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ABSTRACT 

Breit-Wigner formulae for compound resonances in two- and three- 

cluster systems are derived. Analytic corrections due to the Pauli 

Principle with regard to corresponding formulae for partial resonance 

widths and resonance pole shifts are given. In the case of a system of 

three composite particles a model is formulated, in which sudden decay 

into three clusters is determined by the knowledge of the microscopical 

compound state of the metastable decaying nucleus. The derivation of the 

Breit-Wigner formulae in the case of a three-cluster system is based on 

the study of the asymptotic behavior of the full three-body Green’s 

function. In the case of the two-body channel situation the formalism 

presented here is an alternative to the Wildermuth-BenShr reaction 

theory. 
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1. INTRODUCTION 

The purpose of this paper is the study of the influence of the Pauli 

Principle on the compound resonance behavior in two- and three-cluster 

systems. The method proposed here is based on the introduction of a 

Pauli-corrected microscopic Hamiltonian. This deviates from the usual 

procedure as for example in the resonating group method C1,2,31, in uhich 

the Pauli Principle is introduced by a fully antisymmetrized ansatz for 

the wave function. Consequently our approach differs from the reaction 

theory by Wildermuth and Benb’hr C41 already in the two-body channel 

situation, which is based on the resonating group method (RGMI. 

Therefore, in the two-cluster situation our approach may be considered as 

an alternative to the reaction theory by Wildermuth and Benb’hr. In the 

three-cluster case we formulate a model for a three-cluster compound 

resonance, and derive the resulting three-body Breit-Wigner formulae. 

In Ref. C41 it has been shown that compound states give rise to 

resonances of Breit-Wigner type in the single channel case. Also the 

coupled channel case has been investigated and the influence of a second 

open channel on the resonance behavior in the first channel has been 

studied. However a compound resonance for three clusters with internal 

structure found no treatment hitherto. 

On the other side, resonances in three-particle systems have been a 

topic of great interest during the last decade, in particular in 

elementary particle physics. Most investigations, however, are based on 

the assumption that the three interacting particles are point particles 

without internal structure. In the present paper we want to consider 

resonances which occur in systems of three composite particles, or 
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clusters. The new feature will be the appearance of compound resonances 

and the difficulty will be that they will interfere with subsystem 

resonances or resonance-like structures such as the final state peak. 

In terms of mathematics, the difficulty will be that, instead of the 

two-body Green’s function, we will need the three-body Green’s function. 

This means that we have to assume that a Faddeev equation has already 

been solved for the motion of the three clusters without the presence of 

a compound state (and in absence of the Pauli Principle). It will be 

seen that in our model the inclusion of the Pauli Principle leads to a 

strong three-body force. This three-cluster force is represented by a 

three-cluster separable potential (Pauli potential). The first 

difficulty will be the inclusion of the Pauli Principle by an appropriate 

treatment of the Pauli potential. Another difficulty arises from the 

complicated dynamics of the three-cluster system. 

In terms of physics, the latter difficulty is this. Since there is a 

spectator cluster which can carry an arbitrary amount of energy, a 

subsystem resonance or a final state peak will not only appear in a 

narrow energy range of the three-body system. It uill appear at all 

energies above a certain minimum which corresponds to zero spectator 

energy. The compound resonance will thus never be an isolated resonance 

but will always find something to interfere with. This will be seen more 

clearly from the relevant mathematical expressions. 

In Section II we propose a method to include the Pauli Principle in 

the microscopic Hamiltonian and how to derive the Pauli-corrected 

effective intercluster interaction in the case of two- and three-cluster 

system. In Section III we derive the Breit-Wigner formula for the tuo- 
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cluster compound resonance and discuss how it is affected by the Pauli 

Principle. In Section IV a model for the three-cluster resonance - based 

on the method presented in Section II - is formulated. A technique for 

solving this model is proposed in Section V. The technique is based on 

the asymptotic formulae of the full three-cluster resolvent in the 

presence of two-body forces only. The corresponding formulae are 

discussed in the Appendix. 

By applying this technique we succeed in derivation of generalized 

Breit-Wigner resonance formulae for the three-cluster system. In Section 

VI the Breit-Wigner formulae and the influence of the Pauli Principle on 

them are discussed in more detail. 
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2. MICROSCOPIC TREATMENT OF THE PAUL1 PRINCIPLE 

We consider a microscopic Hamiltonian H =-Ho + V, of an A-nucleon 

system, where the potential V is a sum of tuo-body interactions, and the 

correspond ing A-particle Schroedinger equation is 

(Ho + VI’+’ = EJ, . (2.11 

We rewrite the time-independent Schroedinger equation (2.1) in the form 

of a projection equation 

<SJc 1 H-E 1 90 = 0 . (2.21 

If GJ, represents a completely arbitrary variation in the space of all 

A-nucleon functions, then Eqs. (2.1) and (2.2) are entirely equivalent. 

In the case of two-cluster single channel the RGM was very successful 

in solving Eq. (2.2) for the ansatz 

JI = 4(4<1> 4(21 x) . (2.31 

Here the functions 4 describe the internal behaviour of the cluster, 

while the function x is relative-motion function in two-cluster 

configuration. a\ denotes the antisymmetrization operator of the A- 

nucleon system. The variation GJ, is now restricted to the arbitrary 

variations of the linear function x. 

In contrast to the RGM our method introduces the influence of the 

Pauli Principle not by a fully antisymmetrized ansatz for the wave 

function J1 but by a modification of the microscopic Hamiltonian t51. 
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On the microscopic level ue are able to express the Pauli Principle by 

mutual orthogonal Pauli forbidden states In>.- Note that on the cluster 

level there are in addition to Pauli forbidden states also partly Pauli 

forbidden states, which in many cases carry the main part of the Pauli 

principle.’ On the microscopic level this separation in Pauli forbidden 

and Pauli partly forbidden states can be avoided by explicit construction 

for example in the harmonic oscillator shell model space. In principle 

there is an infinite number of the microscopic Pauli forbidden states. 

However, in any realistic (variational) bound state calculation the 

number of microscopic Pauli forbidden states is limited by the dimension 

of the space used in the calculation; and the dimension of the space is 

determined by a reasonably chosen highest energy quantum excitation. The 

same holds also for the scattering problem. Here, at any fixed 

scattering energy* but still consistent with the cluster ansatz under 

consideration, we have to choose high enough quantum excitation and to 

include the corresponding microscopic Pauli forbidden states. It is true 

that at high energies the number of microscopic Pauli forbidden states 

increases rapidly. However, this problem is not too serious for two 

reasons. First, at high energies the exchange effects due to the Pauli 

principle become small. Second, the validity of the cluster model is 

restricted to the low energy range. Thus we can restrict the number of 

Pauli forbidden states to some reasonable and manageable number. 

l In the RGM the Pauli forbidden states correspond to the eigenstates of 
the norm kernel with eigenvalues equal to one. The eigenvalues equal 
to one appear only in so-called equal width limits of the RGM. 
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It should be noted that the states In> carry all information on the 

spin and angular momentum configuration of the system under consideration 

and therefore when introducing cluster internal functions for a system of 

two or more clusters one has to take the appropriate projection of the 

spin and angular momentum variables onto the channel under consideration. 

I n> = 1 Ci” (Sin ll u(iVn;&v)) . 
i V 

Here sin are spin-isospin functions, u is a simp 

labeled by iv, and Cv are the v-th member of set 

le particle function 

of Jacobi coordinates 

which describe the configuration of the system of nucleons. It holds 

AIn> = 0. We also assume that the coefficients CT” are chosen such that 

,<nlm> = 6n*. We wish now to solve this Schroedinger equation not in the 

complete space H, but in the subspace HP a c H which is the orthogonal 

complement of a subspace HP specified constructively using the 

orthoprojector p given by 

P = 1 fn> <nl i 
n (2.4) 

i.e. HPa denotes the Pauli allowed microscopic subspace. In the cluster 

problems, it is not only required to project the solution of the 

Schroedinger equation for the Hamiltonian H on the allowed subspace HP 

but also to eliminate all virtual transitions to the forbidden states. 

This can be achieved by applying the orthogonalizing pseudopotential 

method (OPP) C61 on the microscopic level by going over to a modified 

microscopic hermitian Hamiltonian Fi: 
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jj q H + Xp q H + X 1 In> <nl . 
n 

Since the states In> are not eigenstates of the Hamiltonian H the real 

constant X should be brought to infinity in the final solution. One can 

easily show that in the limit X + 00 the solution 5 corresponding to the 

Hamiltonian il is orthogonal to all microscopic Pauli forbidden states 

In>. In this approach we extend the orthogonality scattering C71 to an 

“orthogonality reaction method” by introducing the orthogonalizing 

microscopic pseudopotential. 

V(X) = xp (a + 0s) , (2.61 

and deriving the cluster equations by suitably chosen ansatzes for the 

wave function g. Thus, in contrast, to the OPP method, we are not 

interested in the direct solutions of the Hamiltonian Ti. R serves only 

as a Pauli-corrected basic microscopic Hamiltonian for a subsequent RGM- 

like treatment. We use the ansatz 

5 = 4(l) 4(2) x . (2.7) 

Note that since the Pauli Principle is considered in the Hamiltonian 

(2.51, we can drop in (2.7) the antisymmetrization operator. Using the 

Hamiltonian (2.5) and the projection equation (2.2) we obtain the 

following Schroedinger equation for clusters: 
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(Tr + Vb + X 1 INn> <NnllX = Er% . 
n (2.8) 

Here Vc is the double folding two-cluster potential; for antisymmetrized 

cluster internal functions Va is the direct potential of the RGM 

equation. Er is the relative energy of the two clusters in the c-m. 

system, given by Er = E-El-Et. The cluster internal energies El and Et 

are obtained by computing the expectation values (in realistic 

calculation ground state energies1 of their internal Hamiltonian, Tr is 

the corresponding kinetic energy operators, and 

N,(R) = <n I 4(1)4(2IR>int . (2.91 

The bracket < >int means that the integration is performed only over the 

internal degrees of the clusters and includes the appropriate evaluation 

of the spin and angular momentum variables. In evaluating the separable 

term in Eq. (2.8) we have assumed that according to the no-distortion 

ansatz made in (2.7) the unit operator in the microscopic space can be 

represented by 

P = 
s 

)4(1)4(2)~> <~4(2)4(1)) dR . 
(2.10) 

The transition from the microscopic equation (2.5) to the cluster- 

Schroedinger equation (2.8) as for the Pauli exclusion principle is 

concerned wi 11 be discussed now in more detail: It is true that on the 

microscopic level in an arb itrary Hilbert space we can express the 
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antisymmetrization operator A by A = d - 1 ln><nl. It is also valid that 
n 

in the limit h + 0 the Hamiltonian Fi leads to a fully antisymmetrized 

solution g, for which it holds <nlg> = 0 and therefore Ag = 0. However 

the interpretation of the separable Pauli-correction term in Eq. (2.8) 

must be treated with more caution than in the case of Eq. (2.5). As one 

knows from the resonating group theory the Pauli Principle on the cluster 

level leads to fully and partly Pauli forbidden 

between them is expressed quantitatively by the 

of the RGM kernel. Thus in a chosen normalizat 

states. The difference 

corresponding eigenvalues 

ion the difference between 

fully and partly Pauli forbidden states consists in the 

weights. This difference disappears in the limit X + 0 

Therefore the Pauli forbidden (or inhibited) states can 

ir different 

[see Eq. (2.811. 

be treated in 

Eq. (2.81 only as fully Pauli forbidden intercluster states. Therefore 

the treatment of the Pauli principle in Eq. (2.8) is essentially the same 

as in the orthogonality condition model C93. The treatment proposed by 

Eq- (2.81 can be extended to almost Pauli forbidden states C31 and also 

in some approximation to partly Pauli forbidden states. The latter 

aproximation is the better the more the state is Pauli suppressed. With 

this understanding the intercluster Pauli-corrected interaction can be 

written as: 

V(X -+ -1 = VD + (A + 001 1 IN& <Nnl . 
n (2.111 

Using potential V we are now able to derive all the helpful properties 

owned by the OPP method, as for example the nice feature of improved 

convergence of Born series especially in the critical low energy region. 
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Since these properties are discussed and derived in Ref. 8 and are easily 

adapted for the inter-cluster potential V(h),- we dispense with their 

discussion here. We rather like to discuss the extension of the 

microscopic method to a three-cluster situation. Let us consider the 

most simple no-distortion ansatz for a three-cluster system: 

J, = 9(l) 9(2) 9(3) x . (2.12) 

Using the projection equation (2.21 and the microscopic Hamiltonian uith 

the potential V we obtain with ansatz (2.121: 

(T# + T* + Vl,n + V2,n + V3,D + a 1 INi> <Nil)% = ErX - (2.13) 

Here the functions Ni depend on two Jacobi coordinates & and b and are 

square integrable in respect to them. Vi,D are the local double-folding 

potentials of the cluster subsystems. Tg+Tq denotes the kinetic energy 

operator in the c.m. system. From Eq. (2.13) we observe that there in 

only one non-local potential, namely h c INi><Nil which is separable 

three-cluster potential uith finite Hilbert-Schmidt norm, and uhich 

carries the influence of the Pauli Principle as far the fully or highly 

suppressed Pauli intercluster states are considered. 

The nice feature of the Hamiltonians (2.8) and (2.131 is that they 

clearly separate the symmetry properties (Pauli Principle) of the system, 

described by operator pI from the details (specific nucleon-nucleon 

interaction) of the dynamics of the composites. 

To conclude this section we give a useful formula for the resolvent 

GPCEI q (E - h)” , (2.14) 
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defining 

G(E) = (E - h + Xp)” , (2.15) 

we obtain the following expression for G(E) in the limit X + QO 

GP = G - Gp CpGpl-’ pG , (2.161 

Here h represents two-cluster or three-cluster Pauli-corrected 

Hamiltonian given in (2.8) and (2.13). In resolvent G the Pauli 

Principle is neglected. The importance of this formula is that the limes 

X + 00 was carried out analytically and thereby the parameter X is no 

longer present. For numerical application this is a convenient feature, 

since the equations are free from the strong coupling constant which X 

represents. 

Finally we consider the two-cluster Schroedinger equations 

(E-h)xP = 0 and (E-h+Xp)x = 0. Then it holds 

GPX 
XP = x-- . 

PGP (2.17) 

The derivation of Eq. (2.16) and Eq. (2.17) 

C3,8,101. In Section III and VI we will see 

expression (2.17) alloer us to give analytica 

resonance width and resonance pole shift due 

Principle. 

can be found in Refs. 

that resolvent (2.16) and 

1 corrections of the 

to the inclusion of Pauli 
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character 

the forma 

Ref. 4 we 

Principle 

3. PAULI-CORRECTED BREIT-WIGNER FORMULA FOR AN ISOLATED 
TWO-CLUSTER COMPOUND RESONANCE 

In this section we discuss the influence of the Pauli Principle on the 

istic quantities of the two-cluster Breit-Wigner formula. Since 

1 method of deriving the Breit-Wigner formula can be found in 

treat it only briefly. Note however that in our case the Pauli 

is treated differently. 

In order to allow excitations of one single compound state we enlarge 

the ansatz for the wave function 9 as follows: 

where f describes the compound state. Here f is antisymmetric and square 

integrable function by construction. The technique of introducing such 

square integrable compound (or distortion) state embedded in continuum is 

described in detail in Refs. Cl,Sl. Then from the projection equation 

and after some simple algebra we obtain the following Lippman-Schwinger 

equation for xp: 

<FI%p> 
XP = %p + gp(F> 

Ec - E - <FIEpIF> ’ 

where 

(3.2) 

Ec = <f IHI f> , (3.3a) 

F(E’1 = 
I 

dr3* f(rl... EA)(H-E) 9(l) #(2) G&E’) , 
13.3b) 

XP(Er) = (Ep - Tr - Vn - X 1 INi> <Nil)” p (3.3c) 
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and 2P is the solution of Eq. (2.81, i.e. in absence of the compound 

resonance. 

If we neglect the influence of the Pauli Principle we have to omit the 

potential x C IN~xN,.,~ and we obtain for the solution 2 the same formula 

(3.21, where gP has to be replaced by 

-d(Er) = (Er - Tr - VD)” t (3.4) 

and correspondingly ZP by ji. For the latter quantities we obtain the 

following Breit-Wigner formula for resonant part of the amplitude in the 

partial wave of total spin j: 

rj (Er) 
Aj res ?: . 

Ep - E - Pj - TjfEr)/i! (3.5) 

Here 

rj (Er) = ~II I<FjlZj(Er>>12 > 

and 

Aj = <FjlRe (%j)lFj> . 

Note that 

Im CFj (Er)I = v IZj(Er)> <Hj(ErI I . 

(3.61 

(3.7) 

Now we like to study the influence of the Pauli Principle on the 

quantities Tj and Pj. For this purpose we reconsider formula (3.2). 

Then, using the resolvent (2.17) as well as expression (2.18) we arrive 

formally at the same Breit-Wigner formula as given in Eq. (3.5) however 

now with Pauli-corrected quantites rjp and AjP. 
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In order to make the structure of this modification more transparent, 

I  

we present the corresponding formulae assuming that the separable 

potential p is only of rank one. The extension to higher rank is 

straightforward. For p = INXNI we obtain 

<FilFilNi> <Nil%i) 2 
rjp = 2~ <Fil%i> - , 

<NjlEjlNj> 

and 

<FilGilNi> <Nil!Zi> <filFi> 
AjP = Aj - 2Re 

<NjlSj(Nj> 1 
<FilgilNi> <Niljii> 2 

+ . 
<NjlEjlNj> 

(3.81 

(3.91 

In order to see how the Pauli Principle influences the lifetime o 

resonance we reexpress the important term in Eq. (3.8) in the fol 

way 

<Filjii> - 
<FilEilNj> <Njl%i> 

<NjlEj(Nj> 

= <Fi I 1 - ~jlNj><Njl/<Njl~jlNj> 1 5ij> p 

f the 

lowing 

(3.101 

in which the operator Gi/<Nil~ilNi> is a dynamical weight-operator 

determining the weight with which the Pauli forbidden state Nj is 

projected out of the wave function sii. It is straightforward to prove 

that the operator 
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EjfNj><NjJ 
D = l- 

<NjlEjlNj> (3.11) 

is a projector by verifying the relation D2 = D. Because of this 

property we conclude that 

l<FilZi>12 > I<FilDlZi>12 . 

This means [see formula (3.811 that the Pauli Principle increases the 

lifetime of resonances. This result is in agreement uith the numerical 

finding of Arima et al. Cl11 and Fliessbach Cl21 that the inclusion of 

Pauli Principle reduces the resonance widths. It supports also the 

interpretation of the Pauli Principle given by Schmid et al. Cl31 as an 

additional (Pauli) barrier which inhibits transitions between the inner 

and asymptotic regions. 

The resonance shift formula (3.10) shous that AjP depends sensitively 

on the inclusion of the Pauli Principle. This confirms the recent 

findings reported in Ref. Cl41 that the negligence of the Pauli Principle 

in some cases can even reverse the order of rotational bands. 
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4. THE MODEL FOR A THREE-CLUSTER COMPOUND RESONANCE 

We consider a single three-body channel and allow the presence of one 

simple compound state. This means that we are solving the microscopic 

Schroedinger equation in a restricted function space given by 

(4.1) 

using the Pauli-corrected micorscopic Hamiltonian HP(X) 

HP(X) = H + X In> <nl . 

We get from 

<WI (HP(X)-EIj$‘> = 0 , (4.21 

the following set of equations 

<S$alHp(X)-EI$b> + a<b$bIHp(X)-Elf> = 0 

(4.3) 
<flHP(X)-Ej$a> + a<flHP(X)-Elf> = 0 . 

Formal el imination of the second equation leads to 

1 HP(~I-EI~D> - 
<&$o/H-Elf> <flH-El$,o> 

= 0 . 
<f IH-Elf) (4.4) 

The technique of evaluating the terms appearing in this equation is 

similar to that known from the resonating group method C41. It is even 

simpler since in our ansatz for $0 there is no antisymmetrization 

operator. Without the second term we would just get the integro- 

differential equation for x(l,aI given already in (2.141. 
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The interaction V’,ff(1,2,3) appearing in this part of the equation 

decomposes into three subsystem interactions and into a three-body 

separable interaction, 

V’eff(1,2,31 = vl,D + Vt,D + v3,D + X 1 INi> <Nil s (4.51 

The mathematical structure of the second term of (4.4) is a separable 

potential of rank one with a resonance denominator 

1 
Vc = IF> 

<fIHIf> - E 
<F) , 

(4.61 

with 

FQ’,g’) = jdr3* f Ql,. . . ,LA) (H-E) 

x ~(11#(2)#(3) 6(&L’) 6@-~‘) (4.71 

Note that in the second term of (4.4) and in the formula (4.7) ue can use 

the Hamiltonian H instead of HP(X), since f is already antisymmetric. 

The full potential reads now 

Veff(lr213) = V’eff(1,2,3) + VP . (4.81 

The interaction V’eff(1,2,3) is energy independent. For the derivation 

given in the following section we assume that the Faddeev equations with 

the two-body potentials Vl,a, V2.b and v3.D has been solved, and that the 

spectrum of wave function solutions is known. We can include the 

influence of the Pauli Principle by considering the potential 

X 1 INi><Nil. Then, by virtue of formula (2.171 and (2.181, we can 

construct the complete spectrum of Pauli-corrected wave function 

solutions. 
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5. SOLUTION OF THE MODEL 

The aim is to obtain the solution of 

(ho + V,ff(1,2,3))% = ErX p (5.11 

with the boundary condition for bound state scattering, i.e. for the 

scattering of a free particle 1 by the pair (1) = (2,3) initially in a 

bound state of energy Ein. Here v,ff(1,2,3) is given by 

D,ff(1,2,31 = V,ff(1,2,3) - X 1 INi> <Nil . 

Thus at this stage we are neglecting the Pauli Principle. 

ho represents the kinetic energy operator: ho = fiz(Al + Agl, and Er 

is the relative energy of the three-cluster system. (We work in the 

center-of-mass system of the three clusters and use Newton’s notation of 

coordinates and momenta C151.1 We define the follouing operators: 

h = ho + veff , ii = h-V, 

g(z) = (z - h)” , g(z) = (2 - ii,-’ 

go(z) = (z - ho)-’ . 

with z = Er + ic. It holds 

(5.2) 

g(z) = g(z) + g(z) vc g(z) . (5.3) 
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It is assumed that the bound state scattering problem, i.e. the equation 

lim ic g(Er + icl ‘PI = Zq(+) 
E+O (5.4) 

is already solved. Here ‘PI denotes the product of the plane wave ij and 

the bound state function of clusters 2 and 3, #ln, where n denotes the n- 

th bound state of clusters 2 and 3. This problem can be solved using 

some of the many techniques for solving the Faddeev equations. Using the 

operator identity (5.31 one obtains the Lippmann-Schuinger equation 

lim ie g(E,+is)~~ = ~1’ = 41’ + g(Er+iO+) Vc %q’+) . 
e+O (5.5) 

The last equation has a unique solution, since VC has a finite Hilbert- 

Schmidt norm. Due to the separability of VC the solution %,(+I can be 

obtained immediately after a simple algebraic calculations. The result 

is 

IF> <F(%,(+)> 
x,(+1 = S?q(‘) + g(Er+iO*) 

. <fIHIf> - E - <FI?j*(Ep>lF> (5.61 

In order to evaluate Eq. (5.61 one needs the asymptotic formulae of the 

resol vent Zj+ (E r) = ‘j(Er+iO*) in all channels. The derivation of the 

formulae for the three-body Green’s function assuming two-body 

interactions only is given in the Appendix ClSl. The resul ts are: 

- 20 - 



1 
g’(Er;R,R’) > - 

lzil + 03 4Tf(2*i13/-’ 
IR’lnlJil < 00 

i IZIinl Iail 
e 

XC +in(kll gin(-)* (gintEnS&‘) P 
n Inil (5.71 

where gin q IliOlsinl Clginl = (Ep-Einl”‘Ir i=1,2,3 for the two-body 

channe 1 s and 

eilr/b Er3/5 ei 1x1 III 
g’(Er;&,R’) > %J(-‘* clKlp,B’l , 

I& I -,a 2(2n)5’2 l&p’2 
IR’I < 00 (5.81 

for the breakup-channel, where ji,(-)* is the three-particle scattering 

function for three free incident particles. Here, the six-dimensional 

coordinates (Ji,ai> i=1,2,3 are denoted by a vector RR and the 

corresponding six-dimensional conjugate momentum (~i~gi) i=1,2,3 by a 

vector K. Then the following formulae are valid [151: 

l&l2 = IIil’+lail’ i Er = 1~12 = leij2+lgil2 , 

KR= .&iei + ZliSi ; d& = d&i d2i a i = 1,2,3 . 

Using the formulae (5.7) and (5.8) and the known structure of the 

asymptotic form of the three-particle scattering function ??q(+) C15,161, 

one obtains all scattering amplitudes of the solution XI(+) of the 

Eq. (5.6). One obtains 
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a) for the breakup channel. 

,i 1x1 I&I 
X,‘+‘(g,,E,,B) [Ro,(K’;g,,E,) + Ro,rer(~‘,g,,E,)l , 

(5.91 

b1 for the elastic channel 

imh 
x,‘+‘(g,rE,;R) > e $, n(E1 n*X, ) 

11111 -, 00 
IPll < 00 

m,(2/~1)1/2 ilLi’3nllBil 
Ce 91 n(kt ) 

1211 n 

X CR~I(SI’,~PE,~;~~,E~) + R,,res(g’,n,Elnig,,E,I] p (5.101 

c) for the rearrangement channel j#l 

lllj(2/iijl”’ i lg’jnl lajl 
x,‘+‘(g,,E,;R) > - Ce 

l?)jl + CQ IZI n 
IPjl < Qo 

x 9jn(~j)CRj,(g’,n,E’,n;gj,Ej) + Rj,reS(g’,n,E’ln;gj,Ej)] . (5.111 

Here Rij are the usual Faddeev scattering amplitudes in absence of the 

three-cluster potential VC and are given by 
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-.1/t 
NJ 

Rj,(g’,n,E’,n;gj,Ej) = - 
16vmj Bj”’ 

I 
-ig’l d2l 

X dR e #ln*(kl) c vD,i(&i) Kj”‘(gj,Ej;R) n 
i#j (5.12aI 

j=1,2,3 and 

e in/b E,3/5 

Ro,(Y’;g,rE,) = 
2(2n)5’2 

X 

I 

dR ~q(-'*(Y',B) 1 vD,i(&i) 4l"'(g,sE1SRI n 
i=l (5.12bI 

in which ~,(‘)(&&I = e #,(‘)(JI,,L,) and $1 (‘)(k,) is a scattering 

state in the subsystem (1). The potentials VD,i are defined by 

VD, i = VD(j,k), (i,j,k) cyclic. The three-cluster resonance scattering 

amplitudes Rilr i=l,2,3 which arise from the potential VC can be found as 

iii3/2 <!Zi”‘lF> <~lji,(+‘> 
Ril 

res = - 

16nmi pi3” <fIHIf> - E - <FI~+IF> ’ 

i=1,2,3 and 

e in/b E r3/b CEO’-‘IF> <Fl%,(+)> 
ROI res = 

* 2(2nI5’2 <fjHIf> - E - <Flp+jF> 

(5.13a) 

(5.13bI 
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Then the corresponding cross sections are given by: 

a1 for the two-body channels i=1,2,3: 

do lg’inl ml &i”’ 
-=- IRil + Ri~res12 s 
dR ISII mi ii,“2 (5.14a) 

b) for the breakup channel 

do Fl ls'113 
-= IRo, + Rol 

ISll Id’ 
res12 dg’l . 

dR 2512 m,2 p,3/2 (5.14b) 

It can be observed already here [formulae (5.1411 that the interference 

effects between the structures contained in Rij such as final state 

interaction and quasi-free scattering and Rii are present in all 

channels. On the other side, the decay of the three-cluster resonance 

itself is influenced by the existing structures produced by the two-body 

potentials [formulae (5.1311. Thus formulae (5.12)-(5.14) give a 

qualitative insight into the variety of energy correlations in the case 

of a sudden decay of a three-cluster system. In the next section the 

scattering amplitudes Riir j=O,1,2,3 will be studied in more detail. 
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6. BREIT-WIGNER RESONANCE FORMULAE FOR A THREE CLUSTER 
COMPOUND RESONANCE 

In this section, first the structure of the scattering amplitudes RTlr 

i=O,1,2,3 will be discussed. Then we discuss the corrections to these 

quantities due to the Pauli Principle. The terms of interest are: 

<%~(-‘IF> <F/ji,n”‘> 

’ <fjHIf> - E - <Fjg+IF> 

and 

<%?a(-‘IF> <~lZqn(+)> 

(6.la1 

<flH/f> - E - <Fjg+lF> ’ (6.lb1 

The resolvent ?j’(Er) can be represented in the following spectral 

decomposition: 

la,xa,l 52 
g’(Er) = 1 + C dgj I 

I jn’+‘><2jn’+‘l 
V Et- - EV jn Et- - Ejn - lgjl’ + iO+ 

(XO"'><kO"'I 
+ 

II 
ds.tk dek ES 

I s”><q 
Er - iSkI - lPk12 + iO+ H Er - EH + i0’ ’ (6.2) 

where k=1,2,3 are arbitrary. The above formula follows from the 

principle of asymptotic completeness for a three-body system derived 

independently by Ginibre and Moulin, and Thomas C171. Here V,, is the 

three-body bound state, Xin(‘) is a bound state scattering function uith 

initially bound state in subsystem (i), and ji,(-•) is a scattering 

function for three free incident particles. We define a complex 

resonance shift by 
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A’tEr) = s 
<FI%H><gHIF> 

. 
H Er - EH + iO* (6.3) 

Further, by using the identity 

1 1 
lim = CPV n 
e+O E,, - Er - it: EH - Er 

+ iab(EH - Ep) 
(6.4) 

one can separate the non-hermitian operator Zj+(Ep) into a hermitian and 

antihermitian part &I+ q gh + i@jah, uith 

gh(Er) q 1 
la,xii,l 

+ 1 CPV 
I 

I 2 in(+)><Zin(+)l 
V Er - EV in Er - IStiI’ - Ein 

ss 1% (+)><~o’+‘l + CPV , 
Et- - ISil’ - IEil’ 

(6.5) 

gah(E,) = C 1 I~in(+))<~in(+)l 6(Er - Ein - Igl’l dgi 
in J 

(Er - lgkl’ - lQklZ ) dPk dgk . 

Then defining the follouing quantities 

Yin”)(Er) = <FlZin’f)> , i = 0,1,2,3 

(6.6) 
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we can rewrite the formula (6.3) for the complex resonance shift 

At (Er) = A,(E,) + - in’+‘(Er-Ein) + ro’+‘(lgk12) dgk 1 , 
(6.7) 

1 where A,(E,) = <FIgh(ErIIF>. 

The magnitudes Y”‘(Er) describe the probability amplitude of the 

resonance cluster-state F in the different scattering states at the same 

energy. The variety of the scattering states results from different 

initial conditions. 

Due to the square integrability of F the resonance uidths r are also 

very sensitive to subsystem resonances, since in that case the amplitude 

of this subsystem is large at small distances. Therefore the partial 

widths r are good candidates for probing the off-shell behavior of the 

three-cluster wave functions. With the definitions (6.61 and (6.7) we 

can transform (6.la1 and (6.lb) into 

<??e(-)lF> <FI$?,,+> 

<fIHIf> - E - <FIP+(Er>IF> 

Yc”‘*(Er) Yln(*‘(Er) 
, 

EC - E 1 rin(+)(Er-Ein) + 
I 

roct)(Er-lg12) dg 1 
(6.8a) 

and 
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<flHlf> - E - <FIP*(Ep>lF> 

iYj~“‘“(Er) 7qn(+)(Er) 
= -, . 

EC - E - A,(Erl + ’ 
I 

1 rin(+)(Er-Ein) + 
I 

I’ort)(Er-lglz) dg 
2 in 1 

(6.8b) 

respectively, where EC = <flHlf>. 

Obviously, these formulae reveal the Breit-Wigner structure. The 

resonance energy pole Er,, - the pole at which the real part of the 

denominator in (6.8) becomes zero - is defined by 

EC - Et-es - Ac(Eres) = 0 . 

The formulae (6.8) exhibit that even in the case of the three-body 

breakup channel the Breit-Wigner resonance formula is still valid. 

Moreover it allows one to study the rich energy correlations of the decay 

products. The only difference to this formula is that Ac(Er) and r(ErI 

are energy dependent. To eliminate this difference it is necessary to 

make certain approximations Cl91. We have to use that fact that we are 

considering an isolated, relatively sharp resonance. For such a 

resonance level all other resonances lie energetically so far away that 

r(E,-) can be considered to be approximately energy independent over the 

energy width of this level. Then we make the approximation that, in the 

neighborhood of Err 
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A,(ErI g A=(Er) + (Ep-Eres) # 

(6.9) 
r(E,.) fl r(Eres) . 

Then one arrives to the same formulae as (6.8) where Ac(Ep) is replaced 

by Ac(E res) and the partial widths by: 

T(Er) 
rres(Eres) = , 

d 
l+- Ac(Ep) 

dEr E r=E res 
(6.10) 

Yjn(Er) 
Yjnres(E res 1 = . 

d 
1+- AC(Er) 

dEr Er=Eres 

The main difference in the structure of formulae (6.8) compared with the 

resonance formulae for the two-body channel situation El81 is the 

appearance of an integral over resonance widths ro’t’(Er-lqlfL This 

reflects the fact that the three-body breakup can be considered as a 

continuum of infinite many two-body channels. Each distribution of the 

energy over the three bodies corresponds to one two-body channel. 

However the interpretation of the resonance widths r according to the 

picture of two-body channel situation is no longer possible. 

This can be seen in the following way: though Tic( + ’ is a scattering 

function for three free incident particles, it contains apparently also 

contributions of all two-body channels. This aspect is lacking in the 
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Breit-Wigner formula in the two-body channel situation and is obviously 

characteristic for (N 2 31-cluster systems. ‘The analogy to the two- 

channel case is not possible because rc(+) cannot be interpreted as the 

transition amplitude from the resonance state F whether to the breakup 

channel nor to some of the two-body channels; all these transition 

amplitudes are contained in rot+), but they altogether determine 

nevertheless effectively the partial resonance width of the breakup 

channel. 

Therefore even in the case of a two-body channel, no straightforward 

parametrization by phase shifts of the resonance amplitude can be given. 

Analogous considerations can be made for Ttjl. They show that vice versa 

the transition amplitudes from the compound state F to the breakup 

channel influence the resonance width of a two-body channel. It should 

be pointed out that this many-cluster effect is qualitatively different 

from the mutual influence of the partial widths of the two-body coupled 

channels. The latter effect depends on the ratio of the partial width to 

the total resonance width. The origin of the new effect is a dynamical 

one. It leads to some interesting and important consequences. Let us 

assume that in addition to the three-cluster resonance there is at a 

lower energy a subsystem resonance in the subsystem (il consisting of 

clusters j and k. One considers now the three-cluster resonance behavior 

in the two-body channel, where clusters j and k form just a bound state. 

In this case the three-cluster resonance width of this channel is 

strongly influenced by the resonance of the same subsystem (i), though in 

this channel just this subsystem is bound at each energy. 
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Another difference is that the formulae given by Schranner Cl81 for 

two-body channels were derived under the strong approximation; namely 

that the direct coupling between the open two-body channels can be 

neglected and that the transition occur through the formation of the 

resonance state. Such approximation is valid only in specific 

situations, if for instance the resonance occurs in an energy region 

where all or all but one channel are shielded from the compound region by 

high potential barriers. The derivations presented here restricted to 

the two-body channel reactions are exact and cover all cases. 

The influence of the three-cluster breakup structures such as quasi- 

free scattering, final state interactions, or two-body channel resonances 

on the three-cluster resonance is twofold. First, such structures 

strongly influence the three-cluster resonance widths r(E); second, they 

interfere with the three-cluster resonance amplitudes Rol. The kinematic 

aspects of such interferences are extensively studied in Ref. E193. 

Due to the analysis done in Section III and V and in virtue of 

formulae (2.17) and (2.18) (which hold also in the three-cluster case), 

it is easy now to answer the question how the symmetry generated by the 

Pauli Principle influences the derived Breit-Wigner formulae for the 

three-cluster compound resonance. Again, in order to make the Pauli- 

corrected formulae more clear, we assume for simplicity that the rank of 

the separable potential p is just one. Then after some algebra one finds 

the Pauli-corrected formulae for the characteristic quantities introduced 

in (6.6). 

<FIP+IN><NIF> 
7inp(f) = 7in(+) - t 

<NIptIN> (6.11) 

- 31 - 



for i=O, 1,2,3 

rinP(t) = 2ll 17inP(f’lz s (6.12) 

and 

A,” = A, - AcorP . (6.131 

Here the correction term A pprp due to the Pauli Principle can be written 

as: 

A car P = 2Re 
<FI~+IN><Nlf,> 

c 
V Er - Ev 

+ c I- cpv 
<FIg+IN><Nlfin’+‘> 

+ 
in J Er - Igil - Ein II 

<FI~+IN><Nl%o+> 
CPV 

Er - Igil - lRi12 I] 
<Fig+ IN> 

<Nlij+lN> 

2 I 1 l<NlZ,>12 I<Nl% in’+‘>12 
c + c CPV 
V Er - EV in I Er - Igil’ - Ein 

r r I<Nl~o~+‘>12 
+ 

JJ 
CPV 1 . Er - Igil’ - IRil’ (6.14) 

The formulae (6.11)-(6.141 are easily generalized to any finite rank of 

the separable potential p. 

One observes that the Pauli Principle shifts the resonance pole in all 

channels uniformly. However the partial resonance widths are influenced 

by the Pauli Principle in a different way. The formula (6.111 shows that 

the Pauli Principle has much stronger impact on the partial resonance 

widths Tin in the two-body channels than on the partial resonance width 
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ro in the breakup channel. This is soI since I<Nlfo(+)l << l<NIVi,‘+‘>l. 

This shows that the major influence of Pauli Principle on the resonance 

behavior in the breakup channel consists only in shifting the resonance 

pole. However the Pauli Principle influences strongly the subsystem 

structures by making them more pronounced. Thus it makes the observation 

of the sudden three-cluster decay even more difficult. 
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7. CONCLUSION 

A new method of considering Pauli Principle on a microscopic level has 

been presented. Based on this method a reaction theory for the decay of 

a nuclear compound state into two and three cluster has been developed. 

It allows a detailed study of the influence of the Pauli Principle on 

such quantites as resonance width and shift of the resonance pole. 

Explicit formulae for Pauli-corrected quantities have been given and 

discussed. The formalism for the three-cluster case shows clearly the 

interference of the sequential decay modes with the sudden decay mode. 

The differential cross section has a complicated structure, even when the 

compound resonance is sharp and isolated. As compared with the standard 

Breit-Wigner formalism, the three-cluster decay of a compound state 

corresponds to a case in infinitely many two-body channels. 

Correspondingly the total decay width is a sum plus an integrable over 

the partial widths. New effects of the mutual influence of the three- 

cluster resonance with subsystem resonances and other resonance-like 

structures have been discussed. It has been shown that the influence of 

the Pauli Principle on the partial resonance width in the breakup channel 

is small, whereas it is appreciable in the two-cluster channel of the 

three-cluster system. For a practical application of the theory one has 

to solve the three-cluster Faddeev equation in absence of the three- 

cluster compound resonance potential and one has to calculate matrix 

elements of this potential with the obtained solutions. The influence of 

the Pauli Principle enters by a simple separable potential which can be 

numerically evaluated in terms of transition amplitudes. 
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APPENDIX 

THE ASYMPTOTIC FORMULAE OF THE FULL THREE-BODY 
GREEN’S FUNCTION IN COORDINATE REPRESENTATION 

The decomposition into channels of the three-body wave function was 

derived by Sasakawa C201 and the asymptotic form of the three-body wave 

function was studied by Gl’dckle 1211, Newton C15,221, Merkuriew C161, 

Gignoux C16,231, Laverne C16,231, and Nutall 124,251. 

As one knows from Refs. C211-C251, the asymptotic form of the three- 

body wave function depends on the direction in the six-dimensional 

coordinate space. The same, of courser must be true of the Green’s 

function. One can, therefore, expect that one should be able to use the 

various forms of the resolvent equation for the full resolvent V in terms 

of the channel resolvent Zjie i=O,1,2,3 in order to find its asymptotic 

form in various directions. One has 

(A.11 

where v(i) = CVCj> + V(k)], i,j,k cyclic, and Tit01 = 1 V(i). We are 

considering a situation with pairwise interactions only. In Eq. (A.11 a 

term of the following form appears: 

I dR*’ Zj,+(R,R”, V(2) Q”2) g+Q”,R’> . 
(A.21 

There is a convergence problem with 22”-integration. For this reason 

(A.11 is not the proper starting point for going to large I&I. One can 

expect that one has to start with Faddeev-like -equations for the Green’s 

function g. In order to obtain a Faddeev-like splitting of a resolvent 
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identity, one considers Eq. (A.11 for i=O,1,2,3 and obtains after an easy 

calculation 

g = 1 giCMi + V(i) go v(i) 81 , 
i=l (A. 3) 

in which 

V(i)go if i#X 
Hi = 

dx if i=X 

Here h can be chosen arbitrarily h = 1,2,3. One can show that the 

formula (A.31 corresponds to the Weinberg’s decomposition of the three- 

particle wave function C.261, and the choice of A corresponds to the 

determination of the entrance channel. The arbitrariness of X reflects 

the fact, that in the space of eigenstates of gi-’ the operator V(i1Zjo is 

identical with identity ii acting in this subspace. An equivalent 

formulation of (A.31 is 

9 = ijo * Eio C CVCi>gi + VCi)gi VCi>?jl . 
i=l (A.41 

We will show later that in Eqs. (A.31 and (A.41 the disconnected parts in 

the kernel are avoided. 

In order to derive the asymptotic formulae for the full three-body 

Green’s function one needs corresponding asymptotic formulae for the 

channel Green’s functions ?ji. Such formulae were already derived by 

Newton C151, who pointed out that pi can be split into two parts: 

?ji+(E) = gitC(E) + gitb(E) P 
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where gitC(E1 is responsible only for the asymptotic formulae of $li+(E) 

in the breakup channel, and gitb(E) determines uniquely the asymptotic 

of gi+(E) in the two-body channel i: behavior 

1 
I!% 
I&’ 

im ~i*CE;~~~‘> = 1 im gitcCE;B~R’) 
I -)m Izl I +(o 
I <aJ IR’I < 00 

,in/t E3/5 eil~ll~l 

= +i("*(~'*&'l s 

2(2*)5’2 llp2 (A. 5) 

1 im gi’(E;R,R’) = 1 im gitb(Ei&r&‘l 
IBil + Q) Iail 3 00 

IR’l,l%il < C0 IR’I,I&:il < 00 

i Ig’inl Isil 
1 

= Ce #in(&il *i*(ginrEinia’) p 
411(2bi13’2 n Illi 1 

where 

(A. 6) 

iSinT!li 

q'in = Bi’lqinl p *i(ginrEiniR’) = e 4in(&i) . 

The derivation of the asymptotic formula for the two-body channel is 

trivial. In this case one can start directly from the identity (A.11 

i#O. There is no trouble in the integration in the coordinates &‘i and 

B’i, since in the two-body channel the leading contribution in the 

Green’s function comes only from ZJitb(E). Thus the range of k’i is 

limited by the bound state function Osin and the range of &‘i is limited 

by the potential V(j), j#i. If the ranges of &‘i and of &ip j#i are 

limited, then the same holds true for R’ = (p’i~~‘il. Starting from 

(A.11 and using (A.61 one obtains 
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i Ig’inl l32inl 
1 

1 im g+CE;&,&‘> = - Cg Yin(“*(B’l P 
Iail -+ 00 411(2pi13” n lllil 

l~‘l~l~il < 00 (A. 71 

where 

lim ie g(E-ie)*in = *in + Cj[-) ‘i(i) *in f zin’-) . 
E+O 

In the case of the breakup channel the use of Eq. (A.11 is no longer 

justified, since the corresponding kernels do not fulfill the requirement 

of the connectivity. In that case* it is suitable to start from the 

identity (A.31 or (A.4). Studying Eq. (A.31 one finds that the terms 

V(i)gc cause no trouble because they represent compact two-body kernels 

embedded in the three-body space and the corresponding function can be 

factored out. But we have to ensure that <BIV(ilIjoVtj), j#i decreases 

asymptotically sufficiently rapidly. It is known that the compactness of 

the operator V(i)?jcV(j) or its cyclic iteratives is a sufficient 

condition for the required asymptotical decrease. Faddeev 1271 has shown 

that such kernels are compact in a suitable Banach space for real 

energies greater than Emin (where Emin is the lowest energy level of the 

subsystem). One can show directly that the kernel 

X V(j) (aij&‘i + biia’i) 

fulfills the above mentioned requirement: the behavior of the kernel k 

for large ILil is evident because of the potential V(i), for the 
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coordinate Bi one can show evaluating a representation of Zjc in the form 

of the convolution 

i w 
~o(E;~i,~ii~‘ir~‘i) = - 

I 
dz 

2* -00 

X <&il?jo(E-Z)I&‘i> <~il~o(Z)lB'i> 

by the stationary phase method C281 that k decreases in Igil stronger 

than l/(17Jil12. 

Thus we are allowed to use the formula (A.41 in order to derive the 

asymptotic formula of the resolvent 9 in the breakup channel. To this 

purpose we need the corresponding formula for the free resolvent 80. It 

holds I 

iv/4 314 ilKl&“li’ 
e E e- -i IYIBOB’ 

1 im go (E;&,R’) = e . 
IR I -)- 2(2s)5’2 IRIS’2 
IR’I < m (A. 81 

This formula is obtained using methods already applied by Newton [15]. 

Starting from (A.31 and using (A.81 one gets 

is14 314 ilKIROR’ 
e E e --- 

1 im g(E,R,&‘) = 
IR I +-co 2(2lr)5’2 11115’2 
IR’I < CO 

X 
[ 
*c*(K’,&‘) + 1 (*oV(i)Tji + *oVCi>giilCi>g>*l~‘> s 

i 1 (A.91 

where 
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i IKIROR’ 
*o(K’,R’l = e - - - , K’ = IKIRO . 

Considering that lim ie gi(E-ic)+o = *i’-‘, one obtains 
E+O 

f (‘ho V(i) gi + 00 V(i) gi B(i)?J) 
i=l 

3 3 
= 1 (*ii’) + *i(-) P(i)y) - 1 (*o + *O J(i)Ij) , 

i=l i=l 

and with this result finally 

in/4 3/4 ilKI IRI 
e E e 

1 im ij(E,R,R’) = 
IR I -,m 2(2rr)5’2 lRl5’2 
I!$‘1 < - 

x % ~i(-)+(K’rB’) - 2~o’-‘*(K’rB” ’ 
i=l 1 (A. 10) 

in which 

zir-, = lim ie g(E-ir) *it-’ , 
E+O (A.ll) 

and 

%:,(-I = lim ic g(E-ir) 90 . 
E+O (A. 12) 

One can easily show that Xi(-) as defined in (A.11) and (A.12) are 

identical for i=O, 1,2,3. Therefore one obtains 
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in/4 314 ilKll&l~ 
e E e 

lim g(E;&,R’) q Zo’- ‘*(K’rB’) . 

IR I -)a 2(2ll)5’2 IRIS’2 
IE’I c 00 (A. 13) 

Finally, ue mention another useful asymptotic formula for the breakup 

channel formulated not in terms of scattering function but in terms of 

the scattering amplitude. This shows that the scattering amplitude Roe 

without the compound state F is already contained in the resonance 

scattering amplitude R1cres. It is known that the scattering amplitude 

Roe is obtained by quadrature from the scattering amplitude Rcir i=1,2,3. 

The result is 

in/4 314 ilKI IRI 
e E e 

1 im g(E;R,R’) = 
IR I *CO 2(2n)5’2 181S’2 
I&‘1 < Qo 

-ilJ’R’ 
+ (2ll13 

s 
Roo(-‘(lJ’rj$“) <K”l~olR’> dK” 1 , (A. 14) 

in uhich Rcc(‘) denotes the free-free transition amplitude in a three- 

body system. 
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