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ABSTRACT

Breit-Wigner formulae for compound resonances in two- and three-
cluster systems are derived. Analytic corrections due to the Pauli
Principle with regard to correspohding formulae for partial resonance
widths and resonance pole shifts are given. In the case of a system of
three composite particles a model is formulated, in which sudden decay
into three clusters is determined by the knouledge of the microscopical
compound state of the metastable decaying nucleus. The derivation of the
Breit-Wigner formulae in the case of a three-cluster system is based on
the study of thé asymptotic behavior of the full three-body Green’s
function. In the case of the tuo-gody channel situation the formalism

presented here is an alternative to the Wildermuth-Benchr reaction

theory.
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1. INTRODUCTION

The purpose of this paper is the study of the influence of the Pauli
Principle on the compound resonance behavior in tuo- and three-cluster
systems. The method proposed here is based on the introduction of a
Pauli-corrected microscopic Hamiltonian. This deviates from the usual
procedure as for example in the resonating group method [1,2,3], in uhich
the Pauli Principle is introduced by a fully antisymmetrized ansatz for
the wave function. Consequently our approach differs from the reaction
theory by Wildermuth and Benchr [4] already in the two-body channel
situation, which is based on the resonating group method (RGM).
Therefore, in the two-cluster situation our approach may be considered as
an alternative to the reaction theory by Wildermuth and Benohr. In the
three-cluster case Wwe formulate a model for a three-cluster compound
resonance, and derive the resulting three-body Breit-Wigner formulae.

In Ref. [4] it has been shoun that compound states give rise to
resonances of Breit-Higner type in the single channel case. Also the
coupled channel case has been investigated and the influence of a second
open channel on the resonance behavior in the first channel has been
studied. Houever a compound resonance for three clusters with internal
structure found no treatment hitherto.

On the other side, resonances in three-particle systems have been a
topic of great interest during the last decade, in particular in
elementary particle physics. Most investigations, however, are based on
the assumption that the three interacting particles are point part{cles
without internal structure. 1In the present paper uwe want to consider

resonances which occur in systems of three composite particles, or



clusters. The neu feature will be the appearance of compound resonances
and the difficulty uill be that they will interfere with subsystem
resonances or resonance-like structures such as the final state peak.

In terms of mathematics, the difficulty will be that, instead of the
tuo-body Green’s function, we will need the three-body Green’s function.
This means that we have to assume that a Faddeev equation has already
been solved for the motion of the three clusters without the presence of
a compound state (and in absence of the Pauli Principle). It will be
seen that in our model the inclusion of the Pauli Principle leads to a
strong three-body force. This three-cluster force is represented by a
three-cluster separable potential (Pauli potential). The first
difficulty will be the inclusion of the Pauli Principle by an appropriate
treatment of the Pauli potential. Another difficulty arises from the
complicated dynamics of the three-cluster system.

In terms of physics, the latter difficulty is this. Since there is a
spectator cluster uhich can carry an arbitrary amount of energy, a
subsystem resonance or a final state peak will not only appear in a
narrow energy range of the three-body system. It will appear at all
energies above a certain minimum which corresponds to zero spectator
energy. The compound resonance Will thus never be an isolated resonance
but will aluays find something to interfere with. This will be seen more
clearly from the relevant mathematical expressions.

In Section Il we propose a method to include the Pauli Principle in
the microscopic Hamiltonian and hou to derive the Pauli-corrected
effective intercluster interaction in the case of two- and three-cluster

system. In Section III we derive the Breit-Wigner formula for the two-



cluster compound resonance and discuss hou it is affected by the Pauli
Principle. In Section IY a model for the three-cluster resonance - based
on the method presented in Section Il - is formulated. A technique for
solving this model is proposed in Section V. The technique is based on
the asymptotic formulae of the full three-cluster resolvent in the
presence of two-body forces only. The corresponding formulae are
discussed in the Appendix.

By applying this technique we succeed in derivation of generalized
Breit-Wigner resonance formulae for the three-cluster system. In Section

VI the Breit-Wigner formulae and the influence of the Pauli Principle on

them are discussed in more detail.



2. MICROSCOPIC TREATMENT OF THE PAULI PRINCIPLE
We consider a microscopic Hamiltonian H = Hg + V, of an A-nucleon
system, where the potential V is a sum of two-body interactions, and the

corresponding A-particle Schroedinger equation is

(Ho + V¥ = E¥V . (2.1

We reurite the time-independent Schroedinger equation (2.1) in the form

of a projection equation

v | R-E |l v = 0 . 2.2)

If 6¥ represents a completely arbitrary variation in the space of all
A-nucleon functions, then Eqs. (2.1) and (2.2) are entirely equivalent.
In the case of two-cluster single channel the RGM was very successful

in solving Eq. (2.2) for the ansatz

v = A{s(1) #(2) x} . (2.3)

Here the functions ¢ describe the internal behaviour of the cluster,
while the function X is relative-motion function in tuwo-cluster
configuration. A denotes the antisymmetrization operator of the A-
nucleon system. The variation 6¥ is nou restricted to the arbitrary
variations of the linear function x.

In contrast to the RGM our method introduces the influence of the
Pauli Principle not by a fully antisymmetrized ansatz for the wave

function ¥ but by a modification of the microscopic Hamiltonian [5].



On the microscopic level uwe are able to express the Pauli Principle by
mutual orthogonal Pauli forbidden states In>. Note that on the cluster
level there are in addition to Pauli forbidden states also partly Pauli
forbidden states, which in many cases carry the main part of the Pauli
principle.! On the microscopic level this separation in Pauli forbidden
and Pauli partly forbidden states can be avoided by explicit construction
for example in the harmonic oscillator shell model space. In principle
there is an infinite number of the microscopic Pauli forbidden states.
However, in any realistic (variational) bound state calculation the
number of microscopic Pauli forbidden states is limited by the dimension
of the space used in the calculation; and the dimension of the space is
determined by a reasonably chosen highest energy quantum excitation. The
same holds also for the scattering problem. Here, at any fixed
scattering energy, but still consistent with the cluster ansatz under
consideration, uWe have to choose high enough quantum excitation and to
include the corresponding microscopic Pauli forbidden states. It is true
that at high energies the number of microscopic Pauli forbidden states
increases rapidly. Houwever, this problem is not too serious for two
reasons. First, at high energies the exchange effects due to the Pauli
principle become small. Second, the validity of the cluster model is
restricted to the low energy range. Thus We can restrict the number of

Pauli forbidden states to some reasonable and manageable number.

! In the RGM the Pauli forbidden states correspond to the eigenstates of
the norm kernel with eigenvalues equal to one. The eigenvalues equal
to one appear only in so-called equal width limits of the RGM.
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1t should be noted that the states In> carry all information on the
spin and angular momentum configuration of the system under consideration
and therefore wmhen introducing cluster internal functions for a system of
tuo or more clusters one has to take the appropriate projection of the
spin and angular momentum variables onto the channel under consideration.

[n> = Teit{git M utiviiend} .
i v

Here & ;" are spin-isospin functions, u is a simple particle function
labeled by iy, and ¢y are the v-th member of set of Jacobi coordinates
which describe the configuration of the system of nucleons. It holds
Aln> = 0. We also assume that the coefficients c;" are chosen such that
«nim> = §,. We wish now to solve this Schroedinger equation not in the
complete space H#, but in the subspace #P® € H which is the orthogonal
complement of a subspace HP specified constructively using the
orthoprojector p given by

p = ¥ |m><n|
n (2.9

i.e. HP® denotes the Pauli allowed microscopic subspace. In the cluster
problems, it is not only required to project the solution of the
Schroedinger equation for the Hamiltonian H on the allouwed subspace HP
but also to eliminate all virtual transitions to the forbidden states.
This can be achieved by applying the orthogonalizing pseudopotential
method (OPP) [6] on the microscopic level by going over to a modified

microscopic hermitian Hamiltonian H:



o= H+2ap = H+2A Y |m><n] .
n (2.5)

Since the states In> are not eigenstates of the Hamiltonian H the real
constant A should be brought to infinity in the final solution. One can
easily show that in the limit A = o the solution ¥ corresponding to the
Hamiltonian H is orthogonal to all microscopic Pauli forbidden states
In>. In this approach we extend the orthogonality scattering [7] to an
"orthogonality reaction method™ by introducing the orthogonalizing

microscopic pseudopotential.

VA) = ap (A > ) » (2.6)

and deriving the cluster equations by suitably chosen ansatzes for the
wave function ¥. Thus, in contrast, to the OPP method, we are not
interested in the direct solutions of the Hamiltonian H. W serves only
as a Pauli-corrected basic microscopic Hamiltonian for a subsequent RGM-

like treatment. HWe use the ansatz

¥ o= (1) $(2) ¥ . (2.7)

Note that since the Pauli Principle is considered in the Hamiltonian
(2.5), we can drop in (2.7) the antisymmetrization operator. Using the
Hamiltonian (2.5) and the projection equation (2.2) we obtain the

following Schroedinger equation for clusters:



(Tr + Vp + 2 % [Np> (Npld)x = Ex .
n (2.8)

Here Vp is the double folding two-cluster potential; for antisymmetrized
cluster internal functions Vp is the direct potential of the RGM
equation. E. is the relative energy of the tuwo clusters in the c.m.
system, given by Er = E-E4-E2. The cluster internal energies E4 and E;
are obtained by computing the expectation values (in realistic
calculation ground state energies) of their internal Hamiltonian, T, is

the corresponding kinetic energy operators, and

Na(R) = <n | (SR int - (2.9)

The bracket < >jnt means that the integration is performed only over the
internal degrees of the clusters and includes the appropriate evaluation
of the spin and angular momentum variables. In evaluating the separablé
term in Eq. (2.8) me have assumed that according to the no-distortion
ansatz made in (2.7) the unit operator in the microscopic space can be

represented by

1 = J [#CD(2IRY (RE(2IS(N]| dR .
(2.10)

The transition from the microscopic equation (2.5) to the cluster-
Schroedinger equation (2.8) as for the Pauli exclusion principle is
concerned Will be discussed now in more detail. It is true that on the

microscopic level in an arbitrary Hilbert space uwe can express the



antisymmetrization operator A by A = § - ¥ InX><nl. It is also valid that
in the limit XA > 0 the Hamiltonian ﬁ leadg to a fully antisymmetrized
solution ¥, for which it holds <nl¥> = 0 and therefore AV = 0. However
the interpretation of the separable Pauli-correction term in Eq. (2.8)
must be treated with more caution than in the case of Eq. (2.5). As one
knows from the resonating group theory the Pauli Principle on the cluster
level leads to fully and partly Pauli forbidden states. The difference
betueen them is expressed quantitatively by the corresponding eigenvalues
of the RGM kernel. Thus in a chosen normalization the difference betueen
fully and partly Pauli forbidden states consists in their different
weights. This difference disappears in the limit A » 0 [see Eq. (2.8)].
Therefore the Pauli forbidden (or inhibited) states can be treated in

Eq. (2.8) only as fully Pauli forbidden intercluster states. Therefore
the treatment of the Pauli principle in Eq. (2.8) is essentially the same
as in the orthogonality condition model [9]. The treatment proposed by
Eq. (2.8) can be extended to almost Pauli forbidden states [3] and also
in some approximation to partly Pauli forbidden states. The létter
aproximation is the better the more the stafe is Pauli suppressed. With
this understanding the intercluster Pauli-corrected interaction can be
written as:

VA > @) = Vp+ (A>w ¥ [N <No| .
n (2.11)

Using potential V we are now able to derive all the helpful properties

ouned by the OPP method, as for example the nice feature of improved

convergence of Born series especially in the critical low energy region.
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Since these properties are discussed and derived in Ref. 8 and are easily
adapted for the inter-cluster potential V(A), we dispense with their
discussion here. MWe rather like to discuss the extension of the
microscopic method to a three-cluster situation. Let us consider the

most simple no-distortion ansatz for a three-cluster system:

v o= #(1) #(2) #(3) % . (2.12)

Using the projection equation (2.2) and the microscopic Hamiltonian with

the potential V uwe obtain with ansatz (2.12):

(Tg + Ty + Va,p + V2,p + Va,p + A % [N> <Ni[I)x = Epx . (2.13)

Here the functions N; depend on two Jacobi coordinates ¢ and 7 and are
square integrable in respect to them. V;,p are the local double-folding
potentials of the cluster subsystems. Tg+Ty denotes the kinetic energy
operator in the c.m. system. From Eq. (2.13) we observe that there in
only one non-local potential, namely A ) IN;)(Nil which is separable
three-cluster potential with finite Hilbert-Schmidt norm, and which
carries the influence of the Pauli Principle as far the fully or highly
suppressed Pauli intercluster states are considered.

The nice feature of the Hamiltonians (2.8) and (2.13) is that they
clearly separate the symmetry properties (Pauli Principle) of the system,
described by operator p, from the details (specific nucleon-nucleon
interaction) of the dynamics of the composites.

To conclude this section ue give a useful formula for the resolvent

6P(E) = (E - ™! ’ (2.14)
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defining

GCE) = (E - h + ap)™! , : (2.15)

we obtain the following expression for G(E) in the limit A 2> o«

GP = 6 - Gp (pGp)-"' p6 » (2.16)

Here h represents two-cluster or three-cluster Pauli-corrected
Hamiltonian given in (2.8) and (2.13). 1In resolvent 6 the Pauli
Principle is neglected. The importance of this formula is that the limes
A 2> « uas carried out analytically and thereby the parameter A is no
lTonger present. For numerical application this is a convenient feature,
since the equations are free from the strong coupling constant mhich A
represents.

Finally uwe consider the tuo-cluster Schroedinger equations
(E-h)xP = 0 and (E-h+Ap)x = 0. Then it holds

Gpx
XxP = x - —

pGp (2.17)

The derivation of Eq. (2.16) and Eq. (2.17) can be found in Refs.
[3,8,10]. 1In Section III and VI we Wwill see that resolvent (2.16) and
expression (2.17) allow us to give analytical corrections of fhe
resonance Width and resonance pole shift due to the inclusion of Pauli

Principle.
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3. PAULI-CORRECTED BREIT-WIGNER FORMULA FOR AN ISOLATED
THO-CLUSTER COMPOUND RESONANCE

In this sectioﬁ we discuss the influence of the Pauli Principle on the
characteristic quantities of the two-cluster Breit-Wigner formula. Since
the formal method of deriving the Breit-Wigner formula can be found in
Ref. 4 we treat it only briefly. Note however that in our case the Pauli
Principle is treated differently.

In order to allow excitations of one single compound state we enlarge

the ansatz for the uave function ¥ as follous:

VY = #(1) #(2) x + af = vyp + af » (3.1

where f describes the compound state. Here f is antisymmetric and square
integrable function by construction. The technique of introducing such
square integrable compound (or distortion) state embedded in continuum is
described in detail in Refs. [1,4]. Then from the projection equation

and after some simple algebra we obtain the following Lippman-Schuinger

equation for xP:

<FlxP>
xP = %P + GP|F> ,
Ec - E - <F|GP|F> (3.2)
where
Ec = <f |[H] & , (3.3a)
Flr?) = J dr3A f(ry...ca) (H-E) $(1) #(2) s(e-r’)
(3.3b)
GP(ER) = (Ep = Te - Vp - A Z [N <N, (3.3c)

- 13 -



and ¥P is the solution of Eq. (2.8), i.e. in absence of the compound
resonance.

I1f we neglect the influence of the Pauli Principle ne have to omit the
potential A ¥ |Nn><Nn| and we obtain for the solution ¥ the same formula

(3.2), where 6P has to be replaced by
-é(Er) = (Er - Tp = VD)-' » (3.49)
and correspondingly XP by %. For the latter quantities we obtain the

following Breit-Wigner formula for resonant part of the amplitude in the

partial uwave of total spin j:

Ajres ¥ .
Ec - E = 85 - T5(E0)/2 (3.5)
Here
F5¢E) = 2w |<F;|%;5(E-D2]2 (3.6)
and
a5 = <Fj|rRe (E;)]|F; . (3.7
Note that
Im [85(E)] = w |%5(EQ))> <Fj(EQ|

Nouw me like to study the influence of the Pauli Principle on the
quantities I'; and 4;. For this purpose We reconsider formula (3.2).
Then, using the resolvent (2.17) as well as expression (2.18) we arrive
formally at the same Breit-Wigner formula as given in Eq. (3.5) however

nott With Pauli-corrected quantites I';P and 4;P.
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In order to make the structure of this modification more transparent,
we present the corresponding formulae assuming that the separable
potential p is only of rank one. The extension to higher rank is

straightforuard. For p = |N>XN| we obtain

CF;18;51IN;> <N;l%;5> |2

r;pe

2w | <F;]%;> - »
<N;|B50N5> (3.8)

and

[ <F5]85]N;5> <N;]%5> <%;5|F5»

B3P = A; - 2Re —
L N3] 850N

<5185 N> <N;[%;5> |2

CHERLR (3.9

In order to see how the Pauli Principle influences the lifetime of the
resonance we reexpress the important term in Eq. (3.8} in the following

Wway

CF3]850N;5> <N; %>

<Fjl%5> -
N3 |G5]N5>

= CF5 | 1 - B3 N5>aN;|7<n;]E5] N5 | %50 (3.10)
in which the operator §;/¢N;I16;IN;> is a dynamical weight-operator
determining the weight with which the Pauli forbidden state Nj is

projected out of the wave function X;. It is straightforward to prove

that the operator
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[F1LERICE

KN; 185N (3.11)

is a projector by verifying the relation D2 = D. Because of this

property ue conclude that

I<F31%;5>12 > |<FjIDI%;> |2 .

This means [see formula (3.8)] that the Pauli Principle increases the
lifetime of resonances. This result is in agreement with the numerical
finding of Arima et al. [11] and Fliessbach [12] that the inclusion of
Pauli Principle reduces the resonance widths. It supports also the
interpretation of the Pauli Principle given by Schmid et al. [13] as an
additional (Pauli) barrier uwhich inhibits transitions betueen the inner
and asymptotic regions.

The resonance shift formula (3.10) shous that A;P depends sensitively
on the inclusion of the Pauli Principle. This confirms the recent
findings reported in Ref. [14] that the negligence of the Pauli Principle

in some cases can even reverse the order of rotational bands.
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4. THE MODEL FOR A THREE-CLUSTER COMPOUND RESONANCE
He consider a single three-body channel and allow the presence of one
simple compound state. This means that we are solving the microscopic

Schroedinger equation in a restricted function space given by

v o= $(1) #(2) #(3) x + af = V¥p + af ’ 4.1

using the Pauli-corrected micorscopic Ramiltonian HP(Q)

HPA) = H + A [n> <n]
We get from
gylrP-pdyy = o, (4.2)

the following set of equations

<SYp|HP()-Elvp> + acs¥yp|HPI-E|$> = 0
4.3)
CEHPOO-E|¥p> + a<f[HPOOD-E|$> = 0 .
Formal elimination of the second equation leads to
<8Vp|H-E|#> <F|H-E|¥p>
<s¥p|HP(AY-E|¥p> - = 0 .
G n-gl o (4.4)

The,technique of evaluating the terms appearing in this equation is
similar to that knoun from the resonating group method [4]. It is even
simpler since in our ansatz for ¥p there is no antisymmetrization
operator. MWithout the second term we would just get the integro-

differential equation for x(%,7) given already in (2.14).
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The interaction V/e¢¢$(1,2,3) appearing in this part of the equation
decomposes into three subsystem interactions and into a three-body

separable interaction,

V/efs(1,2,3) = Vq,p + Vz,p + Vz,p + A % [Ni> <Nj . (4.5)

The mathematical structure of the second term of (4.4) is a separable
potential of rank one with a resonance denominator
1
Ve = |F>) — ——«<F|
flnj$> - E (4.6)

with

FCe2,m7) = [dr3A §(rq,...,raA)(H-E)

X $(1I$(2)¥(3) 6(£-£7) §(n-0") (4.7

Note that in the second term of (4.4) and in the formula (4.7) we can use
the Hamiltonian H instead of HP(A), since f is already antisymmetric.

The full potential reads now
vEff(1’2y3) = v,eff(1)213) + VC . (4.83)

The interaction V7¢$§(1,2,3) is energy independent. For the derivation
given in the following section we assume that the Faddeev equations with
the tuo-body potentials V4,p, V2,p and V5,p has been solved, and that the
spectrum of wave function solutions is known. We can include the
influence of the Pauli Principle by considering the potential

A 2 INiN;i]. Then, by virtue of formula (2.17) and (2.18), we can
construct the complete spectrum of Pauli-corrected wave function

solutions.
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5. SOLUTION OF THE MODEL

The aim is to obtain the solution of

(ho + Ve§(1,2,3))% = Epx ’ (5.1)

Wwith the boundary condition for bound state scattering, i.e. for the
scattering of a free particle 1 by the pair (1) = (2,3} initially in a

bound state of energy Ejn. Here Ves¢(1,2,3) is given by

Vers(1,2,3) = Vess(1,2,3) - 2 ¥ [N <N

Thus at this stage uwe are neglecting the Pauli Principle.

ho represents the kinetic energy operator: hg = ﬁz(Ag + 45), and Fr
is the relative energy of the three-cluster system. (We uork in the
center-of-mass system of the three clusters and use Neuwton’s notation of

coordinates and momenta [15].) MWe define the following operators:

h = hg + Veff » h = h - v
g(z) = (z - h)-! ’ g2 = (z - M- (5.2)
go(2) = (2 - hg)!
With z = Ex + ie. It holds
g(z) = §(z) + g(z2) ve g(2) . (5.3)
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It is assumed that the bound state scattering problem, i.e. the equation

Tim ie G(ER + i€) &y = ¥,(%)
€0 (5.4)

is already solved. Here $; denotes the product of the plane wave #; and
the bound state function of clusters 2 and 3, #4n, where n denotes the n-
th bound state of clusters 2 and 3. This problem can be solved using
some of the many techniques for solving the Faddeev equations. Using the
operator identity (5.3) one obtains the Lippmann-Schuinger equation

Tim ie g(Ep+ie)®y = %q% = %q* + GEL+iI0Y) Vo %, (F)
€>0 (5.5)

The last equation has a unique solution, since V. has a finite Hilbert-
Schmidt norm. Due to the separability of V. the solution %4(*) can be
obtained immediately after a simple algebraic calculations. The result
is

[F> <F|% (4>

XY = %38 4+ GE+i0Y) .
CFIH]#> - E - <F|§*CEM P> (5.6)

In order to evaluate Eq. (5.6) one needs the asymptotic formulae of the
resolvent GY*(E.) = GLE+i0*) in all channels. The derivation of the
formulae for the three-body Green’s function assuming two-body

interactions only is given in the Appendix [19]). The results are:
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1
§*(ErR,R7) > -
175l > » 4n(2w;)372
IR71,1£5] C o

ilainll2il
e

X )y —————— #inl&1) Xin')* (QinEniR’) ’
no|asl (5.7)

where gin = 2i%|ain| [|ain] = (Er-Ejn) 1721, i=1,2,3 for the two-body

channels and

eiT/y Ep37% eilIKIIRI
§*(Er5R,R7D > %ol-1% (|K|RO,R") ,
| > o 2(2m5/2 |R|s/2

= o
-
g

(5.8)

for the breakup-channel, where ¥o{-)% is the three-particle scattering
function for three free incident particles. Here, the six-dimensional
coordinates (£4,7n3) 1=1,2,3 are denoted by a vector R, and the

corresponding six-dimensional conjugate momentum (p;,q;) 1=1,2,3 by a

vector K. Then the following formulae are valid [15]:

|§i|2+lﬂilz 3 Ep

IRIZ Iklz = |pilz+laslz

KR = £ip5 + migi 5 dR = d&i da5 » i = 1,2,3 .
Using the formulae (5.7) and (5.8) and the known structure of the
asymptotic form of the three-particle scattering function %,(*} [15,16],

one obtains all scattering amplitudes of the solution x%4{*) of the

Eq. (5.6). One obtains
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a) for the breakup channel.

eilKIIRI
x1‘*)(g1,E1,3) > [Ro1(K’;q1,E4) + RoqT®S(K’,q4,E¢)] ,
IRl + =  [R]S”2
(5.9)
b) for the elastic channel
1911
X1(+)(g1:E1;E) —_—) e #$1nlE1n- 1)
inil » »
4] ¢ ®»
m (2753172 ila’nllnal
-—— 3 e $1n(&4)
|211| n
X [R11(a’1n>E1n3g1,E1) + R117®5(a’4n:EqniQ1,E4)] (5.10)

¢) for the rearrangement channel j#1

m;(2/7i50'72  ila’;nlln;]
%1 (g4,E45R) ——> - ————— J e

Injl » o EX n
1£51 ¢ »

X 955n(§j)[Rj‘l(9'111»5'1";35;55) + qures(g'1n,5'1n;gj;Ej)] . (5.11)

Here Rjj are the usual Faddeev scattering amplitudes in absence of the

three-cluster potential V¢ and are given by
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ﬁjllz

Rj1(g’1n;E'1n;gj)Ej) = -
16mm; ;372

=ig’ 121
x | dR e $an*(£1) T Vp,ilEi) %5(¥)(a;5,E5:R)
it3 (5.12a)

j=1)2:3 and

eiT/% g 3/%

Ro1(K’341,E4) =
2(2nw)572

X J dR $,(-)%(K’,R) Z Vo, i (&5) §1(+)(91’E1}R) ’
i=1 (5.12b)

19421
in which $1¢-)(K,R) = e #10°)(pq,£4) and $40-)(&q) is a scattering

state in the subsystem (1). The potentials Vp,; are defined by
Vpo,i = Vp(Ji,k), (i,j,k) cyclic. The three-cluster resonance scattering

amplitudes Rj4, 1=1,2,3 uwhich arise from the potential V. can be found as

p;3/2 GEi VP> CF|%, 04>
Ri,'res = - »
16mm; pi3/72 <KF|H|E> - E - <F|§*]|P> (5.13a)
i=1:2’3 and
eiT/8 f _3/% Fo -V |F> <F]%, (%>
RoqFes = .

2(2w)8/2 CH|Rl#> - E - <Fl§*|P> (5.13b)
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Then the corresponding cross sections are given by:
a) for the tuo-body channels i=1,2,3:
do  |a’in] m1 fi'/2

_— = |Ri1 + Rjqres|2 ,
dn far]  mi fq172 (5.14a)

b) for the breakup channel

do B |a’4]®
—_ = |Ro1 + Ro,'reslz dg’y .
dft 2572 my2 pe372 |g4} K|S (5. 14b)

It can be observed already here [formulae (5.14)1 that the interference
effects betneen the structures contained in R;; such as final state
interaction and quasi-free scattering and R;; are present in all
channels. On the other side, the decay of the three-cluster resonance
itself is influenced by the existing structures produced by the two-body
potentials [formulae (5.13)]. Thus formulae (5.12)-(5.14) give a
qualitative insight into the variety of energy correlations in‘the case
of a sudden decay of a three-cluster system; In the next section the

scattering amplitudes Rjij;, 3=0,1,2,3 uill be studied in more detail.
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6. BREIT-WIGNER RESONANCE FORMULAE FOR A THREE CLUSTER
COMPOUND RESONANCE

In this section, first the structure of the scattering amplitudes Rji,
i=0,1,2,3 will be discussed. Then we discuss the corrections to these

quantities due to the Pauli Principle. The terms of interest are:

GV |F> <F|%qnt*)

i[> - E - <Fl§*|m> (6.1a)

and

Fiw VP> (F]Fant*H

CEiR]$> - E - <Flg*]P> ' (6.1b)

The resolvent §*(E.) can be represented in the following spectral

decomposition:

[ %> <%yl [ %50 ) 2¢E50(+) ]
HEN) = — + ¥ j da;
v Er = Ev jn Er - Ejn = Igjlz + jo*
[ %o+ 3<%+ | |%, ><% |
+ JJ dak dpk =S L F ¢
Er - lak|? - |ex]2 + i0* 4 Er - E, 4+ i0* (6.2)

where k=1,2,3 are arbitrary. The above formula folliows from the
principle of asymptotic completeness for a three-body system derived
independently by Ginibre and Moulin, and Thomas [17]. Here Xy is the
three-body bound state, Xin'*’ is a bound state scattering function with
initially bound state in subsystem (i), and %ot*) is a scattering
function for three free incident particles. MWe define a complex

resonance shift by
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CF|% <%, |F>
At ED = S H__H .

H Ep - E” + i0* (6.3)

Further, by using the identity

1 1
Tim = CPV ——— + inS(EH - Ep) ’
€>0 EH = Er - ie E” = Er (6.4)

one can separate the non-hermitian operator §*(E.) into a hermitian and

antihermitian part §* = gh + ing®>h, with

Is"v)(%vl Iyin(+))(§in(+)
gh(E) =3 —— + Y | cpv
vE-Ey in Er = |ai|2 - Ein
[Zot+)3<Xp )|
+ CPV
Er - laif? - [pil?
(6.5
§oh(En) = ¥ J [Zint*12<Fin*)| 8CEr - Ein - lal?) dgj
in
+ J J | %o (*?><Fo *? 8CEx = lak!? - Ipk!2) dpx dak -
Then defining the following quantities
YinlPIEQ) = (FlEin't) , i =0,1,2,3
Tint¥2(E) = 21 |rint¥ ED]|2 (6.6)
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we can reuwrite the formula (6.3) for the complex resonance shift

i
A*C(EL) = AclER) + — | ¥ Tin'YV(Ep~Ejn) + J Fol*3(laxi?) dgk] »
2 Uin

6.7)
luhere Ac(E.) = CFIGNELIF).

The magnitudes 7{*)(E,.) describe the probability amplitude of the
resonance cluster-state F in the different scattering states at the same
energy. The variety of the scattering states results from different
initial conditions.

Due to the square integrability of F the resonance widths I' are also
very sensitive to subsystem resonances, since in that case the amplitude
of this subsystem is large at small distances. Therefore the partial
widths I' are good candidates for probing the off-shell behavior of the
three-cluster wave functions. Ni£h the definitions (6.6) and (6.7) we

can transform (6.1a) and (6.1b) into

GV |F> <Fl%n™>

CGFlH|$> - E - <Flg*(ER|F>

70( -)*(Ep) 71n(*)(Er)

i
Ec -t - AC(EI") + - Z rin(+)(Er_Ein) + J ro(*)(Er—lglz) dg
2 lin
(6. 8a)

and
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Fsml V| FICF|%qnt*)>

CEHIH]F> - E - <F|GHEMD|P

'i'Yj.(')*(E,-) 71n(’,(Er)

Ec - E - Ac(ER) + l Y Fint* M (Er-Ejn) + J Tol*)(Er-1al2) dg
2 lin
(6.8b)
respectively, where E¢c = <{flHIf>.
Obviously, these formulae reveal the Breit-Wigner structure. The

resonance energy pole Epreg - the pole at which the real part of the

denominator in (6.8) becomes Zero - is defined by

Eec = Eres = B8¢lEres) = 0 .

The formulae (6.3) exhibit that even in the case of the three-body
breakup channel the Breit-Wignher resonance formula is still valid.
Moreover it allous one to study the rich energy correlations of the decay
products. The only difference to this formula is that Ac(E.) and T'(E.)
are energy dependent. To eliminate this difference it is necessary to
make certain approximations [19]. We have to use that fact that we are
considering an isolated, relatively sharp resonance. For such a
resonance level all other resonances lie energetically so far away that
IF'(Ex) can be considered to be approximately energy independent over the
energy Width of this level. Then we make the approximation that, in the

neighborhood of Ep,
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dAg(Er) )
Ac(Er) % Ac(Er) + (Er"Eres) D—

dE

Er~Eres

(6.9)
T(Er) % T(Epes) .

Then one arrives to the same formulae as (6.8) where Ac(E.) is replaced

by Oc(Eres) and the partial widths by:

T'(EQ)
Fres(Eres) ’

d

1 +

Dc(Ee)
dEp Er=Eres

(6.10)
Y5n(Ep)

Yin"®5(Epres)
d
1+

Ac(ER)
dE, Er=tres

The main difference in the structure of formulae (6.8) compared with the
resonance formulae for the two-body channel situation [18] is the
appearance of an integral over resonance Widths [o{*)(E.~19l12). This
reflects the fact that the three-body breakup can be considered as a
continuum of infinite many two-body channels. Each distribution of the
energy over the three bodies corresponds to one two-body channel.
However the interpretation of the resonance widths I' according to the
picture of tuwo-body channel situation is no longer possible.

This can be seen in the following way: though ¥p!*? is a scattering
function for three free incident particles, it contains appareéently also

contributions of all two-body channels. This aspect is lacking in the
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Breit-Wigner formula in the two-body channel situation and is obviously
characteristic for (N 2 3)-cluster systems. The analogy to the two-
channel case is not possible because I'g{*) cannot be interpreted as the
transition amplitude from the resonance state F whether to the breakup
channel nor to some of the twmo-body channels; all these transition
amplitudes are contained in Io{*), but they altogether determine
nevertheless effectively the partial resonance width of the breakup
channel.

Therefore even in the case of a two-body channel, no straightforuard
parametrization by phase shifts of the resonance amplitude can be given.
Analogous considerations can be made for I'*;,. They show that vice versa
the transition amplitudes from the compound state F to the breakup
channel influence the resonance width of a two-body channel. It should
be pointed out that this many-cluster effect is qualitatively different
from the mutual influence of the partial widths of the two-body coupled
channels. The latter effect depends on the ratio of the partial width fo
the total resonance width. The origin of the new effect is a dynamical
one. It lTeads to some interesting and important consequences. Let us
assume that in addition to the three-cluster resonance there is at a
lower energy a subsystem resonance in the subsystem (i) consisting of
clusters j and k. One considers nomu the three-cluster resonance behavior
in the tuwo-body channel, uwhere clusters j and k form just a bound state.
In this case the three-cluster resonance uwidth of this channel is
strongly influenced by the resonance of the same subsystem (i), though in

this channel just this subsystem is bound at each energy.
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Another difference is that the formulae given by Schranner [18] for
two-body channels uere derived under the strong approximation; namely
that the direct coupling between the open two-body channels can be
neglected and that the transition occur through the formation of the
resonance state. Such approximation is valid only in specific
situations, if for instance the resonance occurs in an energy region
where all or all but one channel are shielded from the compound region by
high potential barriers. The derivations presented here restricted to
the two-body channel reactions are exact and cover all cases.

The influence of the three-cluster breakup structures such as quasi-
free scattering, final state interactions, or tuwo-body channel resonances
on the three-cluster resonance is twofold. First, such structures
strongly influence the three-cluster resonance widths I'(E); second, they
interfere with the three-cluster resonance amplitudes Rgq. The kinematic
aspecis of such interferences are extensively studied in Ref. [19].

Due to the analysis done in Section III and V and in virtue of
formulae (2.17) and (2.18) (uhich hold also in the three-clustér case),
it is easy nou to ansuer the question how tﬂe symmetry generated by the
Pauli Principle influences the derived Breit-Wigner formulae for the
three-cluster compound resonance. Again, in order to make the Pauli-
corrected formulae more clear, We assume for simplicity that the rank of
the separable potential p is just one. Then after some algebra one finds
the Pauli-corrected formulae for the characteristic quantities introduced
in (6.6).

CFlg*|Noen]r>
-yinp(!) = yin(!) -

N|g*INY h (6.11)
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for i=0,1,2,3
TinPt¥) = 21 JyinPt9) |2, (6.12)
and

Acp = Ac = Acorp . (6-13)

Here the correction term 8.,P due to the Pauli Principle can be uritten

as:

1 CFIGHINXXNIN D)
ACOPP = 2Re [
v

<NIGTIND

CFIGHINDANI® it D CFIGYINXXNI% oY
+ Y | cpv + CPV ]
in Er - lgil? - Ejn Er - lgjl2 - 1p;12

Er"Ev

(FIgHIND

2 1<NI® D12 I<NI% 5l t)>)12
Yy—+ ¥ | cpv
' E

Er - Ey in r - 19512 - Ejn

¥ [<NI%o*)) ]2
+ CPV .
A Er - 19512 - Ip;lI2 (6.14)

The formulae (6.11)-(6.14) are easily generalized to any finite rank of

NIGHIND

the separable potential p.

One observes that the Pauli Principle shifts the resonance pole in all
channels uniformly. However the partial resonance widths are influenced
by the Pauli Principle in a different way. The formula (6.11) shouws that
the Pauli Principle has much stronger impact on the partial resonance

widths I'j, in the two-body channels than on the partial resonance width
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I'o in the breakup channel. This is so, since I<NIXo{*)] <C I<NI%;nl*)>1.
This shous that the major influence of Pauli Principle on the resonance
behavior in the breakup channel consists only in shifting the resonance
pole. Houwever the Pauli Principle influences strongly the subsystem

structures by making them more pronounced. Thus it makes the observation

of the sudden three-cluster decay even more difficult.
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7. CONCLUSION

A neu method of considering Pauli Principle on a microscopic level has
been presented. Based on this method a reaction theory for the decay of
a nuclear compound state into two and three cluster has been developed.
It allows a detailed study of the influence of the Pauli Principle on
such quantite; as resonance width and shift of the resonance pole.
Explicit formulae for Pauli-corrected quantities have been given and
discussed. The formalism for the three-cluster case shous clearly the
interference of the sequential decay modes with the sudden decay mode.
The differential cross section has a complicated structure, even when the
compound resonance is sharp and isolated. As compared with the standard
Breit-Wigner formalism, the three-cluster decay of a compound state
corresponds to a case in infinitely many two-body channels.
Correspondingly the total decay width is a sum plus an integrable over
the partial widths. New effects of the mutual influence of the three-
cluster resonance uwith subsystem resonances and other resonance-like
structures have been discussed. It has been shoun that the influence of
the Pauli Principle on the partial resonance width in the breakup channel
is small, whereas it is appreciable in the two-cluster channel of the
three-cluster system. For a practical application of the theory one has
to solve the i{hree-cluster Faddeev equation in absence of the three-
cluster compound resonance potential and one has to calculate matrix
elements of this potential with the obtained solutions. The influence of
the Pauli Principle enters by a simple separable potential which can be

numerically evaluated in terms of transition amplitudes.
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APPENDIX

THE ASYMPTOTIC FORMULAE OF THE FULL THREE-BODY
GREEN’S FUNCTION IN COORDINATE REPRESENTATION

The decomposition into channels of the three-body wave function was
derived by Sasakawa [20] and the asymptotic form of the three-body mave
function was studied by Glockle [21], Newton [15,22], Merkuriew [16],
Gignoux [16,231, Laverne [16,23], and Nutall [24,25].

As one knous from Refs. [21]-[25], the asymptotic form of the three-
body wave function depends‘on the direction in the six-dimensional
coordinate space. The same, of course, must be true of the Green’s
function. One can, therefore, expect that one should be able to use the
various forms of the resolvent equation for the full resolvent § in terms
of the channel resolvent §;, i=0,1,2,3 in order to find its asymptotic

form in various directions. One has

§=9§; +§; VGi)g , (A. 1)

where V(i) = [V(j) + V(K)]1, i,j,k cyclic, and V(0) = ¥ V(i). MWe are
considering a situation with pairwise interactions only. 1In Eq. (A.1) a

term of the following form appears:

J dR™ G41*(R,R™) V(2) (£"2) §*(R",R”)
(A.2)

There is a convergence problem with 7,"-integration. For this reason
(A.1) is not the proper starting point for going to large IRlI. One can
expect that one has to start with Faddeev-like equations for the Green’s

function §. 1In order to obtain a Faddeev-like splitting of a resolvent
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identity, one considers Eq. (A.1) for i=0,1,2,3 and obtains after an easy

calculation

-~

§ = ¥ gilM; + vGi) §o VG §1
i=1 (A.3)

in which
V(i)Go if i# A
My =

) Y it 1=

Here A can be chosen arbitrarily A = 1,2,3. One can shou that the
formula (A.3) corresponds to the Weinberg’s decomposition of the three-
particle wave function [26]1, and the choice of A corresponds to the
determination of the entrance channel. The arbitrariness of A reflects
the fact, that in the space of eigenstates of §;~' the operator V(i)gy is
jdentical with identity 1; acting in this subspace. An equivalent
formulation of (A.3) is

§ = Go + 8o Y L[VGIIE; + VGidF; V(i) .
i=1 (A. D)

We will shouw later that in Eqs. (A.3) and (A.4) the disconnected parts in

the kernel are avoided.

In order to derive the asymptotic formulae for the full three-body
Green’s function one needs corresponding asymptotic formulae for the
channel Green’s functions §;. Such formulae uere already derived by

Newton [15]1, who pointed out that §; can be split into two parts:

Gi*(E) = §;*C(E) + §;tb(E)
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where §;*©S(E) is responsible only for the asymptotic formulae of §;*(E)
in the breakup channel, and §;*P(E) determines uniquely the asymptotic
behavior of §;*(E) in the two-body channel i:

Tim giY(E;R,RY) = Tim §i*C(E;R,R)

] IRl »>w
® IR’ ¢ »

— — by

| ->
i 4

’

o |o

e /% E3I/% oilKIIRI
= *i(-)*(K',R') »

2(2m)572 |R|S7/2 (A.5)
Tim gi*(E;R,R7) = 1im §i*P(E;R,RY)
In;l » o 1751 @ »
IR, 1£51 ( o IR71,1£31 € o
ila’inllnil
1 e
= Z ¢in(§i) §i*(ﬂin:EirﬁR') ’
4n(21;)3/2 n 12l (A.6)
where
19in0;i
97in = 2i%1qinl » ®ilainEiniR’) = e $inlEs)

The derivation of the asymptotic formula for the two-body channel is
trivial. 1In this case one can start directly from the identity (A.1)
i#0. There is no trouble in the integration in the coordinates £’; and
%’ i» since in the two-body channel the leading contribution in the
Green’s function comes only from §;*P(E). Thus the range of £&7; is
lTimited by the bound state function #;, and the range of £7; is limited
by the‘potential V(j), j#i. 1If the ranges of &¢’; and of £;5, j#i are
limited, then the same holds true for R’ = (£’;,2”;). Starting from

(A.1) and using (A.6) one obtains
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ila’inl|2inl

1 e
lim GY(E;R,RY) = - Y Rinl I¥(R”) ,
il @ 4w(21;)3/2 n lﬂil
IR’1,1£51 C » (A.7)
where
Tim i€ GCE-i€)®in = $5n + L) V(i) @50 = %5p07)

-0

In the case of the breakup channel the use of Eq. (A.1) is no longer
justified, since the corresponding kernels do not fulfill the requirement
of the connectivity. 1In that case, it is suitable to start from the
identity (A.3) or (A.4). Studying Eq. (A.3) one finds that the terms
V(ilgoe cause no trouble because they represent compact two-body kernels
embedded in the three-body space and the corresponding function can be
factored out. But we have to ensure that <(RIV(i)§oV(j), j#i decreases
asymptotically sufficiently rapidly. It is known that the compactness of
the operator V(i)GeV(j) or its cyclic iteratives is a sufficient
condition for the required asymptotical decrease. Faddeev [27] has shoun
that such kernels are compact in a suitable Banach space for real
energies greater than Egijn (khere Egijn is the louwest energy level of the

subsystem). One can shouw directly that the kernel
K(£i>05,£73,075) = VG) (&) Gol&irnisg’ 5,0 4)
X V(3) (a5’ + bijzn’s)

fulfills the above mentioned requirement: the behavior of the kernel k

for large l&j1 is evident because of the potential V(i), for the
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coordinate n; one can shouw evaluating a representation of Gp in the form

of the convolution

1 [
GolE; £i,033£75,073) = — j dz
21 -

X C£ilGolE-2)1£75> <nilGo(2)in’ >

by the stationary phase method [28] that k decreases in In;l stronger
than 1/(Ina;1)2.

Thus uwe are allouwed to use the formula (A.4) in order to derive the
asymptotic formula of the resolvent § in the breakup channel. To this

purpose He need the corresponding formula for the free resolvent §p. It

holds T
in/4 374 il|KIROR’
e E e -ilKIRR’
Tim go(E;R,R’) = e .
IR 1 > w® 2(2w)572 |R|572
IRl ¢ o (A.8)

This formula is obtained using methods already applied by Newton [15].

Starting from (A.3) and using (A.8) one gets

ins4 374 ilKIROR”
e E e

m
> 2(2w)572 |RI572
{ o

x [éo*(g',g') + 3 (3oV0idG; + §oV(i)§;V(i)§)*|g’>] ,

i (A.9)

where
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ilKIROR’
$o(K’,R?) = e » K’ = IKIR®

Considering that lim ie gj(E-ie)dg = #;{-), one obtains

-0
3
Y (3o V(i) §i + &0 VGI) §; V(DIP)
i=1
3 3
= Y 30 0 N(IE) - Y ($o + ¥ VGG
i=1 i=1

and With this result finally

inz4 374 i1KIIRI
e E e

IR 2w 2(2m)572 |RiIS/2

3
x | ¥ ®jlIRKLRY) - 2%l )®(K/,RYY|

i=1 (A.10)
in which
%i(=) = 1im ie G(E-ie) &;(-) ,
=0 (A.11)
and
%ol = 1im ie G(E-i€) &y .
€0 (A.12)

One can easily show that x;'-) as defined in (A.11) and (A.12) are

identical for i1=0,1,2,3. Therefore one obtains
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inz/4d 374 ilKIIRK

e E e
Tim g(E;R,R?) = Rol-)*®(K’,R”)
IRl = w 2(2w)572 |R|572
IR’} ( w (A.13)

Finally, ue mention another useful asymptotic formula for the breakup
channel formulated not in terms of scattering function but in terms of
the scattering amplitude. This shous that the scattering amplitude Rgo
without the compound state F is already contained in the resonance
scattering amplitude Rqp"®S. It is knoun that the scattering amplitude
RO% js obtained by quadrature from the scattering amplitude Roj, i=1,2,3.
The result is

ins4 374 ilKlIRI
e E e

IR1 2> 2(2n3572 R15/2

_iKIBI
X | e + (2m3 j Root Y (K’,K™) <K"!GoIR’> dK" ’
(AR.14)

in swhich Rgp!~? denotes the free-free transition amplitude in a three-

body system.
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