in fact, real and is
the reason such theories confine. Houwever in higher dimensions such a
force is illusory and has no explicit physics asscciated with it. The
essential features of the singularity have basically nothing to do with
the non-Abelian character of the theory so, for simplicity, uwe shall
talk mainly in terms of QED. MWe shall examine the character of the
singularity from that of the gauge nature of the theory as well as from
the eguations of motion.

In a covariant gauge, the spurious gauge singularities can be dealt
with on an identical footing to real dynamical singularities With the
additional proviso that the spin-statistics connection be relaxed; hence
the concept of ghosts.'* We can, in principle, thus gain an
understanding of how to deal with the non-covariant qp singularities in
the axial gauge by starting in a covariant gauge and making a gauge
transformation. For example, suppose We are given the spectral function
in an arbiirary covariant gauge; denote it by p®;p. Iis mosi general

form is

9udy
puv(q) = -pc(q?) [qu - R(q?) ]
(40)

q?
where p¢(q?) and B(q?) are arbitrary functions of gq2. MWe can obtain the
axial gauge value of this, Eq. (6), by the gauge transformation

Ap_ = Acp_ - bu_A (41)

where A(x) is an arbitrary function of x. Since nMA,; = 0,
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A = AC (42)

where o ntdy and ACL = nHAy.  If ue naively replace d by iql in
momentum space then we find that p1(qZ,qL,n?) = p©(q?), independent of

“B(q?), and p; = 0 (as it must in QED). Indeed it is clear that no pure
Abelian gauge transformation can change the coefficient of gyy and so
even in non-covariant gauges, p¢ is a function of q2 only. This is
equivalent to the statement that 23 is gauge invariant ensuring not only
that the notion of screening in QED is gauge invariant but so in
Coulomb’s Taw!®

The naive replarement of ?_ by iqy ignores long-range surface terms

and it is just these that are the sourge of the technical problem. To
see how they arise ue note that the general solution to Eq. (42) can be

uritten as??

o]
Alx,X7) J ACL(x?1L,X7) GlxL - X »X7) dx’/ ¢ + Ag(XT)

-

uhere

1 1 - cl¥y)
Glx,X7) = e(x) + — L~—~—~——] ,

2 "1+ c(ZY)

Al-0,X7) + c(X71) Alewo,%7)
Ao (XT)

1 + c(X71) (43)
and c(Xt) is an arbitrary function. Notice that since
00
Ao, X7) - A(-,XT) = J AC i (x,X1)dxL
-0 (44)
we cannot simultaneously make A vanish for x| = * «, without also making

2(q?) vanish. Denoting longitudinal Fourier transforms by a tilda ue

obtain from (43}:
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1
X(qL,ir) = A gL X [P — + Ku S(qL)]
qL

(45)
where K = A(ew,X71) + A(-o,X7). We have here folloued the generalized

~ function approach to the interpretation of the Fourier transform of
singular functions??® ;thus P represents the principal value
prescription. 1If one carefully follous through the gauge transformation
of ppy including the surface contributions one finds that it is indeed
consistent te use the naive expression provided the 1/qp singularities
are interpreted according to the square bracket in (45). Thus,

1 1
— > P — + Kuw &§(q)
qL qaL . (46)
One still has the freedom to impose boundary conditions on A; the
_.conventional choice?® is K = 0, corresponding to Alw,X7) = -A(~0,X7).
This, of course, is just the standard principal value prescription.
Notice that (46) can be represented as
1 aL + Ke
— = 1im
qr ¢»0 q2 + ¢? (473

and its derivative as

Q%L + 2qL Ke - €2

1
— Tim
q% >0 (g% + e2)?

(qp + Ke)2 - €Z(1 + K?)
Tim
€0 (g2 + €2)2 (48)

Thus ue see that, not only is the conventional principal value
prescription (i.e. K = 0) for 1792 not positive definite, but neither
is any allowable generalization (K # 0). This is important because it

guarantees that no alternative prescription for dealing with the gauge
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singularity (i.e. K # 0) can lead to a definite sign for 17q%_. Thus,
as discussed in the following section, the origin of asymptotic.freedom
does not depend on a specific prgscription for the singularity. Note,
~also, that 1/7q"_ has no imaginary part regardless of the magnitude of K
and so makes no contribution to unitarity thus preserving the ghest-free
nature of the gauge.

Finally, ue should point out that the gauge singularity is of course
manifest in the equations of motion?? and was, in fact, explicitly dealt
Wwith when deriving the commutators pertinent to the sum rules. The
presence of xge(x) in Eq. (28) corresponds precisely to the use of the
standard principal value prescription.. It originates there from the
need to eliminate A%, as in Eqs. (24) and (25):

d2Rp = dLEL = -D1 - AT (49)
These equations are precisely of the type satisfied by A~and therefore

have the same consequences and interpretation.
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7. A PROOF OF ASYMPTOTIC FREEDOM AND ANTI-SCREENING
In this section ue return to a study of the consequences of;the sum
rules, (29), exploiting the positiv%ty constraints derived in Section §
“uhile keeping in mind the problem of the gauge singularity discussed in
Section 6. Let us first recall the standard proof of screening in
QED.5+6 We have already shoun that, in QED, p, = 0 and that p1 is a
function of q2 only. Separating out the one-phston contribution to the
unitarity sum isolates 23, the (gauge invariant) charge renormalization

constant:25

[+o]
Z3 = 1 - J dq? pq(q?)
4m2 ‘ (50)

Here T,is the electron mass. Since pq 2 0 it is clear from this
equation that Z53 must be less than unity. Thus ﬁhe physical charge is
_necessarily less than the "bare™ charge and we have the phenomenon of
screening. Physically this is due to the virtual creation of charged
e*e” pairs uhich screen the "bare" charge.

In QCD there are some crucial differences. First, in axial gauge,
p1» though still positive, depends on q; as well as q2. The analogue to
Eq. (50) thus reads

0
Zalqy) = 1 - J dq? pq0q%,qy)
0 (51)
Notice that the second major difference with QED: the cont%nuum
contribution begins at q%2 = 0 since a gluon can create virtual massless
gluon pairs. Indeed, isolating the one-gluon contribution is, in this

sense, arbitrary and misleading since all thresholds pile up at q% = 0.

The only reason for doing this is to isolate 23 with the vieu to
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understanding the origin of anti-screening.%® We shall return to this
infrared aspect of the problem in Section 9.
Now, as explained by Frenkel and Taylor?, Eq. (51) is at first sight
~ paradoxical since the positivity of p4 should again lead to the
conclusion that QCD, like QED, screens the charge and this is in
contradiction with asymptotic freedom. Houwever, as is manifest in Eq.
(33), the positivity of p4 assumes that q 2 is positive and this is

violated by the prescription for dealing with the gauge singularity. In

fact, what we actually proved was that

p1(a,q) 2 0 when q_ # 0
but that
p1(q2,0) 2 0 when qL = 0

Frenkel and Taylor pointed ocut that in perturbation theory it is this
‘negative piece which solves the paradox and gives rise t; asymptotic
freedom. MWe can generalize their argument in a way which naturally
leads into the renormalization group.

On dimensional grohnds it is natural to introduce the dimensioniess

function d(q2/q21) = q2p(q2,q) in terms of which (51} reads

dq? q2
Z3 =1 -} — d|—
. q? q2 (52)

Recall that the sign of the B-function is governed by the (gauge
invariant) logarithmically divergent piece of (52)!'%_ Nou it is
obvious that the large 92 behaviour of the integrand corresponds to the

Timit g2y - 0 and this is precisely where the siqn of d chances from

positive to negative. Thus uwe prove that

(Z3)giv 2 1 (53)
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corresponding to anti-screening and asymptotic freedom. Notice that
this result goes beyond perturbation theory in the same sense that the
original Lehmann proof of screening in QED [(Z3)4iv ¢ 1] does._ Although
a straightforuard perturbative calculation of d{(«) naturally reproduces

the standard result, it is worth emphasizing that this argument proves

that QCD must be asymptotically free without the necessity of performing

any calculation! In this regard ue should mention that the uhole

analysis can be directly performed in the gauge n-q = 0 which simplifies
things considerably. The point is that with this choice, d1A% = 0 so
A%y decouples from the dynamics and can be treated as a c-number. The
evaluation of the commutator relevant to the sum rule is now trivial
because dpA®; can effectively be replaced by the canonical coordinate
E®;. One can then derive a sum rule of the form (50), as in the

covariant case, and prove that the corresponding spectral function is in

fact negative definite leading directly to (53).

A couple of further comments are worth making before turning to a
discussion of the renormalization group. The structure of the "paradox"
implicit in (51), namely the apparent inconsistency of asymptotic
freedom with the absence of ghosts, is strikingly similar to the uork of
Oehme and Zimmerman.Z They work in a positive definite sector of an
indefinite matric Hilbert space thereby maintaining covariance and
positivity and likeuwise find an inconsistency. Our experieﬁce with the
axial gauge suggests, though by no means proves, that a similar
resolution must occur in their work. Thus, one expects that a hidden
"kinematical™ singularity analogous to the qL ¢ in axial gauge violates

the positivity constraint in such a way as to produce anti-screening.
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OQur final comment of this section concerns the sum rule for p».
Recall that, although p, has no definite sign, it is bounded frbm above
by p1. Thus we deduce that L{qp) £ 1. Since L(qy) « g2<A-A> one might

“hope to use this to extract interesting bounds on the coupling constant.
However we have not been able to do so and view this second sum rule as

of limited value.
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8. THE RENORMALIZATION GROUP EQUATIONS
In the argument at the end of the last section where uwe provéd that

(Z3)div 2 1 ue uere somewhat cavalier in treating the hidden c;t-off

~ parameter essential for renormalizing the theory. In this section ue
shall concentrate on this aspect of the problem by considering the
renormalization group equations for the propagator in axial gauge. The
presence of the exira kinematical variable qp (the "gauge parameter")
introduces some minor complications, though, as uwe shall see, it also
supplies a potentially pouerful tool for probing the infrared structure
ot the theory. MWe shall work with the dimensionless function

2 92t
d["—) " Q(LLZ)]

pz o opl

1}

qZD(q?,qy)
(54)

For simplicity we have suppressed all indices. As usual J represents
the arbitrary mass scale at uhich uWe have chosen to normalize the
theory. If this scale is changed (e.g. p2 - apf) then the

renormalizability of the theory requires that this be equivalent to a

rescaling of d by a factor Z: explicitly

9% q?y afy 9% aq?,
d[—r " g(uz)] = Z['——; g(uz),?\] d[——p I 9()\]\1.2)]

TR w2 a? o ap? (55)
Differentiating this with respect to A and setting A = 1 leads to the
renormalization group equation!

2 2

[~— + — + B(g) + V(T.g)] d{t,T,9) =0
ot 2T (56)

-fn qr2/q0%, B = 2g/dA|a=14

Here we have introduced t = -&n q2/qp2, T
and ¥(T,g) = 2/2% A&nZ(T,g,A)|az1. The solution to (56) can be

expressed in various forms; two of the more interesting and useful are
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-IJ dt’ ALT-t’,g(-t")]

d(t,T,90) dis,T-t,g(-t3]e A (57)

and -

~

=T dt’ AlT-t’,g(-t")]

d(t,T,g0) = dlt-T,0,g¢-T)le ° (58)

where g(-t) is the usual running coupling constant derived from R(g).
g0
In QcD B(g) ~» ~-bg3 with b > 0 leading to asymptotic freedom.' This is

reflected in the large g% behaviour of g:
1t go?
gz (-t) —) —8 ——
1 - 2bge?t (59)

Equation (57) implies that the larqge g2 behaviour of d is related to its

free field behaviour at fixed q2 but with g%y » 0 (since T-t = ). This

featuie of the axial gauge was exploited in a less arcane fashion in the
previous section when uwe proved that (Z3)d45v 2 1. Recall, incidentally,
that the exponential contributions in (57) and (58) typ{;ally induce
pouwers of log g2 in the usual way.

A curious and potentially pouerful feature of this gauge is the
duality exhibited between q? and q2| as shoun explicitly in Eqs. (57)
and (58). Just as the large q% limit can be approached by making qi2

small, so the small g? limit can, in principal, be approached by making

912 larae! For example, take g2y » « (i.e. T » -w) in Eq. (58) then on
the right-hand-side we need the value of d for small coupling
[g(-T) » 0] and for "t" (= t-T) » » (i.e. q%2 = 0). Although this is a

delicate 1imit it illustrates how the behaviour in the infrared (at

fixed coupling) can, in principle, be related to a similar behaviour but

with an asymptotically free coupling constant. Such a connection

betueen the ultra-violet and infrared is, of course, inherent in the
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renormalization group equations. MWhether it can actually be exploited
is not clear since it inevitably involves invoking boundary codditions
in regions where uwe have little knoQ]edge. In order to explore this

“ possibility and to see whether one can exploit the presence of the extra

variable g in the axial gauge we present a possible scenario in the

follouwing section.
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9. THE INFRARED BEHAVIOUR OF THE PROPAGATOR, INSTANTONS
AND CONFINEMENT

Naively, the infrared (IR) behaviour of the propagator is expected to

tell us something about confinement; a highly singular behaviour for the

“transverse part is suggestive of a long-range confining force. On the

other hand, the propagator is gauge dependent so it is difficult to know
what meaning, if any, one can ascribe to its IR behaviour. The fact
that it is gauge dependent does not, necessarily, mean that it does not
contain physics; rather, it is that the physics is obscure and therefore
difficult to extract. In QED the problem is easily circumvented since
p1(q2) is gauge invariant; indeed one can show that its IR behaviour
leads to 1/9% for the propagator correéponding to the classical 1/r
Coulomb potential. As already shoun earlier, no such simple solution
emerges in QCD.

Because of this problem attention has generally been focused on the
gauge invariant Wilson loop'?® (w) rather than the propagator:

igPAS, A dxH
w = <0|Tr P e | o> (60)

Here P is the path ordering symbol which orders the A; matrices around
the loop integral. For a rectangular lcop lying parallel to the time
axis @ ~ e~ VIRIY for Jarge t; V(R) can be interpreted as the potential
energy of a static quark-antiquark pair separated by a distance R. Thus
it is the Wilson loop rather than the propagator that deteEmines the
(gauge-invariant) static long-range force. For a non-confining theory
one expects w ~ e~ Y whereas for a confining one [where V(R) ~ R, for
example] one expects w ~ e A, A being the area of the loop. The area

lTau can therefore be taken as a signal for confinement.
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In a recent paper® uwe showed how to relate the physics buried in the
propagator to the Wilson loop. This is done via the follouwing

inequality:

-1/72 g2$dxpPdyy B2by,(x-y) 84p
w {e (61)

Notice that this involves bounding a gauge invariant physical object, w,

by a gauge dependent unphysical object. Thus, if in_some qauge, D is

highly singular in the IR, then (61) implies that w ¢ e~ 4, indicative of
confinement. If, on the other hand, it behaves mildly, as in QED, then
@ ¢ e-! and no conclusions can be draun concerning confinement. Thus,
the inequality (61) circumvents the gauge-dependence problem inherent in
using the behaviour of the propagator és a signal for confinement:

explicitly, (61) implies that a_highly sinqular IR behaviour of the

_aluon_propagator in_any one gauae is sufficient to prove -confinement.

Physically it corresponds to the statement that the actual long-range
static potential is at least as strong as the naive potential derived
from the gluon propagator. MWe should exmphasize that the proof of (61)
involves only that piece of Duy proporticnal to gup (effectively only
the transverse piece). 1In QED this piece is unaffected by a gauge
transformation; in QCB, on the other hand, it remains gauge dependent
and it is this property that presumably allous a highly singular
behaviour to develop.

Most of the work on the IR behaviour of the gluon propagator in QCD
has been within the context of the Schuinger-Dyson equations. Typically
these are truncated and self-consistent solutions sought for the ensuing
equations. There are several claims in the literature that this leads
to a 1/q% behaviou: '3 yhich, if valid, would superficially, at least,
be tantamount to a proof of confinement.
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In this section we would like to explore tuo aspects of the problem
within the axial gauge: (a) the constraints imposed on the IR behaviour
due to analyticity and the positivity of the spectral functions; (b) the
-possibility that the IR limit can be obtained by taking qrL? = o using
the renormalization group and that a highly singular behaviour is

correlated with the existence of instantons.

a. CLonsitraints due to Analyticity and Positivity

In Section 3 we showed that in a space-like gauge the 0;(q2,q )

satisfy a Lehmann representation, Eq. (18a):

Dilq2,qp) = dq’?

Jw pila’2,q1)
0 g% - g2 . (18a)

This expresses the analyticity of D;(qZ,qr) as a function of g% at fixad
qr. If pj 2 0 then there is no way it can produce a singularity in D;
stronger than the simple pole already manifest in the iﬁiegrand.
Loosely speaking, a singularity can only be made stronger by cancelling
it against a similar singularity and this is not possible if p; 2 0. A
simple example is provided by the suggested 1/q% behaviour: this
corresponds to p ~ §/(q?) which is not positive definite. This can be
generalized; consider the complex variable z = re’(7-8) phere r is its
modulus and 8 its phase. The real axis is approached from above by

S0+
taking the limit 6 i—E> €/r. Suppose D(2) uere of the form z°V
(v arbitrary) so that the complex plane were cut along the ﬁositive real

axis; the discontinuity across this cut is

€~>0
2ip = disc B(2) = r°? sinv(m - 8)

One can immediately see that this is positive only uhen v ¢ 1;

incidentally when v = 1 we can easily check that this gives the standard
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6-function, as it should. This argument can be generalized to other
classes of singularities and is, in fact, a general consequence of the
positivity. Thus ue conclude that for p;{q%,q) 2 O,
1
lim D35(q%,qy) ¢ —
q2-0 q2 (62)

i.e. the positivity of the spectral function restricts the propagator

from being any more sinqular in the IR than it is in QED! Now, for

nZ < 0 we have proven that py 2 0 provided qL # 0 as is the case here
since we are not interested in large qZ. Thus D3(q2%,q.) cannot be more
singular than 1/qZ. Houever, as discussed above it is the combinaticn
Dt(q%,q) 2 D4(qZ,q) - D2(q2,qy). (63)
which is relevant for confinement since this is the coefficient of g,yp.
However, its spectral function, (p3-pz), was also proven to be positive

" (independent of qy, incidentally) and so Bt also cannot be more singular

than 1/g%. MWe therefore conclude that in space-like axial aqauqes one

can _learn nothing about confinement from studying the qluon propaaator!

The situation in time-like gauges (n2 > 0) is considerably more
subtle since there is no longer any reason to believe that D; are
analytic in q%. Unfortunately, houever, the argument leading to the
interpretation of (61) strictly speaking breaks doun. Essential in its
proof? was the requirement that n* be perpendicular to the loop, 1.e.
nH § dxy, = 0. In order to make the connection to the statie potential
and therefore confinement it was necessary to line the loop up parallel
to the time axis and this necessitates n* & dxy # 0. Of course, one
might argue that in Euclidean space such a restriction is unnecessary

since, there, space and time are on a more equal footing. Thus
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orienting the loop perpendicular to the time axis can still lead to a

valid criterion for confinement and one can justify using (61) for

~

nZ > 0.
Given that this is valid one might then argue that the absence of a
Lehmann representation now allous D1(q%,q;) to develop a highly singular

behaviour, especially since there is no longer the restriction that

p1 2 0. Houwever, some care must be taken; as emphasized in Section 3,
though B4 cannot be proven to be analytic in 92 it is still expected to
be analytic in qo2 at fixed g2, as expressed in Eq. (18b). 1In a
time-1ike gauge ue can, for simplicity, identify qo = q_. As already
mentioned there is no positivity constraint on py so Dy is permitied to
have a highly singular behaviour in g¢? and therefore presumably in qZ2.
Houever we shoued in Section 4 that even uhen n? > 0 pg-p2 2 0
(regardless of the size of q ). Thus D, the invariant-}elevant to
confinement, cannot have a more singular behaviour than a simple pole in
q2. Note that this does not contradict the work of Baker, Ball and
Zachariasen'! who claim to have found a self-consistent behaviour of
17q% for the IR structure of Dy(q2,q9 ). A crucial input into their
calculation uwas to set D = 0 and look only at Dy. Houever it is the
combination D4-D2 that is important for confinement and according to our
arguments this is always gqguaranteed to be no more singular than it is in
QED. MKe therefore extend our conclusions to n? » 0 and clgim it is not

possible to unambiguously learn about confinement from the IR behaviocur

of the gluon propagator in _any axial gaugqe. We should stress that it is

certainly nct inconceivable, though uwe believe unlikely, that the IR

behaviour of Dy can by itself be related to a criterion for confinement.
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b. Ihe IR Limit from q2; > ® and its Connection to Instantons

We shoued at the beginning of this section that the small qznlimit
can be derived by taking q?| » «. 6n the other hand we have just seen
- that it does not seem possible to use the axial gauge gluon propagator
to learn about confinement and this considerably weakens the potency of
using the large q2? ruse. Nevertheless this limit still seems worth
exploring since there is evidence'' that Dy acquires a highly singular
behaviour which is presumably non-perturbative in origin. Indeed it is
expected that this is connected to the presence of non-trivial
topological excitations (instantons) which permeate the theory.®
Although the work of Ref. 11 was ocutside of the domain of perturbation
theory it made no explicit reference to instantons. We shall now
explore hou the q 2 » » limit can be used to shqu that such
non-perturbative pieces, lead to a change in the IR poué; behaviour.
The argument presented is rather schematic and is given simply to
illustrate how the connection might evelve.
In perturbation theory the dimensionless propagator can be expanded
as followus:
d(t,T,9) = Y an(t,T)g2n
n=0 (65)
In QCD there are well-known non-perturbative contributions and there can
be expected to add a term of the form'-8
d(t,T,g9) = e"°/9" §(t,T) (66)
This may uwell be modified by pouers of g; however, for the present
purposes uwe uwish only to concentrate on the effects due to the essential
singularity in (66). Consider the limit q?1» o (j.e. T » -w); then in

the right-hand-side of Egq. (58) we only need the asymptoticallyfree
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value of g. In that case the presence of the anomalous dimension term ¥
uill, as usual, only produce logarithmic corrections; these aré, in any
case, independent of t and so we shall ignore them since we are looking
- for a pouer behaviour. Substituting (66) into (58) requires

e c/9%, f(t,T) # e"¢/8%C(-T) §(t-71,0) (67)
where logarithmic corrections (as well as ordinary perturbative effects
arising from (65) have been temporarily neglected). WKhen T = -® ue can
use (539) to obtain the equation

F(t,7) = e2bet §(t-7,0 (63)
Notice that go? has dropped out of this equation. MWe can nou take the
IR timit explicitly, i.e. 92 » 0 or T » ~w, to obtain
f ~ eib°* = (q2p792)be, It should be emphasized that the perturbative
contribution (65) only leads to pouwers of logarithms as does the
anomalous dimension term. It is the crucial presence of.the essential
singularity term e~¢/9% that leads to a power law behaviour. This,
therefore, strongly suggests that the presence of instantons will
induce, in general, a power law behaviour of the form

q2-0
D1(q2,qL) —> (q2q/q2)t+be
(69)

Note, incidentally, that if this argument is valid the scale of the
pouer is thé same as that which governs the logarithmic scale of
asymptotic freedom! Obviocusly if there is some constraint that forbids
such a pouwer law behaviour in certain amplitudes, as discussed above,
then ¢ must effectively be zero. MWe therefore conclude on general
grounds that if non-perturbative pieces of the form (66) are present and
the theory is renormalizable then pieces of the propagtor will have a

highly singular IR behaviour.
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SUMMARY

This paper has been devoted to a general study of the gluon;

propagator in axial gauge. We have emphasized throughout the essential

“difference between space-like and time-like gauges; roughly speaking,
quantization in time-like gauges is considerably more subtle since it
tends to interfere with the notion of equal time commutation relations
and causality.2? Consequently, properties such as the Lehmann
representation can only be proven in space-like gauges. In such gauges,
houever, there is an apparent contradiction between the positivity of
the Hilbert space and the idea of anti-screening (or asymptotic
freedom). MWe spent some time elaborating and generalizing an argument
of Frenkel and Taylor on a solution to this paradox which revolves
around the treatment of the so-called gauge singularityi. e pointed out
that their argument survives any permissible generalization of the usual
principal value prescription and can in fact be put into
non-perturbative terms.

Although the IR behaviour is considerably more dynamical than the UV
we pointed out tha  positivity of certain spectral functions constrains
the corresponding invariant to be no more singular in the IR than it is
in QCD. Indeed we shouwed that the very piece that determines an
extremum of the Wilson loop falls into this class regardless of whether
the gauge is time-like or space-like. Thus e claim that all we can
show from a dynamical IR study of the propagator in this gauge is that
the force lauw betueen static quarks must be at least Coulombic; a nof
terribly useful result. Nevertheless other pieces of the propagator

that do not contribute to this may well be highly singular. We point
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out that this can be investigated by taking the limit where the
parameter q; 2 = . This is made explicit in the appropriate
renormalization-group equations uwhere we find the interesting result
“that this limit does indeed drive the theory into the IR (q% > 0) but
with an asymptotically free coupling constant. This is then used to
demonstrate that the change in pouer law behaviour in the IR can be
directly correlated with the presence of terms e /8" presumably arising
from instantons. This suggests that the non-perturbative pouwer
behaviour 1/q% found in Ref. 11 can, in fact, be associated with
instantons, though probably not with confinement. This exercise clearly
suggests that in covariant gauges uwhere positivity can be relaxed there
may uwell be a similar technique based on the renormalization group for
correlating a highly singular IR behaivour uith the effects of

“instantons. In that case one could conclude that this is tantamount to

a proocf of confinement.
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