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ABSTRACT 

A charged particle beam contained in an accelerator vacuum chamber 

interacts electromagnetically with its environment to create a wake 

field. This field then acts back on the beam, perturbing the particle 

motion. If the beam intensity is high enough, this beam-environment 

interaction may lead to an instability and to subsequent beam loss. The 

beam and its environment form a dynamical system, and it is this system 

that will be studied. 

In Section I, the Maxwell equations are solved to obtain the wake 

field of a beam with a rigid particle distribution, i.e., the action of 

the wake field on the particle distribution is neglected. The concepts 
- 

of wake function and impedance will be introduced and their properties 

discussed. As an illustration, the special case of a pure resistive wall 

will be presented explicitly. 

In Section II, .the influence of wake fields on the beam will be 

studied, but with a simplified model for the beam distribution. In fact, 

the beam will be represented as a point charge without any internal 

structure. The beam-environment system is solved self-consistently with 

the restriction that the beam is allowed to have only center-of-mass 

motion. This simplified view allows a few of the instability mechanisms 

to be studied. These one-particle models are sufficiently successful 

that the treatment is extended to include a few two-particle models, in 

which the beam is represented as two point macroparticles interacting 

with each other through the wake forces. This picture gives an insight 

into the internal motions within the beam. Seven of these one- and two- 
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particle models will be treated. The equation used in this Section II is 

basically F = ma. 

A self-consistent treatment of the beam-environment system that 

permits a full evaluation of the internal beam motions will be included 

in Section III. Here the equation of motion -- the Vlasov equation -- is 

established to describe the system. The formalism that allows this 

equation to be solved will then be presented. Results obtained in 

Section II, as well as some additional results on coherent effects, will 

be derived in this section. For pedagogical purposes, the material is 

treated using simplified models as illustrations. 
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1. RESPONSE OF ENVIRONMENT TO BEAN 

A charged particle beam interacts with its vacuum chamber environment 

in an accelerator. As a first step in our treatment of the beam- 

environment system, we will study the properties of the wake 

electromagnetic fields generated by the beam in the environment. For 

this purposer the beam is considered to be rigid and unaffected by the 

wake field it generates (and therefore no instabilities). The beam is 

assumed to move with the speed of light. The wake field that we are most 

interested in is that seen by a test charge that follows the beam at a 

fixed distance. 

We will first work out the wake field in some detail for the case in 
- 

which the environment is that of a smooth cylindrical pipe with resistive 

wall surface. In the process we will point out the general features of 

all wake fields. 

It is inevitable that the concept of impedance also be introduced. 

The impedance is essentially the Fourier transform of the wake field and 

we will discuss its properties as well. Finally we will include in this 

section a discussion of the parasitic energy loss of the beam in the 

environment. 

1.1. Free Space and Perfectly Conductinq Pipe 

The electromagnetic field carried by a relativistic point charge q in 

free space is a familiar subject treated in text books.1*2 The field 

distribution is sketched in Fig. l(a). The EM field distribution is 

Lorentz contracted into a thin disk perpendicular to the particle's 
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direction of motion with angular spread of the order of l/r. In the 

ultrarelativistic limit of v = c, the disk actually shinks into a 

b-function thickness, as shown in Fig. l(b). The electric field 2 points 

strictly radially outward from the point charge. The magnitude of E is 

most easily obtained by drawing a pill box with radius r and 

infinitesimal height around the charge q, as sketched in Fig. l(b), and 

apply the Gauss law. The result is* 

2q 
Er = - Stz-ct) (1.1) 

r 

where we have adopted a cylindrical coordinate system with z pointing in 

the direction of motion of q. Similarly, an application of Ampere's law 

gives 1 

2q 
Be = - btz-ct) 

r 
(1.2) 

which is equal to E,.. 

We now consider the case in which the point charge moves along the 

axis of a cylindrically symmetric vacuum chamber pipe that is perfectly 

conducting, as shown in Fig. l(c). The same application of the Gauss and 

Ampere laws again gives results (1.1) and (1.2). The sole function of 

the pipe wall is to truncate the field lines by terminating-them onto the 

image charges on the wall. 

* We use cgs units. 



(a) 

(b) 

$y ,,,,//////// 
Conducting Wall //// 

f -9 
b 

9 -a2 4371Al 

Fig. 1. Electromagnetic field carried by an ultrarelativistic point 
charge in free space and in a perfectly conducting smooth pipe. 
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The above result with the pipe simply truncating the field lines 

without deformation works only if the charge moves along the pipe axis. 

It is no longer correct for a point charge moving off-axis, in which case 

the beam will be represented as a superposition of multipole moments. 

One can consider for instance a distribution with a pure m-th moment: 

P = - G(z-ct) 6(r-a) cos me 
barn+ I 

Cl.31 

f = cpf 

1 .e., the charge is distributed as an infinitesimally thin ring with 

radius 2 and with a cos me angular dependence. The quantity In, is the 

m-th moment of the beam charge distribution. 

- The reason that the pipe no longer simply truncates the free space 

field lines in this case is that now the electric field is no longer 

perpendicular, and the magnetic field is no longer parallel, to the pipe 

wall. Indeed, the electromagnetic field carried by the source (1.3) is 

obtained by solving the Maxwell equations together with proper boundary 

conditions. The result is 



E,. = 

21ln 

21, 

1 1 
--- 

bzm aZm 

- 10 - 

1 rm-’ cos me S(z-ct) 

1 m-l 

-+- 1 cos me 6(z-ct) 
ra+l b2”’ 

I 

rm-l sin me B(z-ct) 

Ee = 

[ 

1 rm- I 

21. --- sin me b(z-ct) 
rm+l bzm 1 

Br = - Ee 

Be= Er . 

The derivation of Eqs. (1.41 is omitted here. It can be reproduced as 

a special case of what we will discuss in Section 1 

facts here are that the particle has generated a f 

and cos me and that the field dependence of sin me 

into a s-function in 

left behind the part 

interaction. 

-3. The important 

eld that has angular 

is Lorentz contracted 

its longitudinal distribution. 

icle as a result of this partic 

r < a 

a<r<b 

r < a 

a<r<b 

(1.4) 

In free space or in a perfectly conducting pipe, therefore, a particle 

No wake field is 

e-environment 

does not see the fields carried by other particles in the beam. (Unless 

the two particles move side by side with exactly the same longitudinal 

position, in which case they see each other’s fields but do not 

experience any Lorentz force because the electric force and the 
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magnetio force cancel exactly in the limit ‘; = c$.)* Consequently, there 

can be no coherent instability. 

1.2. Resistive Wall Wake, m  : 0 

In case the vacuum chamber is not a smooth pipe or if it is smooth but 

not perfectly conducting, a beam will generate behind it an 

electromagnetic wake. See Fig. 2. In this and the next sections, the 

case of a resistive pipe wall [Fig. 2(b)] will be worked out in detail. 

For simplicity, we assume that the beam moves with the speed of light and 

that the pipe wall has infinite thickness. The more general 

considerations are treated in Refs. 3, 4 and 5. We also assume the beam 

has a distribution given by (1.3). ' 

- 

Let us first explicitly write down the Maxwell equations, component by 

component in cylindrical coordinates: 

1 b(rEr) 1 bEe bEZ 
--+--++ = 48P 
r br r be bZ 

1 bB, aBe 48 1 bEr 
---- = -jr+-- 

r be az C c at 

aBr bBZ 4a 1 bEs 
--- = - je+-- 
32 br C c at 

-------------------- 

* It is true that there is an electrostatic force in the rest frame of 
the beam, but when observed in the laboratory frame, motions are 
infinitely time dilated. 
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I -d -I 
Conducting 

___-_--4- ----- (a) 

Resistive Wall 

---- _--- (b) 

a -82 4371A2 

Fig. 2. Examples of vacuum chamber pipe that generates wake fields. 
The beam is represented here as a ring possessing a multipole moment 
with cos me distribution. 
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1 b(rBe) 1 bar 4n 1 bEZ 
----- = -L +-- 
r br r be C c at 

1 b(r8,) 1 bBe bBz 
--+--+- = 0 

r br r be az 

1 bEZ a.53 1 bBp 
---- = --- 

r ae az c at 

bEr bEZ 1 aBg 
--- = --- 

az ar c at 

- 

1 b(rEe) 1 aEr 1 bBZ 
a-- = - -.- . (1.5) 

r at- r be c at 

Given that p and j, are proportional to cosme, the angular 6 dependence 

of the field components can be obtained by inspection: Err EZ and Be are 

proportional to cos me, while Ee, BZ and Br are proportional to sin me. 

One also expects that the dependence on z and t are such that all 

quantities depend on the the combined variable z-ct. We then write the 

field components in terms of Fourier transformationsff 

s 00 
(ErrEZ,Be) = cos mG dk eikrz-ct) tT,-,~,,BG> 

-co 
(1.6) 

s 00 
(EetBZrBr) = sin me dk eik(z-ct) tife,iS,,Br> 

'to 

-------------------- 

+ There is a theorem saying that when you have only partial knowledge of 
the solution to a differential equation and do not know what to do 
next, the thing to do is to make a Fourier transform. 
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where El,-, etc. are functions of k and r. Due to causality, our solution 

must satisfy the condition that no wake field will be produced ahead of 

the beam, i.e., in the region z-ct > 0. 

In the rest of this section, we will work out the case m  = 0. The 

m  1 1 cases are discussed in Section 1.3. The beam is thus represented 

as a thin ring with total charge q. The field components Ee, BZ and Br 

vanish. 

Setting m  = 0 in (1.6) and substituting the result into (1.51, we 

obtain three equations. [There are eight equations in (1.51, but five of 

them are redundant.1 They are rather easy to solve, yielding 

-i, = A - 

;i, = Eie = 

r < b 

r 
- ikA - 

2 
r < a- (1.7) 

- ikA - + - a<r<b 
2 Trr 

where A is a constant that depends only on k and is yet to be determined. 

Note that there is no discontinuity of ri, at r = a. The quantity A is 

closely related to something called the impedance to be discussed in 

Section 1.5. 

For a perfectly conducting wall, ‘i, vanishes at r = b; this means 

A= 0, and an inverse Fourier transform of (1.7) gives (1.1) and (1.2). 

In case the wall is resistive, one needs to obtain A from the boundary 

conditions at r = b, and to do that, the fields inside the wall, r > b, 

need to be found. 
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Substituting (1.6) into the Maxwell Eq. (1.51 and setting p = 0 and 

-j = crz in the metal wall, where u is the conductivity, we again obtain 

three non-redundant equations: 

1 a b’i, -- I 1 r- + X2E, q 0 

r br br 

ik br, 
-f, = - - 

X2 br 

where we have defined, following Refs. 3 and 4, a parameter 

with 

2nalkl 
h = 

J 
- Ci + sgn(k)l 

C 

The parameter A-' has dimensionaiity of length; it defines the skin depth 

as a function of frequency w = kc inside the metal wall. 

In what follows, we will assume 1x1 is much larger than b-l, i.e., the 

skin depth is much shorter than the pipe radius b. This assumption is 

good if the wave number lkl is much greater than c/4nub2, or equivalently 

if we are interested in the region 

I z-ct I << b/x (1.10) 

(1.8) 

4naik 
x2 = - . 

C 

(1.9) 
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where x is a small dimensionless parameter defined by 

x E c/rlnob . (1.111 

For example, if b = 5 cm and the wall is made of aluminum with 

u = 3 x 10" set-', we have x = 1.6 x 10Wg and our approximation breaks 

down at a distance 1 3 X 10' m  behind the beam. (In case the vacuum 

chamber wall has a finite thickness A, our approximation also requires 

1x1 >> A-‘.) Under this approximation, the equation for Liz in (1.81 

becomes b2E,/br2 + X2LiZ = 0, which has the solution* 

Ez = A eiX(r-b) (1.12) 

where the coefficient A is the same as that appeared in Eq. (1.7) to - 

assure continuity of E,. From Eq. (1.81, we then have 

k 
Er = _ - A  eiXl r-b) 

(1.13) 

A eiX(r-b) . 

The coefficient A is determined by the continuity of Be at r = b, 

yielding the result 

9 
A = . 

ikb h 
nb --- [ 1 2 k 

-------------------- 

(1.14) 

* If we do not make the assumption I;\1 >> b-l, -i, will be written in 
terms of Bessel functions. This complication is not needed for our 
purposes. 
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Note that it would be incorrect to demand a continuity on Er at r = b, 

because there is a surface charge on the wall pipe. 

What we will have to do next is to make inverse Fourier transforms on 

rpr ri, and Be to obtain the fields. To simplify the mathematics, we will 

lkbl* This condition on k in 

iring in physical space the 

/ 
make the approximation that IX/k] >> 

frequency space is equivalent to requ 

condition 

1 z-ct 1 >> x"~ b . (1.15) 

Again taking o = 3 X 10" sec'l and b = 5 cm, this condition excludes 

from study the wake fields within a distance ~0.06 mm behind the beam. 

Under the assumptions (1.10) and (1.151, the parameter A becomes 

qk 
A::-- . 

nbX 
(1.16) 

The inverse Fourier transform can then be readily performed for the 

region r < b. The results for z-ct < 0, i.e., behind the charge, are 

q c 

J 

1 
EZ q - - 

2ob u IZ-Ctp'2 
(1.17) 

3q c 

J 

r 
Be = Er = --- - . 

4 2nb u Iz-ctp'2 

The fields vanish for z-ct > 0 due to causality. In deriving (1.171, we 

have used the formulas given in Table 1.3~6 
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TABLE I 

s 01 
Fourier transform pairs F(z) = dk eikz F(k), The quantity 

'co 
X is given by Eq. (1.9). The function F(z) vanishes for z > 0. 

'F(k) F(z) (2 < 0) 

l/k 

l/k2 

l/k3 

X/k2 

X/k3 

l/X 

k/X 
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Equation (1.17) shows that EZ decreases algebraically with Iz-ctl-3’2 

and is uniform in the transverse dimension (independent of r and 61, 

while the transverse field components decrease faster with Iz-ctl-5’2 and 

is proportional to r. The field components in the metal wall are more 

difficult to find and in any case are not useful later, so they are 

omitted from Eq. (1.17). 

Note that in the region of interest the field components are 

continuous across r = a and in fact are even independent of a. By taking 

the limit a + 0, we see that the results are also applicable to the case 

when the beam is represented as a point charge. 

There is something disturbing about Eq. (1.17). Consider a test 

charge-trailing the beam at a certain distance z. The sign of the 

longitudinal electric field EZ is such that the test charge gets 

accelerated if its charge has the same sign as q. If this were true for 

2 + 0, one would expect that the point charge q will gain energy as it 

travels down the resistive pipe. To make sure this unphysical phenomenon 

does not happen, we have to compute the field at very short distances 

behind the beam, which so far has been excluded by the condition (1.15). 

For this purpose, we take now the opposite limit to (1.151, i.e. we take 

Ih/kl << lkbl, or equivalently Iz-ctl << xij3 b. The parameter A then is 

approximately given by* 

* The short range behavior of the wake field depends on the assumption 
that the beam moves with the speed of light. The upper range of k in 
reality has a cutoff around r/b. This introduces the condition that in 
order for Eq. (1.19) to be valid, the beam energy must be high enough 
so that Y >> x-l/o. Another cutoff in k occurs if the beam has a 
finite length oZ; then k is restricted to the region k 5 uZ-‘, ( 
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2q 
A :: - 

inkb2 
(1.18) 

Using Table I, we perform inverse Fourier transforms to obtain 

4q 
EZ r -- 

b2 

Be = Er 

Again these express 

16q o 
$$- - 

J b2 c 

ions are val id for z-ct < 0; the fields vanish for 

r< b 

(1.19) 

Iz-ctl”2 r b. = 

z-ct > 0. One finds that EZ immediately behind the charge q is indeed 

decelerating. Note that although EZ is independent of the wall 

conductivity (I in Eq. (1.191, the range of validity of Eq. (1.19) does 

depend on 5. In the limit u + EQ, a beam with finite length or a point 

charge with v < c, of course, does not lose energy to the vacuum chamber. 

One can obtain the rate of energy loss of the charge q by equating it 

to the heat generated in the resistive wall. This gives 

de 1 
- = -- 

J 
dV i-l!! 

dz C wall 

1 
= -- 

I 
dV crz2 

C wall 
(1.20) 

= - s K 2nb dr J-1 dk [lEz12 + 1~~121 , 
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Using expressions (1.12) and (1.13) for ri Z and rr and (1.14) for A in the 

metal wall and making the approximation that x = c/4nob << 1, we find 

de 2q2 
- = -- 

dz b2 ’ 
(1.21) 

If we then associate this energy loss to an equivalent electric field as 

seen by the charge q, we find that it is exactly equal to half of the 

value of E,Cz-ct) in the limit Iz-ctl + 0, given by Eq. (1.19). That i/s 

1 
EZ 

I 

= - EZ . 
seen by q 2 (z-c-b) + o- 

(1.22) 

The expression (1.22) actually is a general result, sometimes referred 

to as the “fundamental theorem of beam loading.“’ The factor l/2 comes 

from the fact that charges in a beam see the wake produced only by those 

charges in front of it and as a result see on the average only l/2 of the 

total beam charge. 

To prove (1.22) in general, consider a beam with short but finite 

length that has an otherwise arbitrary longitudinal density p(z). The 

beam loses energy at a rate 

de 
- = - 

dt J  

co 

dz’ p(z’) 
-03 J  

aa 

dz p(z) E,(z-z’) (1.23) 
2J 

where E,(z-2’) is the wake produced by a unit point charge and seen by 

another point charge a distance 2-2’ behind in an arbitrary vacuum 

chamber environment. If the bunch length is short enough that EZ behaves 

like a step function within the bunch distribution, Eq. (1.23) becomes 
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de 03 03 
- ti - EZ(O+) dz' ~(2’) dz p(2) . 
dt J -0a 

An integration by parts then gives 

Jz’ 

dc q2 
- :: - - E,(O+) 
dt 2 

, 

which proves (1.22). The derivation assumed nothing but causality. 

Figures 3(a) and 3(b) show the qualitative behavior of EZ and Er at 

the wall surface as functions of z-ct based on the results (1.17) and 

(1.19). In Fig. 3(c) we constructed qualitatively the pattern of 

electric field in the pipe region. 

Problem 1. Assuming Ih/kl << Ikbl, derive Eq. (1.19) from Eq. (1.18). 

Then try to find the next order term by keeping the next 

order term in A, i.e., use 

2q 2x 
A :! - I 1 1+- . 

ivkbz ik2b 

Compare the results with Figs. 3(a) and 3(b). 
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(03 

(b) 

v=c 

ct 

wX”3b 
437 lA3 

Fig. 3. (a) and (b1. The electric field components EL and Er at the 
wall surface as functions of distance behind the charge q. The fields 
are normalized by q/bz. The radial field component is typically much 
larger than the longitudinal component by a factor *x-1/39 but decays 
behind the charge much faster. Both field components switch sign ,at a 
distance of the order of xlJ3b. Cc) A schematic drauing of the wake 
field 1 ines in the pipe. The value of x in these drawings has been 
exaggerated by a factor of -108. 
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1.3. Resistive Wall Wake, m  1-r 

In the previous section, electromagnetic wake fields are obtained for 

the case m  = 0. The fields are excited as the charge (i.e., the 

"monopole moment") of 'the beam interacts with the resistive wall 

surroundings. If the beam possesses higher moments Cm q 1 for dipole, 

m  = 2 for quadrupole, etc.) in its transverse distribution, it will 

interact differently and generate different wake field patterns. In this 

section, we will work out the wake fields for cases m  L 1. 

Substituting Eq. (1.6) into the Maxwell Eq. (1.51, we obtain the 

following results in the region r < b 

s z- m 
- = -- Bz 
at- r 

ais, m 
v = -- -i, 
ar r 

1 a m 2Inl m2 
- - CrZr) - - i3, = - S(r-a) - i k + - ci, 
r br r Tram+' [’ I kr2 

I a m m2 
- - (r8,) - - s,. = - j 
r br r 1 1 k + - fjz 

kr2 

m  
iiie = Er + - ii, 

ikr 

m  
Ee = - 8, - - E, . 

ikr 
(1.241 
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The first two of these equations are used to obtain f, and E,; the second 

two equations can then be solved for gr and i,; then Be and re are found 

from the last two expressions. The solutions for the longitudinal 

components are easy to find: 

E, = A r' r<b 

(1.25) 
8, = - A rm r< b 

where A is some coefficient that depends on k. Note that E, and 8, are 

continuous across r = a. 

The solution for the other field components is not difficult to 

obtain. - One needs only to observe that they generally can be written as 

polynomials in r, each containing three terms proportional to rlr-l, rntl 

and r-m-' respectively. By properly choosing the coefficients for each 

of the terms for the two regions r < a and a < r < b, 

found to be 

Er = 

Ee = 

ikA 1 imA 2In 
-- rmtl + - w-m.-+B-- 

TratRl I 
I imA 

--+B 

2Cm+l) 21 k 

Im ikA 1 
-VP rm+l + - 

grm+l 2(m+l) 2 J 

rm- 1 

1 
rm-l 

ikA 1 
a- r'+l + - 

2(m+l) 2 

Illl ikA 

imA 2Ira 
--B+- 

k 7ra2a 

rln-1 r<a 

1 imA 
--- rla+t+- F-B I I rin-l 

Trr n+1 2(m+lI 2 k 

the solution is 

r < a 

a<r<b 

a<r<b 
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ikA 

2(m+l) 

2Iln 
-+B-- 

ga2" I rm-1 r < a 

II-4 ikA 
-+- 
vrmtl 2(m+l) 

rm- 1 a<r<b 

ikA 2Iln 
-+B-- 1 rln-1 r< a 

2(m+l) 7ra2n 

Illl ikA 1 imA 
--- rm+l + - 1 I -+B r"- 1 a<r<b 
71rmti 2(m+l) 2 k 

(1.26) 

The field components in region r < a do not contain rmn-l terms since 

they are unphysical at r = 0. The parameter A appeared in (1.25) while B 

is an additional coefficient. Both A and B are yet to be-determined. 

In the case of a perfectly conducting wall, A = 0 because EZ must 

vanish at r = b. The condition that l?e = 0 at r = b then gives 

B= 21,/nb2"'. The reader should be able to make an inverse Fourier 

transform to obtain Eq. (1.4). 

To find A and B for the resistive wall case, we need to solve for the 

fields in the metal wall. Inserting again (1.6) into the Maxwell 

equations and setting i q 02 and p = 0, we obtain these results: 
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c aiS, C 1 m  
--+ --- [ I - E, 
4nu br 4na ik r 

c m  C 1 1 1 aE, 
.---B,+ --- - . 

4~ r 41~5 ik br 
(1.27) 

After the first pair of equations are solved for ez and Leiz, the other 

field components are obtained from the remaining four equations. The 

parameter X is given by Eq. (1.9). 

Following what we did for the m  = 0 case, we assume again that the 

skin depth is much shorter than b, i.e., we are interested in the region 

specified by Eq. (1.101. The first two equations in (1.27) then have the 

solution 

Ez = - is, = A bin ,iX(r-b) r>b . (1.28) 

Knowing gz and B,, the rest of the field components are found to be 
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k 
Et- = pe = _ - A bm eiXfr-b) 

a 

A bm ,iX(r-b) (1.29) 

k im 
rip = I I -+- A b’ ,ih(r-bl . 

A kb 

The requirement that re, Br and Be be continuous at r = b (the component 

5, is not continuous across r = b due to a surface charge on the wall) 

gives 

21,,, k 
A = 

ikzb - ,,btlU+l - - I 1 a 
m+l 

(1.30) 
2Inl im 

B = 
ik2b I I I -- a . 

b 
nb2"' --a 

m+l 

If we further restr ict our interest to the region specified by 

Eq. (1.15), the coefficients A and B become 

2Imk 
A L: - 

nb2"'+' X 

(1.31) 
2Inl k2b im 

B S- l+i--- 
nb2m I (m+l)X bX * 
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Table I' can then be used to find the field components, yielding 

Illl C 

EZ= - J 
1 

- I-" cos me 
nbzm+' u Iz-ctp 

31~ C 

Er = - 
4nbzm+' J 

1 1 
- - r*-l cos ml3 (r2+b2) 
(I Cm+11 IZ-ctp 

31, C 

Es = - 
4nbtm+' J 

1 1 
- - ram1 sin m6 Cr2-bZ1 
u (m+l) Iz-ctp 

Im C 

J 
l- 

Bz = - - - rm sin mf3 
Trb2m+1 u - IZ-ctp 

21s C 

J 

1 

Br = -Ee----- - mrm'l sin mB 
ab2m+' o lz-ctp 

1 
Be = Er-- - rnt-"-l cos me . (1.32) 

lz-ctp 

These expressions are valid for regions behind the beam and inside the 

pipe. Again, the field vanishes in front of the beam. Note that the 

beam dimension B does not appear explicitly in the fields, indicating 

that for a given m-th moment of the beam the wake field is independent of 

the detailed shape of the beam distribution. See Fig. 4. 

According to (1.321, the longitudinal field components EZ and BZ 

behaves like 1z-ctl-3/2, just like the m  = 0 case as described by 
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Fig. 4. The wake field is independent of the detailed beam distribution. 
The same uake field is generated as long as the beam has the same m-th 
moment. Cases shown are for m = 2. 
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Eq. (1117). On the other hand, the transverse field components behave 

very differently from the m  = 0 case. For example, the transverse 

electric field and magnetic field are comparable at distances Iz-ctl 5 b 

behind the beam, but the magnetic field, having a long lz-ctl-"2 tail, 

dominates at distances Iz-ctl 1 b. An alternative derivation of some of 

these results can be found in Ref. 8. 

Problem 2. Follow procedure similar to that in Section 1.2 to compute 

the electromagnetic field components in the short range 

z << X113b for the case m  1 1. This result will supplement 

the expressions (1.32). Show that the longitudinal electric 

field EZ switches sign in the region 0 < z 5 X113b. - 

1.4. Wake Functions 

In Fig. 2, we showed cases for which a beam with multipole moment can 

excite a pattern of an electromagnetic wake field that, in general, 

contains both longitudinal and transverse components. Consider now a 

test charge e trailing behind the CDS me-ring-beam in an environment 

shown in Fig. 2(a) or 2(b). The test charge experiences an 

electromagnetic wake force. The vacuum chamber pipe is considered to be 

cylindrically symmetric. 

We assume that both the beam and the trailing test charge move with 

the speed of light c. The wake force pattern generated by the beam then 

also moves with a phase velocity equal to c. 
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We will average the wake force over the wall periods [e.g., over the 

separation d in Fig. 2(a)] so that the fast varying part of the wake 

force associated with the pipe structure periods is smoothed out. The 

wake force experienced by the test charge then depends only on r, B and 

Z, where we use the upper case Z to designate the longitudinal separation 

between the test charge and the beam, i.e., Z = -(z-ct). The assumption 

that the wake force has the translational symmetry (i.e., depends only on 

Z and not on t and z separately) presupposes that the vacuum chamber pipe 

has open ends and that the beam has been in the pipe since t = -0~. 

The Lorentz force f = e(li’ + 2 X 81 has the longitudinal component 

F,, = Fz q eE, and the transverse component FI = Fe6 + Fri, where 

- 
Fe = e(Ee + Br) 

(1.33) 
Fr = e(E, - Be) . 

The wake force seen by the test charge e for the resistive wall case is 

given by, using Eq. (1.32) 

eIm  C 

FII = J - rm cos me z-3/2 
Tbtm+’ p,,, D  

(1.34) 

2e Ia C 
FL = 

J 
- rnr”-l Z-1’2 (F cos mO - 8 sin mB) 

Tbzm+’ p,,, o 

where 

Pm = 
I 

2 if m=O 
. 

1 if ml1 
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This exbression also gives the correct answer for m  = 0 if we set IO q q 

[see Eq. (1.1711. 

It is interesting to observe that the transverse force comes solely 

from the Z-1’2 term of the magnetic field. What happens is that the 

image current penetrates into the metal wall and, as it slowly 

resurfaces, drives the Z- 1/Z tail of the magnetic field. The same thing 

does not occur to the electric field because the image charges stay on 

the wall surface without penetration into the metal. 

There actually exists a general form of the wake force once it is 

averaged over the structure period; Eq. (1.34) is only a special case of 

it for a resistive wall boundary. To obtain the general form, the 
- 

Maxwell equations (1.5) are linearly combined into four equations for the 

quantities F,, Fr, Fe and eB,. The result is, surprisingly, rather 

simple: 

e b a a 
-__ Bz = - Fr = _ FZ 

r be a2 br 

(1.35) 
a a 1 a 

e-B z = -Fe = --Fz 
br a2 r be 

In deriving (1.351, we have used the fact that, in the region,r < b, the 

source terms satisfy j, q je = 0 and j, = cp, and that all quantities 

depend on 2 and t only as functions of Z I ct-z. Equation (1.35) is 

especially interesting since it does not contain source terms explicitly, 

neither does it depend on the boundary conditions. 
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Retailing that Fz and Fr are proportional to cos me while Bz and Fe 

are proportional to sin me, Eq. (1.35) can easily be solved. We find as 

a result 

P, = eIla Wm(Z) rnr'-l Ci- cos me - d sin me) 

Fz = - eIH W',,,(Z) t-l cos mB (1.36) 

eB, = e1, W'm(Z) rm sin me 

where &In is a function of Z satisfying causality, W', is the derivative 

of Wm. The m  = 0 case is included provided we set IO q q. 

The explicit form of WI*, of course, can only be determined after 

imposing the boundary conditions as was done for the resistive wall. It 

is interesting, however, to note that all the explicit r, 8 and Z 

-dependencies in (1.36) are derived without referring to the boundary 

conditions at all, except that the boundary is infinitely periodic and 

has cylindrical symmetry. The property (1.36) applies to the force 

components and not necessarily to the EM field components. 

The result (1.36) can be combined to say that, with z-ct dependencies, 

the transverse gradient of the longitudinal force is equal to the 

longitudinal gradient of the transverse force, i.e., 

0, Fz = 271 , (1.37) 
az 

This expression is sometimes referred to as the Panofsky-Wenzel 

theorem,'sy although the original form of the theorem looks rather 

different. 
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'The function Wm(Z) in Eq. (1.36) is called the wake function; it 

describes the shock response of the vacuum chamber environment to a 

6-function beam. Mathematically W,,, is equivalent to a Green's function. 

Sometimes it may be more convenient to call Wn(Z) the transverse wake 

function and W'R(Z) the longitudinal wake function for reasons that 

should be obvious from Eq. (1.36). The dimensionality of W,,, is L-z'-1 in 

the cgs units. 

For the special case of a resistive wall, the wake function is 

2 C 
Wm(Z) = 

J 

- z-112 . 

nb2"'+' p,,,n' u 
(1.38) 

The range of validity of (1.38) is b/x >> Z >> xlJ3 b, where x is the 

small parameter defined in (1.11). 

Immediately following the beam, we expect to see a longitudinal 

electric field that retards the beam regardless of vacuum chamber 

properties. This means the quantity jzFr must be negative definite, 

which implies 

W ’m(Z) > 0 for z-*0+ . (1.39) 

It follows that the longitudinal wake W',(Z) of a resistive wall must 

switch sign in the range between Z = 0 and Z z x113 b since Wrl obtained 

from (1.38) is negative. This result was considered in Problem 2. 

Another consequence of (1.39) is that the transverse wake function Wlr 

rises monotonically with Z, starting from W,,, = 0 at Z = O-, after the 
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point charge beam. If W ’m does not diverge at Z = 0 faster than l/Z, 

then Wla(0) = 0. It follows that a particle does not experience a 

deflection due to its own transverse wake. This is in contrast to the 

longitudinal dimension in which a particle does see its own retarding 

wake field. In other words, the longitudinal wake is cosine-like and the 

transverse wake is sine-like. See Fig. 5. 

We now define a Cartesian coordinate system with x = r cos 8 and 

Y = r sin 8, and orient the charge density in the x-y system with an 

angle e. [i.e., in the expression (1.3) for p, cos me is replaced by 

cos m(e-eoIl. In this Cartesian system, the beam now has two components 

of m-th moments -- one normal and another skewed. Table II 1 ists the two 

moments (first the normal moment and then the skewed moment) and the 

associated wake forces. A bracket < > means averaging over the 

transverse distribution of the beam; ii and $ are the unit vectors in the 

x and y directions. The wake forces are those seen by a test charge e 

with transverse coordinates x, Y and follows the beam at a distance Z 

behind. 

the 

Sim 

he transverse wake force for m  = 1 listed in Table II behaves like 

bending force seen in a horizontal or vertical dipole magnet. 

larly, the wakes act like quadrupole and skew quadrupole magnets for 

m  = The m  = 0 2, sextupole and skew sextupole magnets for m  = 3, etc. 

case does not have a transverse wake force because the long 

does not have a transverse gradient. 

i tudinal wake 
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Fig. 5. Sketches of the longitudinal wake function W’,(z) and the 
transverse wake function W,(z). 
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TABLE II 

Distribution 
Moments of Longitudinal Transverse 

m Beam Wake Force Wake Force 

0 q -eq W'o(Z) 

1 q<x> -eq<x> x W',(Z) 
1 

ci<Y> -eq<y> y W',(Z) 

- 

I 

q<xZ-y2> -eq<xz-y*> (x2-y2) w’2(z) 
-2 

q<2xy> -eq<2xy> 2xy W'2(Z) 

1 
q<x3-3xy2> -eq<x3-3xy2>(x3-3xy21W'~~ZI 

3 
q<3xzy-y3> -eq<3x2y-y3>(3x2y-y3)W,30 

0 

eq<x> WI(Z) P 

eq<y> WI(Z) 9 

2eq<x2-y2> Wz(Z) (xii-yir) 

2eq<2xy> Wz(Z) (yii+xP) 

3eq<x3-3xy2> W3CZ) 
* [(X2 - y2)i - 2xy;1 

3eq<3x2y-y3> W3CZ) 
* C2xyG + (x2 - y21;1 
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One can also say something about the polarity of these transverse wake 

forces using Table II. To do that, imagine a short beam travelling down 

the accelerator with a displacement in x. The head of the beam bunch 

will generate a wake force that kicks the particles in the tail further 

away from the accelerator axis since W,(Z) > 0 if Z is short enough. 

Similarly, if the beam has an elliptical shape in its transverse 

distribution and thus possesses a quadrupole moment, the transverse wake 

force is such that it tends to elongate the ellipse further in the bunch 

tai 1. In general, one finds that the polarity of the transverse wake 

forces is such that it always hurts a short beam. See Fig. 6. 

As Z increases, W ’,,, and W. may change signs and the wake forces become 

beneficial . In particular, W ’O may become negative at some finite 

distance behind the head of the beam. Therefore, if one injects two beam 

bunches into the accelerator and if the separation of the two bunches are 

chosen strategically, the trailing bunch will be accelerated by the wake 

field of the leading bunch. This mechanism is an important means of 

accelerating particles.i0-‘2 (In some sense, one special case of wake 

field accelerators is the klystrons, which have already been widely used 

to accelerate particles. The difference is that, for klystrons, the wake 

fields are generated in a special-purpose vacuum chamber, optimized by 

various means and then sent by waveguides to accelerate the trailing 

beam. The new generation of wake field accelerators and the klystrons of 

course have different regions of applicability.) 
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Fig. 6. The polarity of the wake field always hurts a short beam. 
For m  = 0, the longitudinal uake force is retarding. For m  = 1, the 

transverse wake force further deflects the test charge e. For m  = 2 
the tail portion of an elliptical beam becomes further elongated. 
Arrows represent the wake force. 
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There are several interesting properties of the wake functions. One 

has been listed in Eq. (1.39). Some of these properties for the 

longitudinal wake function W' r(Z) are given in Problem 3 below. Here let 

us show how property (c) can be reached; other properties can be shown 

similarly. Consider a point charge q followed by another point charge q 

at a distance Z behind. The first q loses energy at a rate (q2/2)W'o(0) 

due to the wake generated by itself Csee Eq. (1.2211. The trailing q 

loses energy at a rate (q2/2)W'o(0) + q2W'otZ), where the second term is 

due to the wake left by the leading charge. Physically, the two-charge 

system can never gain energy; this means W'o(Z) 1 -W'o(O) for any Z. 

Similarly, if the second charge is -q rather than q, one proves 

W ’o(Z) i W ’o(0). Property (c) of Problem 3 is thus proved for m  = 0. 
- 

Problem 3. Show that the longitudinal wake function W'.(Z) is unphysical 

unless the following properties are satisfied: 

(a) W',(Z) =O if Z<O. 

(b) W',,,(O) 2 0 . 

(cl W',(O) 2 /W)pl(ZII for all Z. 

cd) If W',(a) = W',(O) for some a, then W',(Z) is periodic 

with period a, i.e., W',(Z+a) = W',(Z) for Z 2 0. ' 

(el If W',(a) = - W',(O) for some a, 

then W',(Z+a) = - w',(Z). 

s 

a, 
(f) W',(Z) dZ 2 0 . 

0 
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(g) 1 ,- CW’,(Z,) W ’,(Zz) w’,~z,+z~~l/cw’,~o~I3 1 - l/8 

for any Z1, ZZ. 

Use these results to show that the wake functions sketched in 

Fig. 7 are unphysical. 

In the previous two sections, we worked out in some detail the case of 

a resistive wall. The reason for using the resistive wall as an example 

is that it can be handled with relative ease and yet it does contain most 

of the important features of a general wake. In reality, the resistive 

wall wake contributes very little to the wake fields found in an 

accelerator. Most of the wake field comes from effects associated with 

discontinuities in the vacuum chamber pipe [see Fig. 2(a)]. 

- 
The computation of wake functions analytically for a non-smooth pipe 

is rather involved. Here we are forced to make drastic approximations. 

For example, one may represent the pipe structure by a series of closed 

pill-boxes,13-i5 or to take a perturbative approach which is valid when 

the pipe wall is only slightly varied from that of a smooth pipe.16’18 

Indeed, the most realistic approach, it seems, is to seek the help of the 

almighty computer.ly-2’ 

In Fig. 8 we show the results obtained by Bane, Wilson and Zotter7*22 

for the SLAC linac. Their wake functions W ’o, W1 and W2 are plotted 

using our language and units. For comparison, we also show the resistive 

wall wakes in Fig. 9 assuming an aluminum pipe. The wakes in Fig. 8 

oscillate as functions of 2, indicating the electromagnetic wake field 

*‘r i rigs” after being excited. The ringing wave length is comparable to 

the cavity structure dimensions. 
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Fig. 7. Sketches of some unphysical wake functions W ’,(Z). 
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Fig. 8. Wake functions W'o, W1 and W2 for the SLAC linac. 
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Fig. 9. The resistive wall wakes W'o, WI and Wt. These curves are not 

to be extrapolated into the region Z J 0,002 cm. The pipe radius b is 

chosen to be 1.163 cm in order to compare with Fig. 8. The units foi 

W'o, WI and W2 are cm'zr cmm3 and cmm5, respectively. 
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1.5. Impedance 

So far the wake fields have been introduced as a function of time 

after the s-function beam has passed by. It is often useful to examine 

the frequency content of the wake field by making a Fourier transform on 

it. One indication of the usefulness of this procedure is the fact that 

we introduced the Fourier transformed quantities ‘i and E when we worked 

out the resistive wall. Another perhaps more important reason for its 

usefulness is that the wake response often contains a number (say, 20) of 

sharply defined frequencies. Such a situation does not occur for a 

resistive wall wake but does occur if the wake is generated by a cavity 

pipe structure. The Fourier transform of the wake function is called the 

impedance. 

Needless to say, the descriptions of the wake -force in-terms of wake 

functions in the time domain and in terms of impedances in the frequency 

domain are exactly identical. It is only a matter of taste as to which 

view to take. For many later developments, we find it convenient to use 

the time domain description to set up the equations of motion (F = ma) 

and then use the Fourier transform techniques to solve those equations 

once they are written down. 

So far we have considered S-function beams. Wakes produced by other 

beam distributions can be constructed using the s-function result. For 

example, consider a beam that has a current 

Io(z,t) = i. eikz-iwt . (1.40) 
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Only the real part of (1.40) is meaningful. The m  = 0 wake at position z 

is a superposition of the wakes produced by all charges in the beam that 

passed by position z at previous times, i.e., 

la, 
E,(z,t) = - - 

s 
dz' IoCz,t - (z’/c)l W ’OCZ”) 

c 0 

which is equal to 

1 a, ioz'/c 
- - Io(z,t) 

C s 
dz' e W'o(z') . 

-a, 

(1.41) 

The lower limit of integration has been replaced by -o) since W'o = 0 for 

2' < 0. We have used the fact that the wake field is insensitive to the 

cross sectional area of the beam so we can integrate Jz over the cross 

section to obtain Ia. 
- 

Let the accelerator section that contains the wake field be of length 

L. One can define a retarding voltage across the section due to the wake 

field by V(z,t) = - E,(z,t)L, we then have the expression 

V(zrt) = - Io(z,t) - 20”(W) (1.42) 

where the quantity 20"(w) is called the longitudinal impedance for the 

m  = 0 mode at frequency o; it is related to the wake function through a 

Fourier transformation: 

s 03 dz' iwz'/c 
Zo"(w)/L = -e W'o (2') (1.43) 

-Q) c 

and it describes the frequency content of the longitudinal wake W'o. 

Instead of Eqs. (1.40) to (1.421, an alternative view is to simply take 

Eq. (1.43) as the definition of the impedance. 
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Similarly, if the beam current possesses a multipole moment 

I,(z, t) = i, ,ikz-iwt , (I.441 

one can define the relationship V = - EzL = - II1 ZI” r’ cos mS through a 

longitudinal impedance per unit length 

s co dz’ iwz’/c 
Z,“(O)/L q -e W ’,(z’) . (I.451 

-03 c 

For the beam (1.441, one can further write the transverse force according 

to 

?l(z,r,8,t) = ie I,(z,t) mrm-l(icos m8 - 8sin me) Z,l(w) (I.461 

where Z,“A(w1 is the transverse impedance given by 

1 
z,J(o)/L = - 

i s 

co dz’ iwz’/c 
-e W,(z’) , 

-CQ c 
(1.47) 

In the cgs system, the dimensionality is TL-z”-’ for the longitudinal 

impedance Zm” and TLvzm for the transverse impedance Z,l. Sometimes it 

is more convenient to express the impedances using ohm as unit; for that 

one can use the conversion factor that 1 ohm = 1.11 x IO-l2 set/cm. 

Note that a minus sign is included in Eq. (1.42) for the reason that 

the voltage tends to be retarding, i.e . # l8Oo out of phase with the beam 

current, Similarly, we have included a factor i in Eqs. (I.461 and 

(I.471 since the transverse force tends to be 90° out of phase with the 

beam current. These factors are included for convention only. 
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Inverting the Fourier transforms (I.451 and (I.471 allows us to 

construct the wake functions from the impedances: 

1 to 
W',(z) = - 

s 
do e-iwz'c Z."(o)/L 

2n -03 

1 m  
W,(z) = - 

s 
do e -iwz/c iZ,l(o)/L 

2n -co 

(1.48) 

Equation (1.371, which relates the longitudinal wake to the derivative 

of the transverse wake also gives a relationship between the longitudinal 

and transverse impedances for a given m: 

w 
Zm”(W) = - z,L(w) . (1.49) 

- C  

For a resistive wall, the impedance that corresponds to the wake 

(1.38) is 

W  

Zm"(O)/L = - Z,l(w)/L 
C 

(I.501 

J 2 1 
= - jwjl/z Cl - sgn(w)il . 

ITU pm btm" C 

As we mentioned before, in reality the resistive wall constitutes only 

a small part of the total impedance in an accelerator. In the SLAC 

linac, for example, the impedance per cavity corresponding to the wake 

W'o shown in Fig. 8 is plotted in Fig. 10. 
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Fig. 10. Real part of the longitudinal impedance (m = 0) for the SLAC 
linac versus frequency f = W/~TT, up to f = 50 GHz. The impedance 
consists of a large number of b-function spikes. The height of each 
spike represents the area under the s-function. The spike corresponding 
to the fundamental accelerating frequency at 2.84 GHz is not plotted. 
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The,impedance shown in Fig. 10 consists of a large number of 

G-function spikes, each corresponding to a mode of wake field that can be 

excited in the SLAC linac structure and all these wake field modes have 

m  = 0. Note that it is only the real part of the impedance that contains 

G-function spikes. The imaginary part is a continuum; for each 

b-function peak of Re Z located at ORr there is an imaginary part Im Z 

that has a long (61 - WR)-’ tail around it. See problem 4(d) and 

Eq. (1.53) later. 

The fact that the impedance consists strictly of G-functions is due to 

the assumptions that the vacuum chamber wall is infinitely conducting and 

that the cavity structure is infinitely periodic. In case there is only 

a small number of cavity structures in the entire pipe, the impedance 
- 

actually looks like that sketched in Fig. 11. For modes whose 

- frequencies are below a certain cut-off frequency *c/b, hlhere b is the 

pipe radius, the wake fields are trapped by the cavity and ring in the 

cavity after the beam has left. The widths of these modes are determined 

by the resistance on the cavity wall and are described by Aw/o r l/24 

where Q  is the quality factor, typically of the order of IO’. Above the 

frequency c/b, the wake field leaks out of the cavity and propagates in 

the pipe. The impedance in this region forms a continuum. Roughly, one 

can obtain this part of impedance from that of Fig. 10 by spreading each 

impedance peak into a width of &w/w w l/N, where N is the number of 

cavities in series. For this reason, the impedances are often either 

sharply peaked (below cut-off) or “broad-banded” (above cut-off) and not 

too often in between. The corresponding wakes either ring for a long 

time or decay quickly after being excited. 
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Fig. 11. Sketch of the real part of the impedance for a small number 
of cavities in series. 
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In a#dition to (I.491 there are a few other properties of impedances 

that we will now describe: 

(i) Since the wake functions are real, Eqs. (I.451 and Cl.471 imply 

z,“+(w) = Z,“(-0) 
(1.51) 

z,'*(w) = - ZmL(-w) 

i.e., Re ZRIii and Im ZllL are even functions of w while Im Z,,," and Re ZllL 

are odd functions. 

(ii) The fact that the transverse wake satisfies W,,,(O) = 0 gives 

J  

C Q  

dw Im Z,,,"(U) = 0 
0 

- (I.521 

J  

co Im Z.'b(ol 
do = 0 . 

0 W  

(iii) The real and the imaginary parts of Zmii(w) must be related to 

each other in such a way that they, together, guarantees the causality of 

the wake functions. The relationship is given by the Hilbert 

1 
Re Z.ll(w) = - P.V. 

ll J  

a, Im Z m ”(W’) 
do' 

-cQ w'-w 
(I.531 

1 
Im Zmii(w) = - - P.V. 

ll J  

03 Re Z,li(w') 
do' 

-co w'-w 
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where P.V. means taking the principal value.+ The same expressions apply 

to z&. The proof of (I.531 can be found in Ref. 25. 

The point of (1.53) is that, at least in principle, knowing either the 

real or the imaginary part of the impedance, one can construct the whole 

impedance as well as the wake function. 

Problem 4. (aI Show that the circuit shown in Fig. 12(a) has an 

impedance 

R 
Z = 

WR 61 
l+iQ --- I 1 W  OR 

where Q  = R&i is the quality factor and (JR = I/& is the 

resonant frequency. This impedance is drawn in Fig. 12(b). 

The width of the resonance peak is about hw % ‘WRdq if 

Q  1) 1. 

(b) Hake a Fourier transform on the impedance to obtain the 

wake function 

I 
0 if z<O 

W(z) q 

We eva7 
[ 

a 

cos G7 - - sin 67 1 if 2 > 0 
G  

* The integrals Cl.531 are undefined without specifying P.V. because of 
the divergence at w’ = w. The trick of P.V. is to utilize the property 
that the divergences on the side w’ <w and the side w’ > w are of 
opposite signs and, if the integration is taken in such a way that the 
divergences on the two sides cancel each other, the integrals can 
actually be well-defined. 
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Fig. 12. (a) An LRC circuit. (b) The impedance of the LRC circuit. 
The solid curve gives the real part and the dashed curve gives the 
imaginary part of the impedance. The quality factor Q is typically 

either 11 for a “broad-band” impedance or -10’ for a fine,-tuned sharp 
impedance. We have drawn the case for Q = 5. 
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where 7 = Z/C, a = w@2Q, G =I/= and Wo integrated 

through the impedance section is equal to 2aR. 

(c) Show that the real and imaginary parts of the impedance 

satisfy the Hilbert transform relationship (1.53). 

(d) Show that in the limit Q + CO and R + OJ while keeping R/Q 

fixed, the impedance becomes 

VR 
Re 2 q - - @R 6(w-tdR) + 6 (w+oR) 

24 1 

I 

- The corresponding wake function is W(z) = W0cos(w~2/c) for 

2 > 0. 

(iv) Energy loss consideration gives another general condition on 

impedance. Consider a beam whose m-th moment has a longitudinal 

distribution p(z-ct). As this beam travels down the pipe, it loses 

energy at a rate [compare Eq. (1.2311 

z = c 1-1 dz p(z) 11 dz' ~(2’) W',(z'-z) . (1.54) 

This result can also be written in terms of the Fourier transformed 

quantities: 

da 

I 

co 
- = 2llc3 do Ip(f~)]~ Re Z,lt(w)/L 
dt -co 

(1.55) 
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where, 

1 

I 

CQ dz 
F(w) = - -e - iowc p(z) . 

I 
(1.56) 

2n -co c 

Since the beam as a whole can never gain energy from the pipe 

structure, and this must be valid for arbitrary p and ij, we conclude that 

Re Z,,,ii(c3) 2 0 for all w . (1.57) 

This is the complete condition that is only partially studied in Problem 

3. It follows from (1.57) and (1.49) that the real part of the 

transverse impedance Z,,,l is positive in the region w > 0 and negative in 

the region o < 0. 

- 
(v) The relationship (1.49) holds for a given m. There is no a 

priori connection between the impedances of different m”s. On the other 

hand, a rough connection between 20” and Z,l can be very useful if one 

knows 20” and wants to have some idea of Zjl. From a simple 

dimensionality argument, one expects Z1” * Zoii/b2 and thereforez6 

2c 
z,l - - Zo” , (1.58) 

b2w 

where b is a length characterizing the vacuum chamber structure and is 

most likely given by the radius of the chamber pipe. A factor of two is 

included so that this expression is strictly valid for the resistive wall 

case. In general, the relation (1.58) describes only a gross averaged 

behavior; it applies more or less to frequencies above the cut-off 

frequency c/b and is not to be confused with the exact relationship 

(1.49). 
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1.6. Parasitic Loss 

The energy loss (1.54) or (1.55) is referred to as the parasitic 

energy loss of the beam. It is valid for a beam traversing the impedance 

once. In a circular accelerator, the situation is somewhat different. 

As the beam traverses the impedance region, it not only sees the wake 

field generated in this traversal but also all traversals made in 

previous revolutions. The energy loss can then be written as 

(take m = 0) 

& q c 1-1 dz ~(2) 1-1 dz' ~(2’1 imm W'o(kC+z'-zl (1.591 

where C is the circumference of the accelerator, k sums over revolutions 
- 

and we have used the fact that W'o(z) = 0 if 2 < 0. 

It is more convenient to express (1.591 in terms of impedance. To do 

so, we will use the following identity (the Poisson sum formula): 

; F(kC> = (1.60) 
k Z-m c p=-CQ 

where F(z), F(k) are arbitrary Fourier transform pairs. In other words, 

summing a function at a regular interval C is equal to summing over its 

Fourier transform at the regular intervals 2n/C. Using (1.601, the 

summation over W'O in (1.59) becomes a summation over the impedance Zo". 
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Probl,em 5. Prove (1.60). As a special case show 

6) -ikx co 
C e q 2n 1 61x + 2llP) - 

k =-CQ p=-m 

Let the total impedance in a circular accelerator be Zo". The energy 

loss of a beam per revolution then becomes 

U = 2ncz0t3 F lF(pwoI12 Re Z~~~(pwo) (1.61) 
parasitic p=-c0 
loss 

where wo = 2nc/C is the revolution frequency. Here we see one example of 

the usefulness of the impedance concept; Eq. (1.61) contains a summation, 
- 

while Eq. (1.59) involves a summation and a double integral. 

The parasitic energy lost by the beam goes into the wake fields. 

Under unfavorable conditions, this energy stored in the wake fields will 

be transferred systematically back to beam motion, causing beam 

instabilities. This is the subject to which we will devote the rest of 

these lectures. The parasitic energy loss, of course, will have to be 

supplied back to the beam by an rf accelerating voltage. 
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II. ONE-PARTICLE AND TWO-PARTICLE MODELS 

In Section I, we studied the wake fields generated by a beam in an 

accelerator environment. We assumed that the particle distribution 

within the beam is rigid and that the beam is unperturbed by the wake 

fields in its motion other than the parasitic energy losses. In this 

Section II, we will study the effect of the wake fields acting back upon 

the beam, except that the beam is allowed only to have center of charge 

motions and not internal motions. For this purpose, the beam will be 

represented simply as a point charge -- a single macroparticle without 

internal structure. A few of these one-particle models, leading to 

longitudinal and transverse beam instabilities, will be studied. 

The advantage of introducing the one-particle models is obvious; it 

offers an intuitive picture of some of the instability mechanisms. In 

fact this simplified description is so beneficial that we will extend it 

and introduce a two-particle picture, in which the beam is represented as 

two macroparticles interacting with each other through the wake fields. 

This picture offers the opportunity of looking into the instability 

mechanisms associated with the internal degrees of freedom in the beam 

distribution. A few of these two-particle models will be included in 

this section. A full account of the internal beam motions will be 

postponed until Section III, where most of the results obtained in 

Section II will be rederived systematically. 
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The seven one-particle and two-particle models included in Sections 

2.1 to 2.7 are not meant to be exhaustive. A two-particle model for the 

longitudinal instability, for instance, is missing from our list. 

Hopefully, the reader will venture along these lines to make a more 

complete 1 ist. 

2.1. Robinson Instability 

The rf accelerating cavities in a circular accelerator are tuned so 

that the fundamental mode+ has its resonant frequency #R very close to an 

integral multiple of the revolution frequency o. of the beam. This 

necessarily means that the wake field excited by the beam contains a 

major frequency component near OR I hwc, or equivalently, the impedance 

Zo” has a sharp peak at WR z? hOO, where h is -an integer called the 

harmonic number. 

As we will soon show, the exact value of @a relative to hwo is of 

critical importance for the stability of the beam. Above the transition 

energy> the beam will be unstable is @R is slightly above hwo and stable 

if slightly below. This instability mechanism was first analyzed by 

Robinson.z7 Since then, various approaches have been taken to describe 

the mechanism of this instability.7,t*‘oo 

We will begin with the longitudinal motion of our macroparticle beam. 

Let 7,, be the arrival time displacement of the beam at the accelerating 

* i.e., the lowest m = 0 cavity mode. In Fig. 11, it corresponds to 
the peak with the lowest resonant frequency. 
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cavity jn the n-th revolution, measured relative to a fictitious 

reference beam that circulates around the accelerator without executing 

synchrotron motions. The rate of change of 7n is related to the relative 

energy error 6n = AE/E of the beam in the same n-th revolution3’ 

d 
-7n = - a To 6n (2.1) 
dn 

where a is a positive constant called the momentum compaction factor and 

To is the revolution period of the beam. A positive Tn means the beam 

arrives earlier than the reference beam. Equation (2.1) is valid when 

the beam energy E is above transition energy so that b,, > 0 means ln 

tends to decrease. 

The applied voltage at the accelerating cavity is such that the beam 

receives more energy if it arrives early and receives less energy if it 

arrives late. Again from Ref. 31, this gives 

d To ~5’ 
-gn = - St7 (2.2) 
dn a 

where o5 is the synchrotron oscillation frequency. Equations (2.11 and 

(2.21, of course, define the unperturbed synchrotron oscillation of the 

beam. Typically, oS is much less than the revolution frequency 

GO = 2~/To. 

Equation (2.2) is valid when the beam intensity is vanishingly small. 

For an intense beam, the energy variation also depends on the wake field 

generated by the beam. Let Ne be the total charge of the beam, the dS/dn 
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equation then acquires an additional term: 

d Toe2 Ne2L n 
-sn = - -- Tn c W(nTo - kTo - 7n + 7k) (2.3) 
dn a E k=-m 

where L is the total length of the rf cavity, W is an abbreviation of the 

wake function W’c studied before and we have changed freely the argument 

of W from a distance unit to a time unit. The summation over k sums over 

the wake fields left over from all revolutions previous to n. The 

argument in the wake function is the time separation of beam positions in 

the n-th and the k-th revolutions. Combining the two Eqs. (2.1) and 

(2.3) yields the equation of motion 

d2.r, aTc Ne2L 
- + (oSTo)2~n = 
dn2 

c W(nTc - kTo - rn + ?k) . (2.4) 
E k 

In case the beam bunch has an oscillation amplitude much shorter than 

the wave length of the fundamental cavity mode, one can expand the wake 

function 

1 W(nTo - kTo - 7n + ?k) r 1 W(nTo - kTc1 
k k 

- 1 (Tn - Tk) W’(nTo - kTo1 . 
k 

(2.5) 

The first term on the right hand side of (2.51 is a static term 

independent of the motion of the beam. It describes the parasitic loss 

already discussed before and can be taken care of by a constant shift in 

the arrival time. We will drop this term altogether. The second term, 

on the other hand, does involve the dynamics of the beam. The quantity 



- 64 - 

Tn-‘Ik,iS the difference of T’S and -- although we will not make such an 

approximation -- resembles a time derivative dr/dn. An inspection of 

Eq. (2.4) then immediately gives the expectation of instabilities since a 

dT/dn term in a d2T/dn2 equation indicates a possible exponential growth 

of ?. 

Substituting (2.5) into (2.41, one gets a linear*equation for Tn. 

Obviously one can try to solve it staying in the time domain9 but it 

turns out that transforming to the frequency domain makes the mathematics 

much easier. In the frequency domain, In as a function of n behaves like 

?n a e - it-&To (2.6) 

where fi is the mode frequency of the beam oscillation and is a key 

quantity yet to be determined. An ansatz of the form (2.61 works only if 

the equation of motion is linear in T. By writing down (2.61, the 

problem of solving the equation of motion becomes the problem of solving 

for R. Equation (2.4) for 7n becomes 

aNe2L 03 
Q2-(Js2 = 1 (I- eikRTo) W’(kTo) . 

ET0 k=-m 

The wake function is then expressed in terms of the longitudinal 

impedance of the rf cavity using (1.48). An application of the identity 

(1.601 gives 

aNe2 00 
Q2-(&2 = - i - 1 CpwoZ(poo) - (poo+R)Z(poo+R)l 12.7) 

ETo2 p=-OJ 

where we = 2~r/To is the revolution frequency. 
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Given the impedance, Eq. (2.7) can in principle be solved for R. Here 

we will take a perturbative approach and assume n does not deviate much 

from w5 due to the wake fields. We thus replace R by G)~ on the right 

hand side of Eq. (2.7). 

In general, R is complex. The real part of R is the perturbed 

synchrotron oscillation of the beam motion, while the imaginary part 

gives the growth rate (or damping rate if negative) of the motion. 

Equation (2.7) then gives 

frequency shift AR = Re(R - w,) 

aNe2 w 
= 1 Cpoo Im Z(pwo) - Cpwo+w,) Im Z(poc+o,)l (2.8) 

2ET02w8 p=-w 

and 

growth rate 7-l = Im(R - w,) 

aNe2 w 
= 1 (pwc+w,) Re ZCpwc+w,) . (2.9) 

2ETo2w, p=-w 

Note that the imaginary part of the impedance contributes to a mode 

frequency shift and the real part of the impedance contributes to 

instability growth rate. 

There are two terms under the summation for AR. As we will show later 

in Sections 3.2 and 3.4, the first term comes from a static phenomenon 

called potential-well distortion, while the origin of the second term is 

dynamics. Note that the growth rate r -l does not have a term due to the 
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static pbtential-well distortion; mathematically, this term vanishes 

because Re Z is an even function of w. 

If we consider the impedance due to the fundamental cavity mode, the 

only significant contribution to the growth rate (2.9) comes from two 

terms in the summation: n = h and n = -h. Assuming hwo >> CJ~, we obtain 

aNe2 ho0 
r-1 = CRe Z(hwo+wS) - Re Z(hwo-c~s)l . (2.10) 

2ETo2 w5 

Beam stability requires 7-l < 0. That is, the real part of the 

impedance must be lower at frequency h(JO+(aS than at frequency hoe-w,. 

This condition implies that the resonant frequency (JR of the fundamental 

cz.vity mode should be slightly detuned downwards from an exact integral - 

multiple of 00. The situation is sketched in Fig. 13. When this is 

done, the synchrotron oscillation of the beam is actually "Robinson 

damped.” 

2.2. Riqid-Beam Transverse Instability 

We now consider a macroparticle beam executing a transverse betatron 

oscillation, say in the vertical (y) direction. The beam possesses an 

instantaneous dipole moment Ne y(t). A particle that follows the beam at 

a distance Z behind sees, at time t + Z/c, according to Table II, a 

transverse wake force Ne2 y(t) W(Z) in the vertical direction. The 

equation of motion of the beam is therefore 



I 
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ReZ(w) 

(a) 
Stable 

hwO-wt 

R$ (w) 

I 
hwO+ w5 

(b) 

h wO-ws hwO + w5 
9-82 437lAl3 

Fig. 13. Illustration of the Robinson instability. The resonant 
frequency we of the fundamental mode of the rf cavity must be slightly 
lower than hwo for beam stability. 
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' d2y(t) Net w 
- + w'$2 y(t) = - 1 y(t-kTo) W(kTo) 

dt2 mcr k=l 
(2.11) 

where mo is the rest mass of a particle (not the macroparticle), we is 

the free betatron oscillation frequency, To is the revolution period and 

the summation over k sums the wake field over all previous revolutions. 

This model was first suggested by Courant and Sessler32 and also by 

Pellegrini.33*3Q 

Of course, an off-axis beam also possesses distribution moments other 

than the dipole moment. For instance, it possesses a monopole moment 

(i.e., the total beam charge) and also higher moments such as the 

quadrupole moment. The effect of the monopole moment has been cons idered 

in Section 2.1 and does not give rise to a transverse wake force. 

-Effects due to the higher moments will be ignored as compared with 

dipole wake since the beam displacement y is considered to be much 

smaller than the vacuum chamber pipe radius. 

One may still object since a dipole moment also generates a 

longitudinal wake, which is not considered in Eq. (2.111. Indeed, 

the 

strictly speaking, a rigorous treatment of the problem must also include 

the longitudinal motion of the beam. Thus, the wake function in the 

betatron equation of motion (2.11) should be modulated by the arrival 

time of the beam while the synchrotron motion should be perturbed by the 

longitudinal wake associated with the betatron motion. Only when this 

coupled betatron and synchrotron motion is considered does the system 

strictly satisfy the Maxwell equations and becomes Hamiltonian. However, 
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for practical purposes, as long as the synchrotron and betatron 

frequencies are not close to a resonance condition wR + w5 = nwo and the 

1, Eq. (2.11) still accurately describes transverse displacements are smal 

the transverse motion of the beam 

following Eq. (3.47). 

. This point will be discussed further 

We will again solve Eq. (2.11) in the frequency domain. Let 

Y a: exp(-iQt1 and transform the wake function into the transverse imped- 

ance according to Eq. (1.481, we obtain the following equation for R: 

Ne2c w 
R2 - (Q2 = - i - 1 Z(pwo+R) (2.12) 

ETo2 p=-w 

where wo = 2n/To. Assuming R does not deviate much from woI we have 

frequency shift AR = Re CR - wo) 

Ne2c 
s i Im Z(pwc + wo) 

2E wR To2 p=-w 

and 

growth rate 7-l = Im CR - w~l 

Ne2c 
r - i Re ZCpwo + we) . 

2E 00 To2 p=-CO 

(2.13) 

(2.14) 

Given the transverse impedance, Eqs. (2.131 and (2.14) are our final 

expressions. We first note that if the real part of Z(w) contains sharp 

resonant peaks, there can be a transverse counterpart of the Robinson 

effect. More explicitly, if a resonant frequency OR iS close to hwo, an 

integral multiple of wo, then 
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Ne2c 
T-t $$ - [Re Z(hwo + Apwo) - Re Z(hwc - A~wo)l (2.15) 

2E wR To2 

where A, is the non-integer part of the betatron tune ~c = (de/(~o and we 

have chosen -l/2 < AD < l/2. For stability, WR should be slightly above 

hwo if As > 0 and below hoc if A, < 0. 

Problem 6. Using (2.141, show that the instability growth rate 7-l = 0 

if ve = integer or if Va = integer + 1/2.33 This is true for 

arbitrary impedance. 

As another application of Eq. (2.141, let us find the instability 

-growth rate for an accelerator with resistive wall. Substituting the 

transverse impedance (1.501, i.e., 

Z(w) = - - Iwl-1'2 Csgn(w) - il , 

into (2.141, we obtain the result* 

(2.161 

* Applying (2.16) to the frequency shift (2.13) is more subtle; the 
result will diverge or converge depending on how the summation is 
performed.32 The subtlety comes from the fact that the transverse wake 
force should vanish at Z = 0 while the wake force corresponding to the 
impedance (2.16) diverges for Z + O+ and vanishes for Z + O-. We will 
not explore this point here since it is the growth rate, not the 
frequency shift, that concerns us. Suffice it to say that after the 
subtlety is removed, the frequency shift is finite. 
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Ne2 ct 
T-1 .gj - 

b3E wB To I/= 
G(AB) 

where we have defined32 

G(ABl = . 

(2.17) 

(2.18) 

The function G(Aa) is plotted in Fig. 14. We see that G(As) is 

positive (so that r-l < 0 and the beam is stable) if 0 < A@ < 112, and 

negative if -l/2 < AD < 0. This means one should choose the betatron 

tune below a half-integer. However, this conclusion is valid only for 

the resistive wall case and for a different impedance the conclusion may 

very well be reversed. 

Note that the stability criterion invariably involves the sign of AR. 

This is because the beam oscillation is damped or antidamped depending on 

the relative phase between the wake force and the oscillation (damped if 

the wake force leads the oscillation and antidamped if the reverse is 

true) and the relative phase is determined by AD. 

2.3. Beam Break-UP in Linacs 

In linear accelerators, wake field effects impose an important 

limitation on the maximum beam intensity that can be accelerated. 

Although we are mainly interested in coherent instabilities in circular 

accelerators, the instabilities -- or beam break-ups as they are called 

-- in a linac are actually the basic mechanisms underlying many of the 

instabilities in the circular accelerators and deserve to be looked into. 
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Fig. 14. The function G(Asl. 
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In this section we will discuss three wake field effects in a linac, 

using a model in which the beam is represented as two macroparticles each 

containing N/2 particles, separated by a distance Z. The three effects 

are due to the m = 0, 1, and 2 components of the wake field, 

respectively. In a linac, the separation of the two macroparticles does 

not change in time. 

First the m = 0 wake. The particles in the trailing macroparticle see 

a longitudinal electric field left behind by the leading macroparticle 

and lose energy at a rate 

de c Net W'o(i!) 
- = . (2.19) 
dt 2 

Because of this loss, the beam acquires a spread of energy among its 

particies. Take for instance the SLAC linac with N = 5 X 1O'O, 2 = 2 mm, 

-accelerator length L = 3000 m and, from Fig. 8(a), W'o(Z)'= 0.9 cmw2, we 

find this energy spread is roughly 1.0 GeV, which is not negligible. As 

pointed out in Loew's Lecturer35 most of this spread can be removed by 

properly phasing the accelerating rf voltage relative to the beam so that 

the energy spread is more like 114 GeV or so at the end of linac. 

The second effect we will study is the transverse dipole beam break-up 

instability (m = 1). In our two-particle model, the leading 

macroparticle executes a free betatron oscillation 

yq(t) = 9 cos wf$t , (2.20) 

while the trailing macroparticle sees a deflecting wake field left behind 

by the leading macroparticle. Thus 
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Ne2 W,(Z) 
'v'2 + WR2 Y2 = Yl 

Pm07 

Ne2 W,(Z) 
= 9 cos wat . 

2m0Y 
(2.21) 

In writing down this equation, we have assumed that woZ/c << 1 so that 

one can ignore the betatron phase slip from bunch head to tail due to the 

difference in their times of arrival. 

Equation (2.21) shows that the mechanism of beam break-up is that 

particles in the tail of the beam are driven exactly on resonance by the 

oscillating wake left by the head of the beam. The solution to (2.21) is 

Ne2 Wl(Z) 
y2ct1 = p cos wst + t sin wet 

I 
(2.221 - 

4~8 rn0y 

jn which the first term describes the free oscill-ation and the second 

term is the resonant response to the driving term. Note that the 

amplitude of the second term grows linearly with time. At the end of the 

linac, the oscillation amplitude of the tail macroparticle has grown a 

factor of 

Ne2 Wl(Z) L 
31 = (2.23) 

4633 mOy c 

For a beam bunch with realistic distribution, the off-axis motion of 

the head of the bunch deflects the tail of the bunch so that the bunch is 

distorted into a banana shape as sketched in Fig. 15(a). Obviously, if 

the beam intensity is too high, the tail particles may acquire too large 

an amplitude and be lost from the beam. 
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Fig. 15. Sketches of the beam shape when the bunch is undergoing 
(a) dipole beam break up and (b) quadrupole beam break up. 
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The third coherent effect we want to study is the transverse 

quadrupole beam break-up instability Cm = 2). What happens here is that 

the quadrupole wake field generated by the bunch head perturbs the 

focusing force that acts on the bunch tail, leading to an instability. 

To describe the quadrupole wake, it is better to imagine that the 

leading macroparticle is actually an elliptical-shaped slice of charge 

possessing a quadrupole moment but no dipole moment. The quadrupole 

moment executes a free betatron oscillation with frequency 2+, i.e., 

<y,2> = i, cos 2Wcf. 

Just like the dipole beam break-up, the quadrupole instability is also 

a result of a resonant excitation. The equation of motion of the 

trailing particle is 

Net W;t(Z) 
i;2 + Wp2 y2 = $2 cosC2w#t)yz . (2.241 

m0Y 

The driving term on the right hand side is obtained from Table II. 

Equations of the type (2.241 are unstable just like equation (2.21) is. 

If we let y2 = 3 cos wst be the unperturbed zeroth order solution, one 

finds by a first-order perturbation calculation that* 

Ne2 Wz(Z) f2 
Yz s 9 cos wf)t + t sin Oat . 1 (2.25) 

4w~ m0r 

* A perturbation calculation applied to equations of the type (2.24) -- 
the Mathieu equation -- can be misleading; a simple frequency shift can 
be mistaken as a behavior of the type (2.25). Here, however, since the 
driving term is exactly on resonance, the perturbation calculation does 
apply. See Ref. 36. 
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Note the similarity between Eqs. (2.25) and (2.22). The osci 1 lation 

amplitude of the tail particle therefore grows by a factor 

Net Wt(Z) !tL 
92 = . 

40~ mar c 
(2.26) 

Fig. 15(b) is a sketch of the beam shape when the quadrupole beam break 

up is taking place. 

We have now discussed the wake effects in a linac in terms of a highly 

simplified beam model. Generalization to realistic beams is 

straightforward although often not trivial. Interested readers should 

read Refs. 37 to 42 and the references quoted therein. 

Analysis similar to the above can be applied to higher.values of m. 

For instance, m = 3 requires the consideration of two triangular charge 

sl ices. We then obtain a strength parameter dn that resembles 

Eqs. (2.23) and (2.261. As m increases, the strength parameter decreases 

roughly with (a/bJzm, where a is the transverse beam size and b is the 

pipe radius. 

2.4. Stronq Head-Tail Instability 

There is also a dipole beam break-up mechanism in a circular 

accelerator. It will be called the strong head-tail instability here for 

reasons to be discussed in Section 2.6 and also in the paragraph 

preceding Eq. (3.71). The difference from the linac case is that now the 
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two maclroparticles are no longer frozen in their relative longitudinal 

positions. Instead, both macroparticles, each containing a charge NeI2, 

execute synchrotron oscillations with a slow frequency w5. 

We assume the synchrotron oscillations of the two particles have equal 

amplitude but opposite phases. During time 0 < t < T5/2, where 

T5 = 2Tf/ws, particle 1 leads particle 2; the equations of motion for the 

two particles are 

y, + wl)t Yl = 0 

(2.27) 
Net WO 

t’2 + WB2 Y2 = -Yl * 

Pmor 

Similarly, during TS/2 < t < T gr we have the same equations with indices 
- 

1 and 2 switched. Then during T5 < t < 3T,/2, Eq. (2.27) applies again, 

etc. This model was first suggested by Kohauptb3 and Talman.b'PQs 

In writing down (2.271, we have assumed for simplicity that the wake 

function W is a constant, and yet it vanishes before the beam completes 

one revolution, i.e. 

0 if zco 

W,(Z) = wo if 0 < Z < beam length . (2.28) 

0 if Z > beam length 

We will now analyze the stability condition of the system. We start 

with (2.27); the solution for y1 is simply a free betatron oscillation: 
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where 

-iwct 
iJl(t) = e J, (0) (2.29) 

i 
Yl = Yl + - 91 . (2.30) 

WJ 

Substituting (2.29) into the equation for y2 yields the solution 

-i0Bt Net Wo -iwct 
+i Vt(O) te 

I 
. (2.31) 

4~0 m0r 

The first term describes the free betatron oscillation, while the second 

term is the resonantly driven response. Equation (2.311, of courser has 

its linac counterpart given by Eq. (2.22). The coefficient B depends on 

the initial conditions ~~(01 and 92(O). 

Equation (2.31) can also be written in terms of the phasor Fz if 

tiOT5/2 >> 1, or equivalently, wg >> og. The result is 

-iwBt Ne2 Wo -iwat 
pZ(t) = 92(O) e +i Y,(O) te . (2.321 

46~3 m0Y 

We have thus solved the equations of motion during the period 

0 < t < T&2. Written in matrix form, we have 

i 

jil 

572 1 -iweT,/ 
= e 

t=T,/2 [ 

1 0 

iv1 1 I[ 'jl 

ij2 1 > (2.33) 

0 
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where [cf., Eq. (2.2311 we have define the dimensionless parameter 

Net Wo T5 
31 = . 

80~ mcr 
(2.34) 

From the properties of wake functions, we know 7)l is positive. 

The time evolution during T,/2 < t < TS can be obtained by 

interchanging indices 1 and 2 in the above analysis. The total 

transformation for one full synchrotron period is therefore 

(2.35) 

As time evolves, the vector formed by the phasors Y, and 92 is 

repeatedly transformed by the 2 X 2 matrix in (2.35). Stability of the 

system is thus determined by the eigenvalues of this matrix. The two 

eigenvalues for the two modes -- a + mode and a - mode -- are 

1 
hi = e'ib , cos/.k = l--V,2 . (2.36) 

2 

Stability requires b = real, which is fulfilled if fcos ~1 L 1, or 

7)j < 2 . (2.37) 
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For weak beams, the growths made during the half synchrotron periods 

when the particle is trailing do not accumulate and the beam is stable. 

As the beam intensity increases, nl exceeds 2, the growths of the 

particles then do accumulate and bootstrap into an instability. This 

threshold behavior is very different from the linac case in which the 

beam -- at least the tail of it -- is always unstable. One can imagine 

that, by periodically switching the roles of being the leading and the 

trailing particles, the two-particle beam is made more stable. The more 

frequently they are switched, the more stable is the beam. This shows up 

in that ~1 is proportional to Ts. Synchrotron oscillation is thus an 

effective stablizing mechanism. The fact that 91 is inversely 

proportional to Y is because high energy particles are more rigid in 

their motion against perturbations. 

It would be interesting to Fourier analyze the center-of-mass signal 

yl+y2 to examine its frequency spectrum since the center-of-mass signal 

is easily observed experimentally. This is straightforward to do and 

here we give the result. In the stable region, the 5 modes contain the 

following frequencies:96 

+ mode : Wf3 + -Q@s - - Ws , R = even 
2?l 

(2.38) 

- mode : WB + Rw, + - ws , R = odd . 
2n 

Note that each mode contains a multiple of frequencies when observed 

continuously in time. Figure 16 shows the spectrum. 
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Fig. 16. Frequency spectrum of the center-of-mass signal of the beam in 
the stable region ql < 2. The solid lines are the sprectrum of the + 
mode and the dashed lines are that for the .- mode. 
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For weak beams (i.e., small '1111, the two macroparticles move up and 

down with the same phase in the + mode and out of phase in the - mode. 

As v1 increases, the mode frequencies shift and the particle motions 

become more complicated; each mode then contains a combination of in- 

phase and out-of-phase motions. At the stability limit fll = 2, the 

frequencies of the two modes merge into each other and become imaginary, 

which means the beam is unstable. 

Figure 16 shows the result obtained for a two-particle beam assuming 

the wake (2.28). We will show later (see Fig. 35) the result of a more 

sophisticated calculation assuming the same wake but taking fully into 

account the internal motions of the beam. We will then find that Fig. 16 

does offer a qualitative description of the beam spectrum for R = 0 and 

R = -1 modes. It is not surprising that the two-particle-model fails to 

describe the behavior of the higher modes. 

One might want to have an idea of what happens in the unstable region. 

Suppose we are slightly above the instability threshold so that 91 = 2+~ 

with E << 1. Equation (2.36) can be used to find the instability growth 

rate: 7-l = 2&/T,. Note the square root dependence of r-l on E. This 

means a small o can give rise to a sharp growth rate; for instance, 10% 

above threshold gives ? ue Ts. One consequence is that feedback systems 

are not very effective to bring the beam intensity substantially beyond 

the threshold unless the feedback damping rate is at least comparable to 

0s. 
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2.5. Transverse Quadrupole Instability 

It does not require too much stretching of the imagination to suspect 

that there is also an instability which is the circular accelerator’s 

counterpart of the quadrupole beam break-up in linacs. By observing the 

similarity between (2.25) and (2.221, we expect to find a stability 

condition that assumes the form 

32 s 2 (2.391 

where, with Wo the constant quadrupole wake function and g the rms radius 

of the unperturbed beam cross-section, 

- 

Ne2 WO a2 Ts 
Q2 = . (2.40) 

4wa m0r 

What happens here is that the throbbing motions of the two charge 

slices couple through the quadrupole wake force, leading to instability. 

At this point, the reader may want to read Ref. 4, in which the various 

throbbing beam instabilities are discussed under the assumption that 

synchrotron motions can be ignored. 

elaborately. For this purposet we represent the 

shaped charge slices, each slice is described by 

E-matrix whose elements are the second moments o 

We will now show the stability criterion (2.39) somewhat more 

lliptically 

x4 

, i.e. 

beam by two e 

a symmetric 4 

f distribution 
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<X2> i <Xi> i 0 0 

<XE> i <it> i 0 0 

0 0 <y2> i <YG> i 

0 0 <Yt> i <c2> i 

We have assumed the ellipses are upright in the x-y plane. 

, i = 1,2 . (2.41) 

We first concentrate on the leading slice. The moments of the slice 

execute free betatron oscillations. The equation of motion is 

t1 = RI, + r,ii (2.42) 

where a tilde means taking the transpose of a matrix, and 

R = 

0 1 0 0 

-0)(2 0 0 0 

0 0 0 1 

0 0 -WY2 0 

with wx and wy the betatron frequencies. Eq. (2.42) has the solution 

El t-t1 = T T,(O) Fi (2.43) 
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where ' 

T = 

cos w,t 

-ox sin w,t 

1 
- sin w,t 0 
wx 

cos w,t 0 

0 cos wyt 

0 -WY sin wy t 

0 

0 

1 
- sin w,t 
WY 

cos wyt 

In the following we will do a perturbation calculation. Let 

<X'>i = a2 + Axi 

<XC) i = 0 + Bxi 

<?>i = wx2a2 + Cxi 

<Y2>i = a2 + Ayi 

<Yir> i = 0 + Byi 

<jr>i = W,2a2+Cyi , i=1,2 . 

(2.44) 

The first terms on the right hand sides are the unperturbed values and 

the second terms are small, time-dependent perturbations. We have 

assumed that the unperturbed beam is round with rms radius a. 

Since the beam emittances (<X'>i<k'>i - tXl>i21"2 and 

(<y'> j<$'> i - <yc>i 2)1/2 are constants of the motion, it follows that 

Wx'A,i f Cxi and Wy'Ayi + Cyi are invariants. Without losing any beam 

stability information, we are therefore free to choose the constraints 
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Cxi = - OX' Axi 

Cyi = - tiy2 Ayi , i = 1,2 . 

In terms of the perturbation moments, Eq. (2.43) can be written 

explicitly as 

BRl(ct) 
Ael(tl = Aa, cos 2vot + sin 20st 

(‘43 
(2.45) 

BR,(t) = - wsAsl(O) sin 2wet + Be,(O) cos 2wot , f3 = x,y . 

Equation (2.45) describes the free quadrupole oscillation of the first 

slice. The oscillation frequency is 20s. 

- 

Slice 1 leaves behind a quadrupole wake force that, according to 

Table II, is equivalent to the force due to a quadrupole magnet with a 

gradient bB,/bx = -NeWo(<x2>,-<y2>,) = -NeWoCA,,-A,,,). This wake 

contributes an additional term to the equation of motion for &, i.e. 

Ne2 Wo a2 
t2 = i-l& + 125 + (Ax1 - A,?) 

m0r 

01 0 0 

10 0 0 

00 o-1 

0 0 -1 0 

. (2.46) 

This equation can be integrated exactly, but we will keep only the 

resonant terms, yielding the result 

12 = TSi' (2.47) 
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where 

Net WIJ a2t 
S(t) = Z2(0) + 

2m0r 

X 

1 
- - Bxl(0) A,,(O) 0 0 

IJX 2 

A,,(O) B,,(O) 0 0 

1 
0 0 - - B,,(O) Ayl(OI 

OY2 

0 0 A,1 (0) Byl(OI 

We have assumed wx and CJ,, are different so that there is no resonant 
- 

coupling between the two dimensions. The x and y motions thus decouple 

-and we need only to consider one of the two dimensions. Note that the 

second term in S is proportional to t. 

The solution (2.471, written in terms of the perturbation moments, is 

62(O) 
AZ(t) = A2(0) cos 2aRt + - sin 2wBt 

% 

NeZ WO a2t 

[ 

B1(O1 
+ - - cos 2wRt + A,(O) sin 20Bt 

2mOr (dR @R 
1 
(2.48) 

82(t) = - @I) AZ(O) sin 2wRt + B2(0) COS 26,ajt 

Ne2 WO a2t B?(O) 
+ - sin 2ost + Al(O) cos 2Wpt . 

2mor UP 1 
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We haveldropped the subscripts x and y on A’s and B’s, and (5~ is either 

ox or wy depending on which dimension is being considered. Equations 

(2.45) and (2.48) are our solutions during the time 0 < t < T&2. If we 

now form two phasors 

61 

Gl = Al+i- 

wR 

(2.49) 
62 

a2 = AZ+i- , 
(JR 

the transformation from t = 0 to t q T,/2 is found to be 

1 -iWs’T, 1 0 
= e 

in2 1 
t=T,/2 

Q1 
[. 1 (2.50) 

Qt 
0 . 

where n2 is the parameter defined in (2.40). 

Equation (2.50) looks almost identical to the dipole result, 

Eq. (2.331. The same analysis of the previous section then leads to the 

stability criterion (2.39). The frequency spectrum of the quadrupole 

oscillation, of course, clusters around 20~. 

2.6. Head-Tail Instability 

In our analysis of the strong head-tail instability in Section 2.4, we 

have assumed that the betatron and the synchrotron motions are decoupled 

from each other. By doing so, we have ignored an important source of 
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instability known as the head-tail instability,26*q4rS5*~7~"g to which we 

now turn. This instability is one of the cleanest to be observed 

experimentally.50~51 

The betatron oscillation frequency of a particle in a circular 

accelerator depends on the energy error 6 = bE/E of the particle. If we 

denote that betatron frequency of an on-momentum particle as we, the 

betatron frequency for an off-momentum particle can be written as 

C+(s) = w,-,+WO(b , (2.511 

where wo is the revolution frequency, c is the chromaticity parameter 

determined by the accelerator lattice. . 

In Section 2.4, we have used the time of an external clock as the 

independent variable. This is no longer convenient here because now we 

have to consider synchrotron motions and the varying time-of-arrival 

complicates the analysis. We will therefore choose the longitudinal 

coordinate along the accelerator, s, as the independent variable. 

Let us first examine the free betatron oscillation in the absence of 

the wake field. The accumulated betatron phase is given by an 

integration of (2.511, i.e. 

s 

‘,a(&) ds/c = WRsfc + woe 
s 

b ds/c 

two 
= G)FJ s/c - - I(S) 

a 
(2.52) 
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where alis the momentum compaction, T is the time displacement and use 

has been made of Eq. (2.1). This is already a remarkable result; the 

modulation of betatron phase due to the chromatic effect depends only on 

I and not on other dynamical variables such as S. The modulation, of 

course, is slow and weak. 

We now consider two macroparticles whose synchrotron oscillations are 

given by 

71 = i sin(o,s/c) and ~2 = -71 I (2.53) 

where c)~ is the synchrotron oscillation frequency. Particle 1 leads 

particle 2 during 0 < s/c < ~110~ and trails during TI/W, < s/c < 27r/wS. 

The free betatron oscillations of the two particles are described by 
- 

[ 

&lo wss 
Yl (s) = YT exp - iwes/c + i - i sin - 

a C 1 
(2.541 

[ 

&Jo wss 
yz(s) = F2 exp - iwcs/c - i - C sin - 1 . ct C 

As the particles exchange their roles of being a leading particle and a 

trailing particle, the betatron phases are such that the leading particle 

always lags in phase behind the trailing particle if Q > 0 and the 

situation reverses if ( < 0, as shown in Fig. 17. The factor gwci/a is 

call ed the “head-tai 1 phase .” 

The quantities y1C.s) and y2Cs) are the displacements of the two macro- 

particles as observed at a fixed location s. One revolution later, their 
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437lA17 

Fig. 17. The synchrotron oscillations of a two-particle beam; 
A63 = tQ(l) - #o(2) is the difference of the betatron phases of 
the two particles. 
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displacements observed at the same location will be ~l(s+C) and YZ(S+C), 

where C is the accelerator circumference. 

Recalling the strong head-tail instability studied before, the 

trailing particle is always unstable due to the resonant driving by the 

wake generated by the leading particle; the growths of the tail particle 

during the half-synchrotron-periods are strong, but below a certain 

threshold, the synchrotron oscillation washes away the growths and the 

net result is that the beam becomes stable. The additional chromatic 

term that we are studying now does not have this fortunate property. As 

we shall see, the weak growths associated with chromaticity do accumulate 

persistently from one half-synchrotron-period to the next, thus slowly 

build up an instability. We shall also see that there is no threshold 
- 

behavior in this instability. 

Let us look at the motion of particle 2 during 0 < s/c < a/w5 in the 

presence of the wake field. The wake function, we assume, is that given 

by (2.28). The equation of motion is 

d2yz ~wo~ws wss = 1 Net Wc 
G-2 - + W @  + - cos - Yz. = -Y1 . (2.55) 

ds2 a C 2m0Y 

The y1 on the right hand side is given by the free oscillation result 

(2.54). If we let yz also be given by (2.541, but allowing iit to be 

slowly varying in time, Eq. (2.55) leads to an equation for 92: 

d iNe2 WO @Jo w*s 
- 72(s) r 2i - i sin - . 
ds 4m07wac a C 1 (2.56) 



I 
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For most practical cases, the head-tail phase foci/a is much less than 

unity, the exponential in (2.56) can be Taylor expanded and ~2 can be 

integrated to yield 

iNe2 Wo Sicwoic 
F2kl = ij2(0) + 

4m07wf3c aws 

[, - COS y ] ] . 

(2.57) 

The first term in the brackets is the resonant response already studied 

in Section 2.4. The second chromatic term is small because it is 

proportional to the head-tail phase and also because it is not a resonant 

response. Note that the chromatic term is 90° out of phase from the 

resonant term; this result follows from.the fact that the chromatic 

effect modulates the phase, rather than the amplitude, of the free 
- 

betatron oscillations. 

The transformation from s/c = 0 to s/c = TI/W~ is thus given by 

(2.58) 

where 

nNe2 WO 4P$wci 
11 = iii- . (2.59) 

4mor wow, na I 

This qI, of course, reduces to (2.34) if 4 = 0. Note that now ?)1 is 

complex. 

A similar procedure applied to the period v/w, < s/c < 2g/w, leads to 

the transformation 
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(2.60) 

As we did before, the stability of the system is determined by the 

total transformation matrix 

[; i;][i:, :] = [‘T::’ ‘y] : 

The eigenvalues of this matrix have been obtained before in Eq. (2.36). 

For a weak beam intensity, 17)11 << 1, the two eigenvalues are - 

ti7jl 
ii* 3 e . (2.61) 

The + mode (- mode) is the mode when the two macroparticles oscillate in 

phase (out of phase) in the limit of weak beam intensity. The imaginary 

part of ~1 thus gives a growth rate of the betatron oscillations. We 

find 

Ne2Wa ~iW0 
T+ -1 = 7 .P . (2.62) 

2amoYwo a 

The + mode is damped if t > 0 and antidamped when .$ < 0. The - mode 

is damped if f < 0 and antidamped when 4 > 0. We conclude from this 

result that the only value of C that assures a stable beam is 4 = 0. On 

the other hand, as we will see much later using a Vlasov equation 
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technique, the two-particle model has over-estimated the growth rate of 

the - mode. This consideration, together with the presence of some 

stabilizing mechanisms such as the radiation damping in electron storage 

rings, leads us to choose slightly positive values for 5 for rings above 

transition. 

2.7. Coup1 inq of Mu1 tinle Bunches 

So far we have treated a beam that has only one bunch of particles. 

In this section, we will consider a beam that has two bunches circulating 

in the same direction in the accelerator. Each bunch is represented as a 

point charge Ne and the two bunches are’separated by half the accelerator 

circumference. We will specify the two bunches by indices 0 and 1. 

We assume that a transverse m = 1 wake force is functioning. The 

equations of motion for the two point particles are 

2 

y,(t) + 082 ye(t) = N’ 
m0Y 

x c W(kTo + To/21 y,(t - kTo - To/21 + W(kTo) yo(t-kTo) 
I 

. (2.63) 
k 

and another equation with YO and ~1 exchanged. The index k sums over all 

previous revolutions. 

Let the two bunches be executing transverse motion in a mode with 

frequency R, i.e., 

yo,l(t) = 90,1 emint . (2.64) 
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The complex quantities Fo,l give the amplitudes and phases at a fixed 

time t, i.e., they are the “snap-shot” quantities rather than quantities 

observed at a fixed location. 

Substituting (2.64) into (2.63) and assuming R is close to wo, we 

obtain 

(3.65) 

where we have introduced two dimensionless quantities 

Ne2 iwpkTc 
7)A = 1 W(kTc1 e 

2cde2mcr k 
(3.66) 

Ne2 iwe(k+l/2)Tc 
‘llB = 1 W(kTo + To/21 e . 

2o02mor k 

The only solution to the above pair of equations is the trivial solution 

50 = i31 = 0, unless 

(2.67) 

In other words, in order for a mode to exist at all, R must satisfy 

Eq. (2.67). Solving Eq. t2.67) gives two values for R: 



I 
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Expressed in terms of the transverse impedance, Eq. (2.68) reads 

iNe2c 
i-2*-w, = - 2 (-lIPI Z(poo + wo1 * (2.69) 

2wBETo2 p=-w 

It follows that the + mode is affected only by the impedance sampled at 

pwc+we with even p’s while the - mode is affected only by odd p’s. 

Compared with Eq. (2.121 for a single one-particle bunch, the right hand 

side contains an extra factor of two but the summation over p is twice 

more sparse. Note that N is the number of particles per bunch. 

Substituting (2.68) into (2.651, we find that the two bunches 

oscillate in phase for the + mode and out of phase for the - mode, i.e., 

go q 91 for + mode 
(2.70) 

Fo = - Y1 for - mdoe . 

For this reason, the + mode is also called the 0 mode and the - mode is 

called the TI mode. 

The property (2.70) has a generalization to the case of M equally- 

spaced, equal-intensity bunches.26*32 Then there will be M oscillation 

modes of the bunches; each mode is specified by an index lo which assumes 

the values O,l,...,M-1. The amplitudes of the M bunches, as the whole 

beam is executing the p-th mode, are given by 

(P) -2ninlMl 
Y, ae (2.711 
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where nt = 0,l ,...,H-1 is the index specifying the bunch number. If 

M= 2, (2.711 reduces to (2.70). The oscillation amplitudes yn in 

various modes are shown in Fig. 18 for tl = 4. 

Problem 7. Follow the procedure of this section to work out the case 

for a beam with M equal bunches. Show that the amplitudes 

of the bunches are given by Eq. (2.711. 

Problem 8. Consider a beam with 100 bunches, each affecting only the 

next bunch through the wake field. Study the stability 

conditions on the coupled bunch modes. Show that 50 modes 

are stable and 50 modes are unstable. What happens to those 

modes and their stability if we remo-ve one bunch from the 

beam so that the “loop” is broken?52 
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Fig. 18. Coupled bunch modes for a beam with four bunches. 



- 101 - 

,111. PERTURBATION FORMALISM OF BUNCHED BEAN INSTABILITIES 

In Section II, we have studied instability mechanisms using highly 

simplified models in which the particle beam is represented either as a 

single point charge without any internal structure, or as two point 

charges interacting with each other through wake fields. This approach 

offers intuitive pictures of the physjcs of several coherent 

instabilities encountered in high intensity accelerators. 

However, these simplified models do have their limitations. One 

limitation is that the quantitative predictions of these models are 

rather crude.* Another is that the instabilities are treated one by one 

and it might be desirable to have a more formal treatment that puts these 

instabilities into one framework. Still another limitation, which is 

perhaps more serious, is the fact that many instabilities-observed in 

circular accelerators involve higher oscillation modes in the 

longitudinal structure of the beam. A few of these modes are sketched in 

Figs. 19(a) and 19(b).53 (We have used the symbol R to denote the 

longitudinal mode number. This is not to be confused with the mode 

number m we have been using for the transverse modes.) Two-particle 

models clearly do not suffice to study any mode with mode number higher 

than R = 2. 

* To have a more drastic example, substitute the LRC-circuit impedance 
given in Problem 4 into the frequency shift formula (2.8). The l/w 
tail in the imaginary part of the impedance makes the summation 
divergent. 



m=O (a) 

42 = 

9-82 4371A19 

Fig. 19. Sketches of the lowest few modes in the longitudinal structure 
of the beam. Successive "snapshots" are taken for each mode as the beam 
executes collective (a) longitudinal Cm = 0) and (b) transverse Cm = 1) 
motions. These sketches represent the behavior at low bream intensities. 
The mode patterns become more complicated as the beam intensity 
increases. The mode with m = 0 and R = 0 is static. 
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' One could of course increase the number of macroparticles in the 

model, but as soon as there are more than two macroparticles in the 

system, the analysis along this line becomes cumbersome. A computer 

tracking program may be used to extend the model to anywhere from three 

to a few thousand macroparticles, but dealing with 1012 particles this 

way seems hopeless. 

The solution to this difficulty is to go to the other extreme in which 

ideally one would have infinite number of particles, and then apply the 

result to our 1012-particle system. In this approach, the motion of the 

beam is described by a superposition of modes rather than a collection of 

individual particles. 

- 
In principle, the "mode representation" and the "particle 

representation" of the beam motion are identical. .-To describe fully lOI 

particles, one needs 10lz modes, and vice versa. The detailed methods of 

analysis in the two approaches are different -- the particle 

representation usually is conveniently treated in the time domain, while 

in the mode representation the frequency domain is more convenient -- but 

in principle they necessarily give the same final results. 

In practice, the mode representation does offer a formalism which can 

be used systematically to treat the stability problem and, in many cases, 

be used to obtain analytic results for arbitrarily high mode numbers. 

The advantage over the particle representation in these respects will 

become obvious later. 
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In Section 3.1, the basic mathematical tool, namely the Vlasov 

equation,54*55 used for the mode representation of the beam motion will 

be discussed. This Vlasov technique is applied in all following 

sections. In Section 3.2, we discuss a phenomenon in which the 

longitudinal wake field distorts the parabolic potential well formed by 

the accelerating rf voltage, and as a result, the longitudinal beam 

distribution gets deformed.56*57 Such a phenomenon is depicted as the 

static mode with m = 0 and R = 0 in Fig. 19(a). 

From Section 3.3 on, a perturbation treatment of the Vlasov equation 

that leads to the evaluation of the mode frequencies and mode 

distributions will be presented. The stability of the beam requires that 

all modes be stable; if any one of the modes has the potential of growing 

exponentially, the beam will not be stable. A critical analysis of the 

modes therefore leads to the stability criterion of the beam. The 

technique of mode analysis that we will follow was largely developed by 

Sacherer,58*59 and supplemented and extended by a number of others.60-73 

Strictly speaking, in a complete treatment of the beam-environment 

system, an oscillation mode X is specified by the quantities 

where 3(x) is the beam distribution function, ?cx) and s(x) Bre the 

electromagnetic wake fields and ncx) is the mode frequency that describes 

the time dependence. To study such a problem would require setting up 

and solving the "Vlasov-Maxwell" equations in which zcx) and 8(x) appear 

in the Vlasov z!c:ua,tion as the force terms and $(xJ appears in the Maxwell 
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equatiqn as the source term.55 This solution scheme is difficult to 

handle, but fortunately it is also not necessary. What we have done in 

the previous sections has allowed us to express g(xl and s(xl directly in 

terms of $(x1 through the uake functions. After doing so, the number of 

variables of the problem is greatly reduced and one needs then only to 

solve the Vlasov equation for JItx) uithout having to pay attention to 

zcx) and $cxl. 

We need first to linearize the Vlasov equation; this will be done in 

Section 3.3. Nodes will be found in Section 3.4. Stability conditions 

are then discussed in Section 3.5. It turns out that when the beam is 

unstable, particles will not be lost from the beam but the bunch length 

and the energy spread of the beam will increase; we will discuss why this 

occurs also in Section 3.5. 

The three Sections 3.3 to 3.5 treat the longitudinal motions. The 

Sacherer formalism also applies to the transverse dipole motion of the 

beam. This motion will be treated in Sections 3.6 and 3.7. 

3.1. The Vlasov Equation 

The Vlasov equation is an equation that describes the collective 

behavior of a system consisting of a large number of particles under the 

influence of electromagnetic forces.59~55 To construct the Vlasov 

equation, one invariably begins with the single particle equations of 

motion 

j, = f(x, p, t1 

16 = g(x, p, t1 . 
(3.1) 



- 106 - 

If the system is conservative, i.e., if the system is not influenced by 

any damping or diffusion due to external sources,* we have the conditions 

that f = bH/Ep and g = -bH/bx where H is the Hamiltonian. Therefore, 

bf bg 
-+- = 0 . 
ax bp 

(3.2) 

The (x,p) plane is called the phase space. The state of a particle is 

represented as a point in the phase space. We sometimes do not 

distinguish bettieen the representative point in phase space and the 

particle itself; although somewhat ambiguous, this should not cause any 

ion major confusion. As we wi 

is pretty much a technique 

11 see, the construction of the Vlasov equat 

of drawing boxes in the phase space. 

Particles move in phase space. For a particle-executing a simple 

harmonic motion, for example, its representative point in phase space 

moves in a circle with angular speed o. If a group of particles all 

execute simple harmonic motion with the same o, the distribution of 

representative points rotate rigidly in phase space. If we arbitrarily 

draw a box in the phase space and let it rotates with the distribution, 

there will be no particles leaking into or out of the box. 

* It is possible that the degrees of freedom of the system are coupled 
among themselves so that motions in some degrees of freedom grow 
exponentially at the expense of having some other motions damped. In 
fact, this possibility of damping and antidamping through internal 
couplings is the origin of beam instability we are studying. One way 
of telling whether the damping and antidamping come from an external 
source or an internal source is to sum over the growth rates of all 
modes (provided they can be found); the sum should vanish for an 
internal source. See Problem 13 later. 
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A similar situation happens for the general motion described by 

Eq. (3.1). In Fig. 20(a) we have drawn the distribution of a group of 

particles in the phase space at time t. A rectangular PxAp box is then 

drawn: 

A(x, p) 

B(x+Ax, p) 

C(x+Ax, p+Ap) 

D(x, p+l)p) . 

The size of the box is small enough so that the number of particles 

contained in adjacent boxes -- if they are drawn -- are about equal. On 

the other hand, the box is large enough so that there are at least 

-several particles inside of it. 

Let the number of particles enclosed by the box be 

‘J’(x,p,t) Ax Ap , 

with J, the density depending on x, p and t. ble will normalize II by 

I J dx dp $(x,p, t) = N 

with N the total number of particles in the system. 

(3.3) 

At time t+dt, the box has moved to A’B’C’D’ as shown in Fig. 20(b). 

Note we have used Ax and Ap (rather than dx and dp) to denote the 

dimensions of the box, and have used dt to denote the time increment. 
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(a) 

r” 

. I . l 

. 
. . 

. 

(b) 

9-82 4371 A20 

Fig. 20. (a) Phase space distribution of particles at time t. A AxAp 
box is drawn and magnified. (b) At a later time t+dt, the box moves and 
deforms. All particles inside the box move with the box. 
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This ;is because Me do not want the 

dt should be considered truely inf 

box size to be vanishingly small but 

initesimal. 

In general, the rectangular box 

case in which the box remains 

deforms into a parallelogram. The 

only 

simp 

para 

rigid in shape as time evolves is the 

e harmonic motion discussed before. The vertices of the 

lelogram are 

A' Cx + f(x,p,t)dt, p + g(x,p,t>dtJ 

B' [x + Ax + f(x+Ax,p,tldt, p + g(x+bx,p,tIdtl 

C’ Cx + Ax + f(x+Ax,p+Ap,t)dt, p + Ap + g(x+Ax,p+Ap,t>dtl 

D' Lx + f(x,p+Ap,t)dt 

The condition that no part 

the form 

$(x,p,t) area(ABCD1 = $"(x + fdt, p + gdt, t + dt) 

p + Ap -+ g(xrp+Aprt)dtl . 

cles leak into or -out of the box now takes 

X area(A'B'C'D') . (3.41 

For a Hamiltonian system, we have the condition (3.21, which impiies 

the area of the box is conserved: 

areatA'B‘C'D'1 = I iiTx* I 

= dx Ap [l+[E+;]dt] 

= Ax Ap = area(ABCD) . (3.5) 
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Equati’on (3.41 then gives 

4J(x,p,t) q $(x+fdt, p+gdt, t+dt) 

bJI 
= J, + - fdt + b‘l gdt + 

a+ 
- dt 

bX bP at 

or9 after cancelling out J, on both sides, 

a$ a+ a+ 
-+f-+g- = 0 . 

at ax ap 
(3.6) 

Equation (3.6) is the Vlasov equation -- especially when the forces 

involved are electromagnetic in origin. It can also be put in the form 

J) = constant in time . (3.7) 

Equation (3.71, which we somewhat loosely refe-r to as the Liouville 

theorem,* states that the local particle density does not change if (an 

important if) the observer moves with the flow of boxes, but it does not 

tell how the boxes flow. The Vlasov form (3.61, on the other hand, does 

not have this problem since it contains explicitly the single particle 

information f and g. 

* The Vlasov equation applies to a system of many particles. Strictly, 
the Liouville theorem applies to an “ensemble” of many systems, each 
containing many particles. Furthermore, we are ignoring the “collision 
terms” in Eq. (3.6). When included, we obtain the Boltzmann equation. 
For a discussion on the Boltzmann equation, as well as discussions on 
the Vlasov equation and the Liouville theorem, the reader should refer 
to textbooks on statistical mechanics.” 
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Problem, 9. Solve the Vlasov equation for a simple harmonic motion with 

f = op and g = -WX. Show that the general solution is 

$(x,p,t) = any function of (r, ++ot) , 

where r and $ are the polar coordinates defined by 

x = r cos + and p = r sin +. 

3.2. Potential u Distortion of Bunch Shape 

As a first application of the Vlasov technique, we will study the 

effect of longitudinal wake fields on a distortion of the equilibrium 

shape of a particle bunch.13*56*57 The mechanism is a static one; no 

part af the beam bunch is executing collective motion. The dynamics of 

the bunch shape oscillations will be postponed until latqr sections. 

Consider a bunched beam that travels along the axis of the accelerator 

pipe. We assume the beam does not have any transverse dimension, i.e., 

the beam is an infinitesimally thin thread. Such a beam does not generate 

transverse wake fields; only the m = 0 wake is excited by the beam. 

As we mentioned before, the Vlasov equation is constructed by first 

writing down the single particle equations of motion. In the present 

case, the equations are 

d a 
-7 = --6 
ds C 

(3.81 
d 
-6 = g(s) . 
ds 
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The notations are the same as those used in Eq. (2.11 except that here we 

have used the longitudinal coordinate along the accelerator, sI as the 

independent variable. The same variable s was used in Section 2.6. We 

have left the db/ds 

know g is not a func 

Eq. (3.2) .I 

equation open for the time being, except that we do 

tion of 6 because the system is Hamiltonian. [See 

The Vlasov equat on corresponding to (3.8) is* 

\ 

a* a6 a* a$ 
---- + g(r) - = 0 (3.9) 
as c a7 a6 

where we will set Mfbs = 0 since we are looking for a static 

distribution. The general solution, it turns out, can be written as 

JI(T,Ei) = any function of H , (3.101 

where H is given by 

62 c T 
H = -+- I g(r’) dl’ . 

2 a 0 
(3.11) 

In what follows, we will take + to be an exponential function of H, 

i.e.** 

* A subtlety arises if one (incorrectly) uses time t, instead of s, as 
the independent variable. The difference, however, is negligibly 
small. What happens is that the quantity Z(w’)/o’ of Eq. (3.28) later 
will be replaced by Z(o’)/prdo. See Ref. 70. 

** Out of the infinity of possible solutions (3.101, Eq. (3.12) is the 
only relevant solution for an electron beam. To show that, one needs 
to modify the Vlasov equation by taking into account the effects of 
external damping and diffusion to obtain another equation called the 
Fokker-Planck equation.75*76 It then follows from the Fokker-Planck 
equation that (3.12) is indeed the unique solution of the stationary 
beam distribution. For a proton beam, the distribution does not have 
to be given by Eq. (3.121, but analysis very similar to this section 
still applies. 
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1 -52/2fJg2 
JI = -e 

J- 
p(r) 

2n ag 

with the longitudinal beam shape 

C [ J 7 p(r) = Ao exp - - g(r’1 dr’ . 
aub2 0 I 

In these expressions, 06 is the rms relative energy spread, Ao 

condition $dr p = N. constant determined by the normalization 

the energy distribution of the beam is a 

form of g(r). 

lways Gaussian, regard 

is a 

Note that 

less of the 

(3.12) 

(3.131 

Ideally, g(r) = w5*T/ac [see Eq. (2.211. The equilibrium distribution 

is then also Gaussian in T. In the presence of longitudinal wake fields, 

-however, the r-distribution will be distorted out of a Gaussian shape. 

Suppose the wake has dissipated before the beam completes one 

revolution. We have 

WS 2 e 
g(r) = - 7 - - V(r) 

ac ToEc co 
V(s) = eL J dr’ p(~‘1 WC?‘-?) , 

7 

(3.14) 

where V is the retarding voltage caused by the wake fields; it involves 

integrating the wake left by all charges in front of the particle under 

consideration; L is the total length of the pipe structure in which the 

wake is generated and To is the revolution period. 
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The H in Eqs. (3.10) and (3.11) is just the Hamiltonian of the system. 

The second term on the right hand side of (3.11) can be regarded as a 

potential we1 1 term. In the absence of wake effects, the potential well 

is parabolic, as we expect for simple harmonic motions. The well 

distorts when wake fields are included. 

Substituting (3.14) into (3.13) gives a transcendental integral 

equation for p: 

solved numerically. Figure 

[ 

05 2 e2L 
p(r) = A0 exp - 72 + 

2a2 us2 aus ETo 

T J J 00 
X dr’ dr” p(~“) W(r”-7’) . 

0 7’ I 
(3.151 

Obviously this equation is not easy to handle and often needs to be 

21 shows one such attempt.” The bunch shape 

15) is plotted assuming a given wake function. 

the end of Section 3.5.) The bunch shape is 

ities, but clearly distorts as beam intensity 

is increased. Another feature of Fig. 21 is that the high intensity 

distributions lean toward the front so that the parasitic energy losses 

can be compensated by the rf voltage. 

calculated according to (3. 

(See the discussion towards 

Gaussian at low beam intens 

It is not clear whether a static solution for p satisfying Eq. (3.15) 

always exists for an arbitrary wake function W. Also being asked is the 

question of what are the implications when a solution does not exist (for 

example, does it mean the beam is unstable?) or even if it exists, the 

numerical convergence of Eq. (3.151 is poor.78 
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Fig. 21. Potential well distortion of bunch shape for various beam 
intensities calculated for the storage ring SPEAR. The unit for p(r) 
is not specified and Iav is the average beam, current in the ring. 
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3.3. Linearization of the Vlasov Equation 

On top of the static distortion of the bunch shape, particles execute 

accidental collective motions. Although they may have only infinitesimal 

amplitudes originally, these motions grow exponentially under unfavorable 

conditions. When this happens, the beam is unstable. Some of these 

instabilities were studied before, using simplified beam models. In this 

and following sections, the Vlasov technique will be applied to treat 

this subject. The approach basically follows that of Sacherer’s.58*5g 

The result contains all the instabilities of Section II as special cases. 

Consider again a thread beam. At first, let us switch off the wake 

field and let the beam have an initial ‘phase-space distribution $0. 

Being-an equilibrium distribution, 90 is only a function of rr i.e. 

$0 = -#o(r) , (3.16) 

uhere we have introduced the polar coordinates 

I = r cos 9 

a. 
- 6 = r sin 9 . 
a5 

(3.17) 

Note that r is related to the unperturbed Hamiltonian by H = o,Zr2/2a2 

and (3.16) follows from (3.10). 

Now we turn on the wake fields and suppose there is a disturbance on 

the distribution so that now we have* 

8 Strictly speaking, $0 now should be given by the potential well 
distorted distribution. However, to first order in the disturbance, pre 
shall ignore the potential well distortion on $e. As we shall see 
later, the potential well distortion is just one of the modes -- the 
one with mode frequency R = 0. 
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$(r,+,s> = IClo(r) f $7 (r,+) e-iQs/c . (3.18) 

We have assumed the disturbance has a single frequency R, i.e., it 

contains contribution from only one single mode of oscillation. We will 

consider the disturbance to be small. 

The mode frequency R and the mode distribution $1 are not arbitrary. 

First, the disturbance $1 generates a wake field. Then, being an 

oscillation mode, the additional disturbance on the beam distribution 

caused by this wake must have the same pattern as the original 

disturbance 9,. The beam-wake system therefore has to be solved self- 

consistently. As a result, only a discrete set of values are possible 

for Rand, associated with each value of R, there is a well-defined 

distribution $7. Below, we will show how to obtain these solutions for R 

and $, using the Vlasov technique. 

If we project $1 onto the r-axis, we get the longitudinal distribution 

I 

co 
p,(7) e-ins/c = dS $,Cr,$) e-iQs/c , (3.19) 

-03 

This p?(r) is the distribution observed at a fixed location (the location 

of the impedance, for instance) in the accelerator. One revolution 

before, the beam observed at the same location has a distribution 

pltr) exp I-iR(s/c - To11 with To the revolution period. 

The wake field excited by pl produces a retarding voltage. The 

voltage at location s seen by a particle at CT is [compare Eq. (3.14) 
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and see, Fig. 221 

I -i!JC(s/c)-kTo1 
Vtr,s) = eL W(kTo+r'-1) . 

(3.20) 

In writing down this expression, we have included the multi-turn wakes 

and have used the causality property that W(r) = 0 if I < 0. 

Since we anticipate solving the problem in the frequency domain, we 

will now introduce the Fourier transform of p1 according to Eq. (1.56) 

and the Fourier transform of W according to Eq. (1.48). Equation (3.20) 

then becomes 

- -ins/c 03 i(poo+R)r 
V(r,sl q ewe e 1 ijl(pwo+R) e Z(poo+fl) (3.211 

p=-oa 

where Z(w) is the longitudinal impedance of the accelerator, 00 = 2a/To 

and we have made use of the identity (1.60). 

Note that the beam distribution observed at a fixed time, i.e. a 

snapshot, is given by pl(r)expC-iR(s/c+s)l. The corresponding frequency 

spectrum is therefore related to jj,(w) by 

-P, (0) 
I 

= ii1 to + n> . 
snapshot 

(3.22) 

Had we used the snapshot spectrum in Eq. (3.211, the frequency off-set in 

the argument of pl drops out. 
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7- 79 
3652A 1 

Fig. 22. Disturbance on the beam as observed at a fixed location 
in a circular accelerator. 
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Hav ing obtained V(r,s), the Vlasov equation (3.9) can be written as 

aJ, a6 W ~~2 a+ e a3r 
- - -- + -7- - - V(r,s) - = 0 . 
as c a7 ac a6 ToEc a6 

The two middle terms can be simplified if we use polar coordinates 

a* w,a* e a3 
-+-- - - V(r,s) - = 0 . (3.23) 
‘bS c a+ ToEc as 

We now substitute (3.18) into the above equation, linearize it by 

(3.171, yielding 

keeping only the first order terms in $1. Remembering that V is already 

first order* and that $0 depends only on r, we obtain the linearized 

Vlasov equation 
- 

a*, ae2 w. 
- iR$, + ws - - - sin+ *'e(r) 

asa TOE ws 

i(pwo+R)T 
X C jj,(pwp+R) e Z(pwo+R) = 0 . (3.24) 

P 

Note that we have linearized with respect to the perturbation $1, not 

with respect to the impedance or the beam intensity. The impedance and 

the beam intensity do not have to be small in this linearization 

procedure. 

* Actually, $0 also produces a wake field, which means V contains a 
zeroth order term. Such a term is equivalent to imposing a potential 
well on the motion of $1; it will be dropped since it is not essential 
if we only want to study the stability of the beam. However, the 
potential well does contribute to a frequency shift in ws. As a 
result, all ws's from here on should be added a shift hw,. See Problem 
10 later. 
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3.4. Lonqitudinal Modes 

Next, let us Fourier expand $1 according to 

$llr,41 = aA RR(r) eiR+ . (3.25) 
A=-W 

This is possible since $3 must be periodic in $ with period 21r. We have 

used ~2 as the summation index in anticipation that it actually is the 

longitudinal mode index used in Fig. 19 in the limit of weak beam 

intensities. 

Substituting (3.251 into (3.241, we ‘get 

- 
iR'4 

- i c 
ae2 we 

ag' RR*(r) e m-R'o,) - sini PO(r) 

R’ TOE us 

iw'rcos+ 
X 1 Pl(o'l Z(w') e = 0 

P 

where w' in the summation is an abbreviation for poo+R. Multiply the 

equation by exp (-iR#I and integrate over 9 from 0 to 2n, and repeat it 

for all values of A. We obtain an infinite set of equations: 

ae2 00 $'o(r) Z(w'l 
- i(Q-Rw,) aR RR(r) + - RiR 1 Pl(O') - JA(o'rI = 0 

TOE 0s r P w' 

.Q = 0, 21, +2, . . . . (3.26) 
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In (3.1261, JR(X) is the Bessel function.* Some properties of the Bessel 

functions are given in Table III. 

We still need an expression for F,(w’) in Eq. (3.26). This is done 

below: 

1 c0 

s 

-iw’T 
p,(w’l = - d? e Pi(I) 

2n -w 

1 w 

s s 

W -iw’7 

z - dr db e $1 (r-,9) 
2lT -0) -00 

ws 2a 

s s 

w iR’9 
=- d+ rdr exp(-iw’rcos+I 1 aR* RR*(r) e 

2va 0 0 R’ 

= wsx w 
a R’ s 

-A’ 
rdr a~* RR*(r) i JR*-(w’r1 : 

0 
(3.27) 

When (3.27) is substituted into (3.261, we find Sacherer’s integral 

equation for the longitudinal Cm = 0) instabilities: 

e2w0 3’0(r1 
(l-2 - Rw,) aA RR(r) = - i -R- 1 w r’dr’ 

TOE r s A’ 0 

R-R’ Z(w’l 
X age RR*(r’l i c-- JR(o’r) Jg*(w’r’) . (3.28) 

P 0’ 

-------------------- 

* One may regard the Bessel functions as nothing more than the sine and 
cosine functions expressed in polar coordinates. 
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TABLE III 

Some properties of the Bessel functions 

iR+ixcos+ -A 
d# e = 1 JR(X) 

JR(-x1 = t-11’ J,Q(x) = J-R(X) 

1 r2n -iR#+ixcos+ R - J d4 sin+ e OR = -, - JR(X) 
2a 0 X 

x-adx JR(X) JR*(X) = 
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Given the impedance Z and the initial distribution $0, we have to find 

the RR(r)‘s and aR’s to satisfy the Sacherer equation. This is not easy 

to do in general and is currently one important research area; but 

without losing any essentials, we will proceed by choosing a simplified 

model of $0, namely 

0 if r>i 

$0(r) = Na . 
if r < i 

lG2ws 

(3.29) 

The impedance, on the other hand, is left to be general. 

The distribution (3.29) is called the water-bag mode1.58*73 Its phase 

space distribution and projection onto the r-axis are shown in Fig. 23. 

The distribution is normalized so that $dG $dr $0 = N. 

Any perturbation on a water-bag beam will have to occur around the 

edge of the bag, i.e., around r = i. As a result, all RR’S are 

G-functions, i.e. 

RR(r) = G(r - i) . (3.30) 

This result also follows from Eq. (3.28) by inspection if we note that 

PO a G(r-i). Having obtained (3.301, the Sacherer equation (3.28) 

reduces to a set of equations for the coefficients a&: 

Ne2 aQo R’-J” 
CR-R’wSl aR* = i A’ 1 aA” i 

rws TOE it R” 

ZCW’) 
xc- J~*(w’i) J~“(w’s) ; R’ = 0,?1,?2,... . (3.31) 

P W ’ 
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9 - 82 I 4371 A22 

Fig. 23. Phase space distribution and longitudinal distribution 
of a water-bag beam. For this distribution, Trmrj = f/2. 
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Wetare now finally ready to discuss modes. First note that when 

N = 0, i.e., in the zero intensity limit, the solutions to (3.31) are 

1 if R'=R 
ax r(R) = 

0 if R' * R 
(3.32) 

jyx, = Rw, , 

where R is an integer specifying the mode number. In other words, the 

A-th mode is described by 

iR4 -iRwSs/c 
$9) = b(r-i) e . e . 

W' '-F-y - 

(3.33) 

long. time 
dist. dependence 

These are the modes shown in Fig. 19(a). projections of these modes onto 

the r-axis, without the time dependences, are drawn in Fig. 24. 

In case the beam intensity is nonzero but still weak, we can find the 

A-th mode frequency by substituting the zero-th order solution (3.32) 

into the right-hand-side of (3.311, i.e. 

Ne2 a wo Z(w') 
Q(X) -Rw, = i - J~~(w'i) , (3.341 

rws TOE 'i2 p=-CO w' 

where w' represents pwe + Ro,. 

Some result on instabilities at last! Given the impedance, Eq. (3.34) 

gives the complex mode frequencies for a water-bag beam with relatively 

weak intensities. In particular, the real part of Eq. (3.34) gives the 
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Fig. 24. The longitudinal distribution pltR) of the modes R = 0Jp2J in 
the zero intensity limit. 
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mode frequency shift, AR(R), while the imaginary part gives the 

instability growth rate T-I(R). This result is obviously more powerful 

than that obtained using one- or two-particle models which are restricted 

to R 5 1 or 2. 

One should be careful in obtaining the AI?(~) from Eq. (3.34) because 

it does not contain all the contributions. A frequency shift term has 

been dropped when we linearized the Vlasov equation back in Eq. (3.241. 

See the footnote there and also Problem 10. 

Take the .Q = 1 mode as an illustration. Let us assume the beam bunch 

is short enough so that w’i << 1. Then J1 (w’i) z w’i/2 and we have 

rediscovered the Robinson growth rate,;? Eq. (2.9). Equation (3.341, 

when applied to R > 1, gives the growth rates of the “higher order 

Robinson effect.” 

Problem 10. From Eq. (3.141, obtain the frequency shift for small 

oscillation particles in the potential well: 

ea bV(rl 
Aw, = - 

2ToE ws br r=O 

e2aw0 2 
= 1 plo(pwo)p Im Z(pw0) . 

2ToEws P 

Show that the above Aw, gives the first term in-the Robinson 

frequency shift (2.8) by letting pa(r) = NI;(?). This 

potential well frequency shift Aw, has been dropped when we 

linearized the Vlasov equation and, as a result, Eq. (3.34) 

gives only the second term of (2.8). 
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The #procedure followed in this sect ion resemb 

perturbation technique used in quantum mechanics 

les closely the 

. Indeed, since the 

Bessel function JR is actually the R-th component of ii? [see (3.2711, 

the right hand side of Eq. (3.31) can be expressed in a quantum 

mechanical notation: 

1 < R’ 1 z/w 1 R” ) . (3.35) 
R” 

It should be mentioned that the water-bag beam is particularly simple 

since one can readily solve RR(r) in Eq. (3.30). The price we pay here 

is that all radial structures are degenerate and some information is 

lost. For more realistic beams (such as a Gaussian beam), the problem 

becomes more complicated. These complications are not essential for our 

purposes which are mostly pedagogical. Readers interested in the more 

complete treatments should study at least Refs. 62 to 69.. 

In Ref. 69, the results obtained for a water-bag beam are compared 

with the Gaussian beam results and it is found that they agree rather 

well numerically, at least for the lowest few modes. This means to some 

extent the stability criterion does not depend critically on the 

unperturbed distribution $0. On the other hand, this conclusion is not 

to be taken for granted. Shown in Figs. 25(a) and 25(b) are two possible 

unperturbed beam distributions. For an impedance that has a significant 

high-frequency tail, one can imagine a situation in which a beam with 

distribution 25(a) is stable while distribution 25(b) is unstable. The 

significance of the instability of distribution 25(b) is rather limited 

because after losing the particles in the spike, the beam becomes stable 

again. 
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p,(r) 

(b) P(p) 

9-82 4371 A24 

Fig. 25. Tuo possible unperturbed beam distributions. Distribution (b) 
has a S-function spike at the origin. Depending on the impedance, they 
may have very different stability criteria; but the significance of the 
difference is rather limited. 
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3.5. Lenqtheninq Bunch 

The only instability that the weak beam result, Eq. (3.341, allows is 

of the Robinson type. That is, instability occurs only when the 

impedance consists of sharp peaks like that shown in Fig. 11(b) below 

cut-off, or equivalently, when the wake field lasts longer than a 

revolution period. In case the impedance is a smooth function in 

frequency, i.e., if the impedance is “broad-banded,” one can approximate 

ZCpwo + Rw,) by Z(pwo). The right hand side of Eq. (3.34) then becomes 

pure1 y real. (Remember the real part of the impedance is an even 

function in frequency.) All modes are, therefore, necessarily stable. 

If we further increase the beam intensity, however, Eq. (3.34) breaks 

down and instabilities will appear even for a broad-band impedance. What 

happens then is that the frequency shifts are comparable-to ws so that a 

linear mixture of several unperturbed modes, Eq. (3.331, is needed to 

describe a single perturbed mode. Such a phenomenon, sometimes referred 

to as “mode mixing” or “turbulence”,* can lead to instabilities other 

than the Robinson type. 

For a broad-band impedance, we will drop the R from the argument of 

the impedance in Eq. (3.311, i.e., replace w’ by pwo. The problem 

reduces to that of solving for the eigenvalues of a linear system. The 

eigenvalue R is determined by the condition 

E The term “turbulence” has a well-defined meaning in fluid dynamics. 
It is not clear how this term gets to be used here, but somehow it has 
managed. 
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det M--I q 0 [ 1 WS 

where I is a unit matrix and M is a matrix with elements 

Ne2a R-R' co i! (0) 
b&Q ' = RSRR* + i Ri 

s 
dw - JR(&) JR'(&) . 

gws2 TOE i2 -03 W  

(3.37) 

We have replaced the summation over p by an integration. By doing so? we 

have in effect ignored the multi-turn wakes. Written out explicitly, M 

has the form 

. . . 

. . . 

2+1 R I R I 

R I+1 R I R 

0 0 0 0 0 

R I R -1+r R 

I R I R -2+1 

. . . 

. . . 

(3.38) 

where the R q 0 elements all vanish; I's and R’s are some real 

quantities, all different from one another, with I coming from only Im 2 

and R coming only from Re 2. Note that if we drop all the off-diagonal 

mode-coupling terms, we will obtain (3.34). Note also that 

always a solution; this is the mode that describes the stat 

well distortion. 

R= 0 is 

ic potent ial- 
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Let us proceed again with an example. Let the impedance be given by 

Z(w) = R. Ioo/oI 'I2 Cl + i sgn (~11 , (3.39) 

where Ro is a real positive constant. This impedance corresponds to a 

wake function W(z) a z-~'*. Then the matrix elements of PI are 

with 

r 

(3.40) 

[R-R’112 
C-1) if R-R' = even 

CR-R’- 11/2 
(-1) if R-R' = odd 

where we have defined a dimensionless parameter 

Ne2 a Ra 
?I = , 

wst To3/tE ?3/2 
(3.41) 

and T(x) is the gamma function.* Use has been made of Table III. 

We have evaluated numerically the eigenvalues R/o~ using (3.36) with 

the matrix (3.40). The results for the lowest few modes are shown in 

Fig. 26.** The mode frequencies R/w s are plotted against the parameter 

* Gamma functions are generalized factorials. One is certainly familiar 
with the factorial of an integer; the gamma function defines how to 
take factorials of fractional numbers as well. 

** Remember these results ignore the shift in ws due to potential well 
distortion. 
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Fig. 26. Longitudinal mode frequencies R/w S vs the parameter 7) for a 
water-bag beam with the impedance (3.39). Instability occurs when 
9 > 7)th $3 1.45 and the R = 1 and R = 2 mode frequency lines merge and 
become imaginary. The solid curves give the real part of the mode 
frequencies while the dashed curve is the imaginary part of the the R = 1 
and R = 2 mode frequencies above threshold. There is always a static 
mode with R/w5 = 0. The spectra for R < 0 are mirror images with respect 
to the R = 0 line. 
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3. At 7) = 0, the mode frequencies are simply multiples of ws. As 7) 

increases, the mode frequencies shift. As 8 reaches the critical value 

nth z 1.45, two of the mode frequencies become equal; then above ?)th, 

they become imaginary and the beam is unstable. The parameter r)th thus 

defines the stability threshold of the beam. Note that the instability 

growth rate increases sharply as soon as q exceeds 8th. This is a 

general property of the mode mixing instabilities and is sometimes 

referred to as “phase transition n for the case of a long bunch in which 

many modes participate.66*67 See also the discussion at the end of 

Section 2.4. 

The matrix (3.381 has infinite dimensions. The eigenvalues are 

evaluated with the matrix truncated. For the truncation procedure to 

converge, the beam spectrum, as well as the impedance, must not have long 

tails at high frequencies. For a water-bag model, the impedance at high 

frequencies must decrease with frequency at least as fast as a power lath. 

This impedance (3.39) and also (3.70) and (3.75) later are chosen with 

these considerations in mind. In case the truncation procedure does not 

converge, the formalism that follows from the expansion (3.25) breaks 

down. A better convergence may be achieved by expanding $1 in terms of 

the “coasting beam” modes that are expressed in the Cartesian coordinates 

r and S,65-65 instead of the present polar coordinates r and +. 

Let us suppose a beam of “natural” bunch length io and intensity N is 

stored in the accelerator. If the intensity is such that ?t < 7)th, the 

beam is going to keep its length fo and not much will happen. But if 

?1 > I)th, the instability takes over and i starts to lengthen. An 
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inspection of (3.41) shows that as the 

drops below qth, the beam becomes stab 

will be lengthened just enough so that 

beam lengthens, 7) drops and when 7) 

le again. In equilibrium, the beam 

7) stays at the stability 

threshold. When this happens, we have 

I 

Net a Ro 1 z/3 
+ = , (3.42) 

O,2 To~‘~E r)th 

The behavior of bunch length as a function of beam intensity therefore 

looks like Fig. 27(a). For the impedance (3.391, the curve above the 

bunch lengthening threshold has i a N2j3. Below threshold, we have shown 

a slight potential-well distortion effect on i. 

The change of bunch distribution due to potential-well distortion and 
- 

that due to instability are distinctly different. In the former case, 

the energy distribution of the beam is unaffected [see Eq. (3.1211, while 

in the latter case, the synchrotron oscillation brings the changes in i 

rapidly into changes in energy spread 6. As a result, the energy spread 

of the beam behaves like that shown in Fig. 27(b). Below the bunch 

lengthening threshold, $ is constant; above threshold, g 0: N2j3. 

We have been using the impedance (3.39) as an illustration. It turns 

out that, in general, for a given accelerator with an arbitrary 

impedance, ? above threshold depends only on the single parameter 

a Iav 
s - = . (3.43) 

vs2 E 

In other words, the accelerator may be operated with various possible 

values of the average beam current Iav = Ne/To, momentum compaction 
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Fig. 27. Bunch length i and energy spread 6 as functions. of beam 
intensity N. Below a certain bunch lengthening threshold Nth, i chacges 
(shortens in the case shown) due to potential-well distortion while b 
stays constant. Above Nth, both i and $ increases with N. If impedance 
is given by Eq. (3.391, then i and 6 are proportional to N213 in the 
region N > Nth. 
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factor a, synchrotron tune v5 = (J&(JO and beam energy E, but the bunch 

length above the lengthening threshold depends only on these factors 

combined together as given by (3.43). This behavior is called the 

scaling law and 5 is the scaling parameter.73*79 Equation (3.42) of 

course obeys the scaling. Figure 28 shows some experimental data for the 

storage ring SPEAR.*O The scaling property of these data is quite 

obvious. 

There is more. It is not difficult to show that if the impedance 

behaves 1 i ke 

Z(w) a ~a , (3.44) 

then the bunch length above the lengthening threshold will behave with 

i a [l/ft+a) . (3.45) 

For example, the impedance (3.39) has a = -l/2 and thus i 0: ezJ3. Figure 

28 shows that for SPEAR, uz 0: 5°*76, from which we deduce that a = -0.68. 

The behavior Z(o) a o- OS68 for SPEAR of course is valid only in the 

frequency range of interest, which covers roughly from c/crz to a few 

times c/cr,. These bunch length data, combined with measurements on the 

impedance looks more or less 

is in fact the one used to 

parasitic lossesIs indicate that 

like that shown in Fig. 29. This 

obtain the potential well distort 

the SPEAR 

impedance 

ion shown in Fig. 21. 
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Fig. 28. Bunch length vs the scaling parameter for the storage ring 
SPEAR. Data are taken above the lengthening threshold. The momentum 
compaction factor a was kept constant in these experiments and uz is 
the rms bunch length. 
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Fig. 29. A sketch of the real part of the SPEAR longitudinal impedance. 
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3.6. Transverse Nodes 

By the transverse modes here, we mean those modes with m q 1, i.e., 

the beam has a dipole moment (pointing, say, in the vertical y-direction) 

in the transverse plane. The dipole moment is not necessarily constant 

longitudinally from the bunch head to the bunch tail. Instead, it may go 

positive and negative and, depending on the longitudinal mode number R, 

its longitudinal structure may be simple or complicated as sketched in 

Fig. 19(b). 

What we will do in this section is to study these transverse modes. 

Note that, although called the transverse modes, the transverse structure 

of these modes is simple (How complicated can a dipole be?) and our main 

task is in fact to find their longitudinal structures. 

It may seem that the problem is going to be much more complicated than 

the longitudinal case treated in the previous few sections. The Vlasov 

equation, for example, now needs to take into account both the transverse 

and the longitudinal phase spaces. Fortunately however, the transverse 

structure of the beam is simple and can be solved with ease, and the 

strategy is that, after removing the transverse dimensions from the 

Vlasov equation, we are left with an equation very similar to Eq. (3.24). 

The analysis developed for the longitudinal case can then be followed 

straightforwardly for the transverse cas’e as well. 

The phase space distribution $(y,P,,r,6,s) satisfies the Vlasov 

equation 



where a prime means taking the derivative with respect to s. The 

dynamics of the beam is contained in the single particle equations of 

motion 

Y’ = P, 

1 
Y + - F,(r,sJ 

E 

(3.47) 

us 2 Y bF,(r,s) 
6' = -7+- . 

ac cE ar 

The quantity F, is the transverse wake force generated by the dipole 

moment of the beam, E is the particle energy, oa and w, are the 

unperturbed betatron and synchrotron frequencies. 

In Eq. (3.471, we have included a wake field term in the 6' equation. 

It comes from the fact that a dipole moment generates not only a 

transverse deflection force but also a longitudinal retarding force. 

(See Table II.) In what follows, however, this term will be dropped. 

(The system is therefore non-Hamiltonian.) Thus the betatron motion is 

affected by the wake while the synchrotron motion is treated as 

unperturbed. This is a good approximation provided the synchro-betatron 

resonance conditions wa 2 Rw, = no0 are avoided and the transverse beam 
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size has not grown to become too large. See the discussion following 

Eq. (2.1) and also Problem 11 later. 

We now transform the longitudinal and the transverse coordinates into 

their polar forms defined by Eq. (3.171 and 

Y = q case 

(3.481 
W-3 

Py = - - q sin0 . 
C 

The phase space coordinates are shown in Fig. 30. Equation (3.46) then 

becomes 

a+ wR a* 1 a+ ws a+ 
- + - - + - F,(T,s) - + - - = 0 . 
as c a8 E bPY c a+ 

(3.49) 

The unperturbed stationary distribution of the beam is a funct 

of r and q. On top of the unperturbed distribution, we will cons 

small perturbation that describes a transverse dipole oscillation 

The distribution is therefore written as 

ion only 

ider a 

mode. 

-# = fo(q) go(r) + f,(q,O) gl(r,+) e-iQs’c , (3.50) 

where R is the mode frequency, f, and gl describe the transverse and 

longitudinal beam structures of the mode. As we did for the longitudinal 

instabi 1 i ties, our job now is to look for self-consistent solutions for 

n, f, and 91. 
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9 -82 I 4371A32 

Fig. 30. Phase space coordinates (aI in the betatron plane and 
(b) in the synchrotron plane. Particles stream in the counter- 
clockwise direction in both cases. 
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In writing down (3.501, we have implicitly assumed that the center of 

the unperturbed beam coincides with the accelerator pipe axis. Effects 

associated with a distorted beam trajectory (i.e., a distorted closed- 

orbit) are therefore excluded from our study. We will discuss this again 

towards the end of Section 3.7. We will also discuss in Section 3.7 the 

fact that the perturbation distribution factorizes into fl and gl as 

given by (3.50). 

We next introduce a complication that comes from the head-tail effect 

discussed in Section 2.6. What happens is that the betatron frequency is 

not a constant; it actually depends on 6 through the chromaticity f. 

The quantity 00 in (3.49) is therefore,replaced by oa + g(~o6, using 

Eq. (2.511, where wo is the revolution frequency. Substituting (3.50) 

into (3.49) and linearize with respect to the perturbation, keeping in 

mind that F, is already first order, we find 

R of$+&do6 bf, Qs WI C 
-i - fl91 + - gq + - fl - emiRsjc - - sin0 FyfO'go q 0 . 

C C be C a+ 1 E(JQ3 

(3.51) 

As we mentioned before, the transverse structure fl is easy to solve. 

Indeed, since it describes a dipole motion, we anticipate a solution 

fl(q,e) = - D fe'(qI exp(i6) , (3.52) 

where D is the dipole moment of this distribution: 

,f Y flq dq de 
= D . (3.53) 

$ foq dq de 

This dipole motion is sketched in Fig. 31. 



9-82 

- 146 - 

4371A33 

Fig. 31. Dipole motion in the transverse phase space. The unperturbed 
distribution fo(q) is displaced by a distance 0. The displaced 
distribution then rotates. 



- 147 - 

‘Substitute (3.52) into (3.51) to obtain a reduced Vlasov equation that 

involves only longitudinal coordinates 

ag1 
i(R - WR - tw06)gj - ws - 

a+ I 

c2 
De-iQs/c - - Fygo = 0. 

2iEwe 

(3.54) 

In obtaining (3.541, the factor sin 8 in Eq. (3.51) has been replaced by 

exp(i8>/2i. Rigorously one needs both exp(i0) and exp(-i8) components in 

(3.521, but the exp(-i8) component can be ignored if the frequency shifts 

due to the wake field is small compared with the betatron frequency wa. 

The solution for gl can be written as 

i R+ i Two T/a 
gl(r,+) = a,q Rg(r) e e . (3.55) 

R=-CO 

This Fourier expansion is in analogy to Eq. (3.25) except that, due to 

the chromaticity, we now have an additional head-tail phase factor. The 

same factor appeared in our two-particle treatment in Section 2.6. From 

here on, the treatment is very similar to what we did for the 

longitudinal case. 

Substituting (3.55) into (3.541, we find the chromaticity term is 

cancelled except the phase factor, and we have 

iR’# -i OS/C 
i 1 CR-WB-R’w,) aR* RR*(r) e De 

A’ 

C2 -itwot/a 
- - Fy(~,s) go(r) e = 0 . 

2iEwo 
(3.561 
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He need to find F,. The dipole moment of the beam, observed at 

location s as a function of 7, is 

s 

03 

De- iRs/c dS g,(r,9) = DeWiRsjc P,(T) . (3.57) 
-co 

'The deflecting force is then obtained by summing the wake in all previous 

revolutions: 

s 

CQ -iRE(s/c)-kTol 
F,(~,s) = De2 dr' pl(7') e W(kTo+T'-r) . 

-co k=-ex, 

(3.58) 

The longitudinal counterpart of this expression is Eq. (3.201. The wake 

function here is of course the transverse one. 

Going to the frequency domain, Eq. (3.581 reads 

De2wo -ins/c i&7 
F,(r,s) = i - e 1 p?(w') e Z(w') (3.59) 

cTo P 

where 0' represents pwo+R and Z(w) is the total transverse impedance in 

the accelerator. Substitute (3.59) into (3.561, multiply the result by 

exp(-iR9) and integrate over 9 from 0 to 2~r, we get an infinite set of 

equations: 

ce2w0 
i(R - wp - Rw,) a,~ RR(r) = - iR go(r) 

2EwBTo 

X 1 pl(w'I Z(w') JR , R = all integers . 
P 1 

(3.60) 
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Furthermore, similar to Eq. (3.271, we have 

ws 

s 

CQ 
‘iI =--I rdr aR RR(r) imR J.g[ w’r -fwor] . (3.61) 

a R 0 

Note that the chromaticity has caused a shift in the spectrum j51 and in 

Eqs. (3.60) and (3.61). Equations (3.60) and (3.61) form Sacherer’s 

integral equations for m = 1. 

To proceed further, we will assume a simple model of the longitudinal 

distribution, namelyQ**58 

Na 
go = - 6(r-i) . 

2awsi 
(3.62) 

In this distribution, shown in Fig. 32, particles populate an elliptical 

ring in the phase space. This is called a hollow-beam model, or an nair- 

bag” model. 

The advantage of using the air-bag model is obvious; all RR’S 

degenerate into 6(r-i), i.e., we have Eq. (3.30) and consequently 

Eq- (3.60) reduces to 

Ne2c .@.‘-A” 
CR - (JR - R’w,lag* = -i c a,g” i 

2ETotwp A” 

x 1 Z(w’) JR* 
P 

[wti - f wo;] JAn[wti - f wet] , R’ = o,r1,r2 ,... . 

(3.63) 
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Fig. 32. Phase space distribution and the longitudinal distribution 
. - of a hollow beam, or an “air-bag” beam. For this distribution, 
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A mode is now specified by the mode frequency n(R) and the set of 

coefficients ajz*rR1, where R is the mode index. In the absence of the 

wake field, the right hand side of (3.63) vanishes; the R-th mode is 

described by 

1 if R’=R 
aRs(J-1 = 

0 if A’ # R 
(3.64) 

Q(R) = wR+Rw5 . 

The distribution of this mode is given by 

ie iR+ i two7/a -i (wa+Rw,Is/c 
f’o(q)e - b(t--i)e * e - e . (3.65) 

--- 

trans. long. head-tai 1 . time 
dist. dist. phase factor dependence 

These modes, without the head-tail phase factor, are those sketched in 

Fig. 19(b). The longitudinal projection onto the r-axis of these modes 

are the same as those shown in Fig. 24 if t = 0. 

In case of a weak beam intensity and frequency shifts small compared 

with wS, one can obtain the first order perturbation by substituting 

(3.64) into the right hand side of (3.63) to obtain 

Ne2c co 
Q(R) - wR - Jw, = -i 1 Z(w”) JR~ 

2ETozwe p=-m 

(3.661 

where w’ = pwo -I- wa + Rw,. Again, the real part of this expression gives 

the mode frequency shifts and the imaginary part gives the instability 

growth rate. 
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Problem 11. The wake term in the 6’ equation of Eq. (3.47) was dropped. 

To see the significance of this term, let us keep it but 

drop the wake term in the P,’ equation. Follow closely this 

section, assume fe = Gaussian and go = water-bag. Show that 

qfo iG 
fl q D-e 

UY2 

and that 

NeZcwo 
CR-wp-R’ws)aR* = i 

2~rETo0, 

R’-R” w’ Z(w’) 
X 1 aA’- i c JR* JR” . 

A” p (J’ - Sqo/a 

Compare with (3.63). Show that this wake effect can be 

ignored if o,, is small compared with Jws/awo times the bunch 

length ci. 

If there is a longitudinal impedance Z” present, one can 

also compare the above result with Eq. (3.31). Show that 

this effect can be ignored if Z(w) is much less than 

CZ”(W)/#U * Y * If Z”(w) is related to Z(w) through 

Eq. (1.581, then the criterion becomes cry << b. Both the 

conditions uy << c;Jw,/aw, and oy << b are fulfilled in most 

accelerators. 



- 153 - 

Problem 112. Consider an air-bag beam executing mode (3.65). Show that 

the center-of-mass of the beam as a whole has an oscillation 

amplitude proportional to JR((woi/a). Therefore, if E = 0, 

a pickup electrode will see only the R = 0 mode, but all 

modes show up if the head-tail phase $wof/a becomes 

substantial. 

3.7. Transverse Instabilities 

Let us first consider the weak beam result (3.661. The R = 0 mode 

describes a rigid-beam mode in which the dipole moment of the beam does 

not have an oscillating longitudinal structure. In the limit of a short 

bunch length, we have for the R = 0 mode 

Ne2c 
fi(Ol-w, = -i 1 Z(pwo + we) . 

2ETo2wr, p 
(3.67) 

This result has been obtained before in Eq. (2.12) using a one-particle 

model. As pointed out in Section 2.2, Eq. (3.67) leads to the transverse 

Robinson instability if the impedance has sharp peaks with widths 

Aw 5 CwB1, where Cwpl is the betatron frequency modulus the revolution 

frequency wo, and it also leads to the resistive wall instability studied 

by Courant and Sessler in Ref. 32. 

Equation (3.66) is more general than Eq. (2.12) in two ways. First, 

it can be applied to the R # 0 modes as well, and secondly, it contains 

the chromaticity information that leads to the head-tail instability. 

Obviously a sharply peaked impedance would introduce transverse Robinson 
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instabilities in the R f 0 modes. What is interesting nevertheless, is 

the head-tail instability. To study that, let us consider a broad band 

impedance (single turn wake field) so that the summation in (3.66) can be 

approximated by an integral. The growth rate then reads 

Ne2c J 03 
,-l(R) = - do' Re Z(w') Jgz 1 . (3.68) 

4sETows -(D 

The real part of the transverse impedance, Re Z, is odd in w. If 5 = 0, 

the integral vanishes and there will be no instability. For finite but 

small 5, Eq. (3.68) becomes, keeping only a first order term in the head- 

tail phase &to?/a, 

Ne2c !j J ca 7-d (RI = - . - (doi CIW Re Z(#) JR(cJ~) J'~(wi) . (3.69) 
aETowr, a 0 

As an illustration, let us consider an impedance that gives rise to a 

constant wake (2.281, namely 

1 
Z(w) = cToWo - - in6Cw) . 

I 
(3.70) 

W  

The integration in (3.69) can be performed using Table III, yielding the 

head-tail instability growth rate 

Ne2c2Wo C 2 
,-l(R) = --woi * (3.71) 

nE OR a n(4.Q2-1) * 

The same result was obtained in Ref. 48. One can compare (3.71) with the 

result (2.62) obtained using the two-particle model. The present 

expression is clearly superior in that it gives the growth rate for all 

modes. Note that the two-particle model predicts T-'(') = -r-l(O), while 
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in the present model ~-l(l) is suppressed by the form factor 

1/(4R2-1) = l/3. 

According to (3.711, the R = 0 mode is unstable if 5 < 0 and the 

higher order modes are unstable if ( > 0. This behavior is model 

dependent. If the impedance is different from (3.70) or if the head-tail 

phase is not small compared with unity, this conclusion may change. 

Figure 33 shows the growth rates r-1(R) versus twoi/a for R = 0, tl and 

t2 assuming the impedance is given by (3.70). Equation (3.71) gives only 

the linear portion of these curves for small (woi/a. 

Problem 13. From Eq. (3.681, show that 

i T-l(R) = 0 . 

A=-CO 

That is, the sum of the growth rates and damping rates of 

all modes is zero. In other words, the existence of damped 

modes implies the existence of at least one antidamped mode, 

and vice versa. This result is valid for arbitrary 

impedance and head-tail phase. 

Problem 14. The imaginary part of the impedance (3.70) gives rise to a 

mode frequency shift. Show that 

Ne2c2Wo 
An(A) = - JR2 

4E we 

For small CI the only mode that suffers a frequency shift is 

A= 0; the shift is negative and is almost independent of 5. 
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Fig. 33. The growth rate r’1(R) versus the head-tail phase x = twoi/a 
for the impedance (3.70). The vertical axis y is T-‘(~) normalized by 
Ne2c2Wo/EwB. For x < 0, 7-l can be obtained using the fact that 7-l is 
an odd function of x. 
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As the beam intensity increases, expression (3.661 breaks down. One 

has to consider the general case described by Eq. (3.63). A mode 

therefore is no longer approximately given by Eq. (3.64). Instead, it 

has to be described as a linear mixture of all the unperturbed modes. 

This phenomenon has been referred to as “mode mixing,“62*63~68-70 

“transverse turbulence”71 and “strong head-tail”,‘+6 depending on the 

authors. The associated instability mechanism has been illustrated by a 

two-particle model in Section 2.4. 

Consider a broad-band impedance and ( = 0. Equation (3.63) 

written as an eigenvalue problem, i.e., 

can be 

det[N-:I].= o , (3.72) 

-which is the same as Eq. (3.361 except for a shift in R by WIJ. The 

matrix elements of M are 

Ne2c R-R’ w 
b2R ’ = R~.QR~ - i i J do Z(o) Jo Jo*. 

~BET~w~o~ -co 
(3.73) 



The form of the matrix M 
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looks like 

M q 

. . . 

. . . 

2+1 

R 

I 

R 

I 

R 

1+1 

R 

I 

R 

R I 

I R 

R I 

1+1 R 

R -2+1 

. . . 

. . . 

(3.741 

The symbols are the same as those used in Eq. (3.38). Note that, unlike 

Eq. (3.381, the R = 0 row does not vanish. The elements of M are al 1 

real. 

We will illustrate by an example. Take the impedance 

2c wo 3/z 
Z(w) = - Ro - EsgnCw) + il . (3.751 

b2wo w 

This impedance is related to the longitudinal impedance (3.39) through 

the relationship (1.58). The transverse wake function associated with 

(3.75) is W(z) 0: zl/*. Substituting (3.75) into (3.731, we find 

n’ 
Mm * = R6~2* + - CAR* , (3.76) 

4 
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where CAR’ are the coefficients given by Eq. (3.40) and 3 is a 

dimensionless parameter related to the longitudinal scaling parameter 7), 

Eq. (3.411, by 

ci [ I * 05 71’ =7)- -* 
b awR 

(3.77) 

As a rough estimate of whether the longitudinal or the transverse 

instabilities dominate the beam behavior, we can compare r) and t)‘. If 

?I’ ) fll the beam stability threshold is probably determined by the 

transverse instability, while if 3’ < 7), the longitudinal instability has 

a lower threshold.* 

Figure 34 shows the results of a numerical calculation using 

Eq. (3.72) and the matrix (3.76). The eigenvalues (R-we)/w, are plotted 

versus the transverse scaling parameter 7)’ for several R’s. At ‘I)’ = 0, 

the mode frequencies are located at wp, ogtw,, wp+2w,, etc. As 7)’ 

increases, the mode frequencies shift and at 7~’ z 0.28, the two modes 

R= 0 and R = -1 become degenerate. At this value of 7f’, the other modes 

have shifted only slightly. Further increase of 7)’ makes the beam 

unstable. The threshold 7)‘th = 0.28 is substantially lower than the 

1 ongi tudinal threshold 11 = 1.45 found in Section 3.5. 

* As an alternative to (3.771, one can write qt/7) q 4a,oGRz/b2, where oz 
is the rms bunch length, us is the rms relative energy spread, Rz is 
the beta-function at the location of the transverse impedance. The 
replacement of wR by 11132 occurs because we have assumed a smooth 
focusing while in a real accelerator, the focusing contains a weight 
function 6. 
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Fig. 34. Transverse mode frequencies (R-wB)/w~ versus the parameter v)’ 
for an air-bag beam with the impedance (3.75). Instability threshold is 
located at n’ 2 0.28 where the modes R = 0 and -1 become degenerate. The 
dashed curves give the imaginary part of mode frequencies for R = 0 and 
-1. 
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It may seem that the beam is more stable for shorter bunch lengths 

since fl’ a j112, but this is very model dependent. For a different 

impedance, the reverse may turn out to be true. The scaling with respect 

to the other parameters, on the other hand, is not model dependent. For 

example, for a given accelerator and given bunch length i, the threshold 

beam intensity obeys* 

Nth 0: Ws WR E . (3.781 

The same scaling is obeyed by the two-particle analysis, Eqs. (2.34) and 

(2.371, as it should. 

Problem 15. Show that for the impedance (3.701, the matrix M has the 

elements 

4 
7)l 

bLe ’ = Rb~g* + - 
ll2 

if R-R’ = odd 
TTLQ2-A’21 

‘rr6206R 0 if R-R’ = even , 

where 7)~ is the parameter defined by (2.34) when we studied 

the two-particle model using the same impedance. Using the 

two-particle model, we obtained Fig. 16. Using the matrix M 

above, we obtain Fig. 35. Compare the two figures. 

# An alternative to Eq. (3.78) is Ith a v,E/Rz for a given bunch length, 
where Ith is the threshold beam current, Y, = ws/wo is the synchrotron 
tune. 
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Fig. 35. Transverse mode frequencies (I~-wB)/w, versus the parameter 91 
for an air-bag beam lrith impedance (3.70). The instability threshold is 
located at 111 :: 1.8. At the threshold, the R = 0 mode frequency has 
shifted down from wo by ~0.8 wS. The dashed curves are the imaginary 
part of the mode frequencies for R z-0 and R = -1. 
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In both Figs. 34 and 35, the R = 0 mode frequency shifts downward as 

7)’ increases from 0. This in fact is a general behavior for short 

bunches regardless of the details of the impedance. What happens is that 

the transverse wake force produced by an off-axis beam has the polarity 

that the beam is deflected further away from the pipe axis. (See 

discussions following Table II.) This force therefore acts as a 

defocusing force and as a result the rigid beam mode (the R = 0 mode) 

frequency shifts downward. (See also Problem 14.1 For experimental 

observation of this effect, see Refs. 81 and 82 for instance. For long 

bunches, this property is not necessarily true because the transverse 

wake function W(z) may change its polarity at some finite z. 

Recall that in the longitudinal case, as the beam becomes unstable, 

the bunch lengthens without losing beam particles. The same thing does 

not happen in the transverse case. As soon as the threshold is crossed, 

beam particles will be lost, at least according to the linear theory. 

Aside from this apparent difference, however, the transverse and 

longitudinal instabilities are almost exactly parallel. For each 

longitudinal effect, there is a transverse analogue, and vice versa. For 

example, we have mentioned that the Robinson instability has its 

transverse counterpart and that at high beam intensities, both the 

longitudinal and the transverse cases have the mode coupling 

instabilities. 

One may ask then if there is a head-tail instability in the 

longitudinal case and if there is a transverse counterpart of the 

potential well distortion. The answer to both questions is yes. The 
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longitudinal head-tail instabilitya results from the fact that the 

momentum compaction factor a is not strictly a constant; it depends on 

the instantaneous energy error 6 just as the betatron frequency wp does. 

The longitudinal beam distribution then acquires a head-tail phase and 

instability may arise as a result. 

The transverse analogue of the potential well distortion comes from 

having the unperturbed beam off-centered from the accelerator pipe 

axis.sN Such a displacement of the unperturbed beam may come from a 

closed-orbit error caused by imperfections of the accelerator magnets. 

The transverse wake field associated uith the closed-orbit error deflects 

the bunch tail by a fixed amount every time the beam passes by the 

impedance. The result is that the beam is distorted into a banana shape 

and this distortion is static in time. 

In the most general description, Sacherer’s equation (3.28) for m = 0 

and (3.60) for m = 1 are part of a grand scheme in which modes with 

different m’s and R’s are all coupled togeth,er. To study the beam 

stability, one then has to solve the eigenvalue problem of a doubly 

infinite matrix, of which we have separately studied only the m = 0 and 

the m = 1 components. In real i ty, as long as the mode frequency shifts 

are small compared with ISD, the matrix degenerates into blocks, each with 

a distinct value of m. If the mode frequency shifts are smail even 

compared with We, further degeneracy occurs and indeed we obtain results 

like Eqs. (3.34) and (3.661. The factorization of the perturbation 

distribution into fl and gl in Eq. (3.50) is the result of assuming the 

mode frequency shifts are small compared with coo. 
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3.8. Multi-Bunch Instabilities 

In the previous sections, we have assumed that there is only one bunch 

of particles in the accelerator. We will now show that with a slight 

modification, the analysis can be applied to a beam of M bunches, 

provided the bunches are equally spaced and equally populated. 

Consider first the longitudinal instabilities. A mode of the multi- 

bunch beam is described by 

$n(r,+,s) = 90(r) + Jl,(r,91 exp[-i*[: + y] ] exp[-2ni f] 

n = 0, 1, . . ., M--l , (3.79) 

uhere $‘h is the distribution function of the n-th bunch observed at a 

fixed location s, 40 is the unperturbed distribution normalized by 

$dr $dG q. = N = number of particles per bunch, $, is the perturbation 

distribution (same for all n’s), p is the multi-bunch mode index that 

assumes the values O,l,...,M-1. Successive bunches oscillate with a 

phase difference of 2n(~/tl if the phases are compared at a given time so 

that bunches are separated by distances cTo/M. When M = 1, Eq. (3.79) 

reduces to (3.18). The mode number lo and the phase factor exp(-2ninlUM) 

have been discussed in Section 2.7. 

We will concentrate on the reference bunch for which n = 0. The wake 

voltage seen by particles in this bunch is 
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I 

03 
V(r,s) = eL dr’ p, (I’) 

-0) k Z-Q) 

- kTo] - 2ni F] W[kTo - z + 7’ - 7-I . (3.80) 

Compared with Eq. (3.201, this expression contains an additional 

summation over the M bunches. The quantity p1 is the projection of $1 

onto the r-axis; it has been defined in Eq. (3.19). In the frequency 

domain, Eq. (3.80) reads 

-i&s/c 03 iw’7 
V(r,s) = Mew0 e c j51 (w’) e ZCW’) (3.81) 

p=-CD 

where 

0’ = rlpoa + uJJJo + R . (3.821 

Compared with Eq. (3.211, Eq. (3.81) has an additional factor of M in 

front but the summation over p is M times more sparse. 

We then follow the procedures of Sections 3.3 and 3.4 to set up and 

linearize the Vlasov equation for the O-th bunch. For a waterbag 

distribution (3.291, we obtain again Eq. (3.31) with the modifications 

that the right hand side is multiplied by M and that o’ is reclaced by 

(3.811. A similar result was obtained in Eq. (2.69). 

The Robinson instability occurs if the impedance has a sharp peak 

(i.e., long wake field) at WR :: (Mp+pIoo. For the accelerating cavities, 

the fundamental mode peaks at &JR :: hue, where h is the harmonic number 
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and is necessarily an integral multiple of M. This means the most 

important Robinson instability (or Robinson damping) occurs for the p = 0 

mode in which all bunches oscillate in phase. Under these conditions, 

the growth rate is proportional to M, i.e., it is determined essentially 

by the total beam current, not the single bunch current. 

For a broad-band impedance (i.e., short wake field), the summation 

over p is replaced by an integral. The replacement removes the factor of 

M in front and one obtains results identical to the single bunch results 

Eqs. (3.36) and (3.37). This is not surprising since broad-band 

impedance means the wake force is short-ranged and instability is a 

result of a local interaction among particles in a single bunch. 

Treatment of the transverse motion of a multi-bunch beam is again very 

-similar. For an air-bag beam, for example, one dbtains Eq. (3.63) with 

the same modifications as for the longitudinal case. Similar discussions 

on instability also apply. 
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