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ABSTRACT

A charged particle beam contained in an accelerator vacuum chamber
interacts electromagnetically with its environment to create a wake
fieid. This fieid then acts back on the beam, periturbing the particile
motion. If the beam intensity is high enough, this beam-environment
interaction may lead to an instability and to subsequent beam less. The
beam and its environment form a dynamical system, and it is this system

that will he studied.

In Section I, the Maxwell equations are sclved to obtain the uake
field of a beam with a rigid particle distribution, i.e., the action of
the wake field on the particle distribution is neglected. The concepts
aof uaké function and impedance Wwill be introduced and their properties
discussed. As an illustration, the special case bf a pure resistive wall

uwill be presented explicitly.

In Section 11, the influence of uwake fields on the beam uill be
studied, but with a simplified model for the beam distribution. In fact,
the beam will be represented as a point charge without any internal
structure. The beam-environment system is solved seif-consisiently uith
the restriction that the beam is ailowed to have only center—-of-mass
motion. This simplified view allows a few of the instability mechanisms
to be studied. These cne-particlie models are sufficiently successful
that the treatment is extended to include a few tuo-particle models, in
uhich the beam is represented as two point macroparticles interac?ing
uith each other through the wake forces. This picture gives an insight

inte the internal motions within the beam. Seven of these che- and two-
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partid]e models will be treated. The equation used in this Secticon II is

basicalliy F = ma.

A self-consistent treatment of the beam-environment system that
permits a full evaluation of the internal beam motions will be included
in Section I11. Here the equation of motion -- the Vlasov equation -- is
established to describe the system. The formalism that allouws this
equation to be sclved Wwill then be presented. Results cbtained in
Section II, as well as some additional results on coherent effecis, wiil

be derived in this secticn., For pedagogical purposes, the material is

treated using simpiified models as illustrations.
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I. RESPONSE OF ENVIRONMENT TO BEAM

A charged particle beam interacts with its vacuum chamber environment
in an accelerator. As a first step in our treatment of the beam-
environment system, we Will study the properties of the umake
electromagnetic fields generated by the beam in the environment. For
this purpose, the beam is considered to be rigid and unaffected by the
uake field it generates (and therefore no instabilities}. The beam is
assumed io move with the speed of light. The wake field that we are most

interested in is that seen by a test charge that follouws the beam at a

fixed distance.

We will first work out the wake field in some detail for the case in
which the environment is that of & smooth cylindrical pipe with resistive

wall surface. In the process ue uill point out fhe general features of

all wake fieids.

It is inevitable that the concept of impedance also be introduced.
The impedance is essentially the Fourier transform of the uake field and
we Wwill discuss its properiies as well. Finally we witl include in this

section a discussioen of the parasitic energy less of the beam in the

envirenment.

1.1. Free Space and Perfectiy fonducting Pipe

The electromagnetic field carried by a relativistic point charge q in
free space is a familiar subject treated in text books.'*Z The field
distribution is sketched in Fig. 1{a). The EM field distribution is

Lorentz contracted into a thin disk perpendicular to the particle’s
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direction of motion with angular spread of the order of 1/v. In the
gltraretativistic Timit of v = ¢, the disk actually shinks into a
8-function thickness, as shoun in Fig. 1(b). The electiric field [ points
strictly radially outward from the point charge. 7The magnitude of E is
most easily obtained by drawing a pill box with radius r and
infinitesimal height around the charge g, as skeiched in Fig. 1{b}, and
apply the Gauss fanw. The result is¥®

29
— §(z-ct) (1.1

m
-
i

where we have adopted a cylindrical coordinate system with z pointing in
the direction of motion of q. Simiiar};, an application of Ampere’s law
gives

2q

Be = — &(z-ct) (1.2
r

mhich is eqgual to E,.

We nok consider the case in which the point charge moves along the
axis ¢f a cylindricaliy symmeiric vacuum chamber pipe that is perfectly
conducting, as shoun in Fig. 1{c). The same application of the Gauss and
Ampere laws again gives results (1.1) and (1.2). The scle functicn of
the pipe wall is to truncate the field lines by terminating them onto the

image charges on the wall.

¥ UWe us2 ¢gs units.
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Fig. 1. Electromagnetic field carried by an ultrarelativistic point
charge in free space and in a perfectly conducting smocth pipe.
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The ébove result with the pipe simply truncating the field lines
without deformation works enly if the charge moves along the pipe axis.
It is no longer correct for a peint charge moving off-axis, in which tase
the beam wil] be represented as a superposition of multipole moments,
One can consider for instance a disiribution with a pure m—ith moment:
ITn

p = 6{z-ct) 8(r-a) cos mB
namt!

(1.3

i.e., the charge is distributed as an infinitesimaliy thin ring uith
radius a and uith a cos m@ angular dependence., The quantity I, is the

m-th moment of the beam charge distribution.

The reason that the pipe no lcnger simply trunbates the free space
field lines in this case is that now the eleztric fieid is no longer
perpendicular, and the magnetic fieid is no longer parallel, to the pipe
wail. Indeed, the electromagnetic field carried by the source (1.3} is
ohtained by solving the Maxwell eguations together with proper boundary

conditions. The result is
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[ [ 1 i
2Iw | — - — | r® 1t cos mB S5(z-ct) r { a
L qu aZn
Ep = F,
i 1 ra-t
2l + cos mf 6{z-ci) ad{rd{h
4 L rl+l ban
r r 1 1
-2lg § ™ ~ r® % gin mé &§(z-¢ct2 r ( a
bZN azn
Ee = <
1 1 pe-
21 - sin m8 S(z-ct} ad{r<{hb
L ! r.m+1 me
Br = -~ Ea
Bsg = Ey . : (1.4)

The derivation of Egs. (1.4) is omitted here. It can pe reproduced as
a special case of what we will discuss in Section 1.3. The important
facts here are that the particle has generated a fieid that has angular
dependence of sin mP and cos m8 and that the field is Lorentz contracted
into a &§-function in i1ts longitudinal distribution. No uake field is
feft behind the particle as a resulti of this particle-environment

interaction.

In free space or in a perfectly conducting pipe, therefore, a particle
does not see the fields carried by other particles in the beam. (Unless
the two particles move side by side with exactly the same longitudinal
poesition, in which case they see each other’s fields but do not

experience any Lorentz force because the electric ferce and the
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magnetié force cancel exactly in the limit Vv = ¢3.)% Consequently, there

can be no coherent instability.

1.2. Resistive Wall Wake, m = 0

In case the vacuum chamber is not a smooth pipe or if it is smooth but
not perfectly conducting, a beam will generate behind it an
electromagnetic wake. See Fig. 2. In this and the next sections, the
case of a resistive pipe wall {Fig. 2(b}] wilY be uorked out in detail.
For simplicity, uwe assume that the beam moves with the speed of light and
that the pipe uall has infinite thickness. The more general
considerations are treated in Refs. 3, 4 and 5. He alsoc assume the beam

has a distribution given by (1.3).

tet us first explicitly urite down the Maxuei!_equations, component by

component in cylindrical coordinates:

1 2rEx) 1 2Eg O

—_——— = —— % T 4yp
r ar r a8 oz
1 9B 2Bg 4n 1 2B,
_ __:....._.jr+_
r of 22 c ¢ ot
2B o8B 4 1 oEg

- — = — g+~
oz or c c ot

* 1t is true that there is an electrostatic ferce in the rest frame of
the beam, but when observed in the laboratory frame, motions are
infiniteiy time dilated.
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The beam is represented here as a ring possessing a multipole moment
with cos m8 distribuiion.
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1 2(rBg? T 2B, 4n LIr-1
- - - = — 2t -

r or r OB G ¢ at

1 2(rB:3 1 2Bp 3Bz

- +—-—— 4+ — = @

r ar r 28 dz

r o8 oz ¢ ot

oz ar c 2%

1 d{rEg} T 2E- 1 2B

_—_— . — = - = (1.5)
r ar r a8 c ot

Given that p and jz are proportional to cos m8, the gngular 6 dependence
of the field components can be obtained by inspection: €, Ey and Bg are
proportional to cos mf, while Eg, Bz and B, are proportional te sin mé.
One alsc expects that the dependence on 2 and t are such that all
quantities depend on the the combined variable z-ct. MUe then urite the

field components in terms of Fourier transformations¥®

o

o
{ErsEz,Bg) = cos mb dk eiktz-ct) (F E,, Bg)
‘—m
{1.6)
"
(Eg,Bz,Be} = sin m@ dk eiktz-ct} (Fq5,¥,,8,)
J "t

® There is a theorem sayving that when you have conly partial knouledge of
the solution to a differential equation and do not knouw what to do
next, the thing to do is to make a Fourier transform.
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where Ev, etc. are functions of k and r. Due to gausality, our sclution
must satisfy the condition that no uake field will be produced ahead of

the beam, i.e., in the region z-ct > 6.

In the rest of this section, we Wit} work out the case m = 0. The
m 2 1 cases are discussed in Section 1.3. The beam is thus represented

as a thin ring with total charge q. The field componenis Eg, Bz and Bp

vanish.

Settingm = 0 in (1.6) and substituting the resulti into (1.5), we
ehtain three equations. [There are eight equations in (1.5}, but five of

them are redundant.] They are rather easy to sglve, yieiding

=3

_ Ez = A r<b
[ r
- jkA - r{a - (1. M
2
E., = By =
r 4
- 1kA — + — a{r<hb
1 -2 nr

where A igs a2 constant that depends only on k and is vet to be determined.
Hote that there is no discontinuity of E2 at r = a. The guantity A is

closely retated to something called the impedange to be discussed in

Section 1.5.

For a perfectly cenducting wall, Ez vanishes at r = b; this means
A = 90, and an inverse fourier transform of (3.7) gives (1.1} and (1.2).
In case the wall is resistive, one needs to obtain A from the boundary

conditions at r = b, and to do that, the fields inside the wall, r > b,

need to be found.
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Substituting (1.8) into the Maxwell Eq. (1.5) and setting p = 0 and
3 = of in the metal uall, where ¢ is the conductivity, we again obtain

three non-redundant equations:

13 2E 2

- — [ r ] + A2E; = 0

r or or
ik 2E;

Ep = — — (1.8}
A2 or

xz gy
Bg = 1+ — | En
k2
where we have defined, following Refs. 3 and 4, a parameter

2ma )k}
A = — [i + sgni{k)] €1.9)
c

with

4ncik

The parameter A-! has dimensionaliiy of length; it defines the skin depth

as a function of frequency w = k¢ inside the metal wall.

In what follows, we will assume [A| is much larger than b-!, i.e., the
skin depth is much shorter than the pipe radius b. This assumption is
gocd if the wave number |k| is much greater than cs4mob?, or equivalently

if wue are interested in the region

| z-et | << bsx (110
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where ¥ is a small dimensionless parameter defined by
X E c¢/dwob . 1.1

For example, if b = 5 om and the wall is made of aluminum with
6 = 3% 18'7 sec™?, ue have % = 1.6 % 10-? and our approximation breaks
down at a distance 2 3 X 167 wm behind the beam. (In case the vacuum

chamber wall has a finite thickness A, our approximation also requires

Ikl 3> 4°1'.) Under this approximation, the equation for E, in {1.8)

becomes d2Ez/2r? + A2E; = 0, which has the solution¥

-~

Ez

A pidtr-h 1.12)

uhere the coefficient A is the same as that appeared in Egq. (1.7} to

assure continuity of £-. From Eq. (1.8}, we then have

k
Er = = — A glitr-b)
A
(1.13)
k Az
§9 - - = 1+ — A eldlr-b
A ke

The coefficient A is determined by the continuity of Bg at r = b,

yvielding the result

q
A = . (1.4

ikb A
| — - -
2

* If we do not make the assumption {A] >> b~%, E, will be written in
terms of Bessel functions. This complication is not needed for our
purpeses,
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Note that it would be incorrect to demand a continuity on E. at r = b,

because there is a surface charge on the wall pipe.

What we will have to do next is to make inverse Fourier transforms on
£+, T2 and Bg o obtain the fields. To simplify the mathematics, we wiill
make tﬁe approximation that Jask| » |kb[. This conditien on k in
frequency space is equivalent o requiring in physical space the

condition

| 2=ct | > x'3b . (1.15)

Again taking o = 3 % 10t? sec™' and b = § cm, this conditien excludes

from study the wake fields within a distance ~0.06 mm behind the beam.

Under the assumptions €1.10) and (1.15), the parameter A becomes
ak
A w - — €1.16)
wha

The inverse Fourier transform can then be readily performed for the

region r { b. The results tor z-ct ¢ 0, i,e., behind the charge, are

9 /; i
23b v ¢ jz-ct]3/2

3 q c r
Er- = -- -

4 2mb o o |z-ct]57?

Ez

(1.17)

)

Bg

The fields vanish for z-¢t > 0 due to causality. In deriving (1.173, we

have used the formulas given in Table 1.,3-8
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TABLE I

oy

Feurier transform pairs F(z) = [ dk eikZ F(k). The quantity
bt -+

A is given by Eq. (1.9). The fupction F{z2) vanishes for z > 0.

Fek) F(z2) €z ¢ 02
17k 27i
17k2 - 2wz
1+
ask? - 8mi - |zftse
¢
16n g
AskS -~ — = |z}32
3 c
¢
172 -1 -]zt
1+
1 c
k/7X - = /= ]z}-372
¥ G
3

K2/

c
i - |z]-5/z
o

-y
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Equation (1.17) shors that E; decreases algebraically with |z—c’c|‘3"z
and is uniform in the fransverse dimension (independent of r and 81},
uhile the transverse fieid components decrease faster with [z-ct}-5/2 and
is propartional to r. The field components in the metal wall are more
difficult to find and in any case are not useful later, so they are

omitied from Eq. (}.17).

Note that in the region of interest the field components are
continuous acress r = & and in fact are even independent of a. By taking

the limit a > 0, we see that the resulis are also applicable to the case

uhen the beam js represented as a point charge.

There is something disturbing about tq. {1.17). Consider a test
charge trailing the beam at a certain distance z. The sign of the
Jongitudinal eleciric field £z is such that the test charge getis
accelerated if its charge has the same sign as gq. If this were true for
z » D, cone would expect that the point charge q will gain energy as it
travels doun the resistive pipe. To make sure this unphysical phenomenon
does not happen, we have to compute the field at very short distances
behind the beam, which so far has been excluded by the condition (1.15),
For this purpose, we take now the opposite limit to (1.15), i.e. we take
[azk] << lkb], or equivalently ]z-ct] << %73 b. The parameter A then is
approximately given by¥

¥ The shert range behavior of the wake field depends on the assumption
that the beam moves with the speed of light. The upper range of k in
reality has a cutoff around vsb. This introduces the condition that in
order for Eq. (1.19} to be valid, the beam energy must be high enough
so that ¥ »» % 173, Another cutoff in k occurs if the beam has a
finite length o2; then k is resiricted to the region k $ oz"1.
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29

€118
iwkb?

Using Table I, ue perform inverse fFourier transforms to cbiain
4q

- — r¢<b
bz

<

Ez

(.19
16q g
B = Ep % —— f- |z-ct]|1/2 r=b .

b? c
Again these expressions are vaiid for z-¢t ¢ 0; the fieids vanish for
z-ct > 0. One finds that £, immediately behind the charge 9 is indeed
decelerating. Rote that alihough E; is independent of the wall
conduciivity ¢ in Eq. (1.193, the range of validity of E£q. (1.19) does

depend on 6. In the limit ¢ = ®, a beam with finite length or a point

ctharge with v { ¢, of course, does not lose energy to the vacuum chamber.

8ne c¢an obiain the rate of energy loss of the charge g by equating it

te the heat generated in the resistive wall. This gives

de 1
— = - - dv 3-E
dz ¢ Juall
1 ¢
= - - dv ot (1.2
¢ Juali '

2T0 [ 0
- — J 2wb dr I dk [{E.[2 + [EL]2]
c b -
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Using expressions (1.312) and (1.13} feor E. and Er and (1.14) for A in the
metal wali and making the approximation that ¥ = c/4nmob ¢{ 1, ue find

de 2q2

- = -— (1.21)

dz b2
If we then asscciate this energy leoss to an equivalent eleciric field as
seen by the charge q, we find that it is exactly equal to half of the
value of Ez(z-ct) in the Timit |z-ct] - 0, given by Eq. (1.19). That i&

1
Ez = - Ez . (1.22)

seen by q 2 {z-¢t) » 0~
The expression (1.22) actually is & general result, sometimes referred
to as the "fundamental theorem of beam loading."?” The factor 1/2 comes
from the fact that charges in a beam see the wake produced only by those
charges in front of it and as a result see on the average onily 172 of the

total beam charge.

To prove (1.22} in general, consider a beam with short but finite
Tength that has an otherwise arbitrary longitudinal density p{(z). The

beam loses energy at a rate

de S (7
-_ 0z - j dz’ pl{z’) [ dz p(z2) Ezx(z-2"} €1.23)
z!‘

uhere Ez(2-27) is the wake produced by a unit point charge and seen by
another point charge a distance z-2z behind in an arbitrary vacuum
chamber environment. If the bunch lengtih is short enough that E; behaves

like a step function within the bunch distribution, Eg. (1.23) becomes
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de w 0
— % - Ex{@%) J gz’ p(2’) J dz pl2)
dt -w z’

An integration by parts then gives
— % - = £ (0% »

which proves (1.22). The derivation assumed nothing but causality.

Figures 3{a) and 3(b) show the qualitative behavior of E- and E, at
the wall surface as functions of z-¢t based on the results (1.17) and
{1.19). In ¥Fig. 3{c) ue constructed qualitatively the pattern of

electric field in the pipe region.

Problem 1. Assuming |R/k| << |kb], derive Eq. €1.19) from Eq. (1.183.

Then try to tind the next order term by keeping the next

order term in A, i.e.. use

2q 22
A = T+
inkh? ikib

Compare the resulis with Figs. 3(a) and 3{(b).
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-3/2 i EZ q

{z-ct}
b2

- 72—t

q
E'(WGH//——
li/2 ;: ) b2

_><—£/2

|z-ct

= 7-Ct

§ |2-ct|”°/2

A

~b/X =! F_rvx"?’b

8-82 437 1A3

Fig. 3. (a) and (b). The electric field componenis Ez and E,. at the
uail surface as functions of distance behind the charge q. The fields
are normalized by qsbZ. The radial field component is typically much
larger than ithe longitudinal component by a factor ~x-'/3, but decays
behind the charge much faster. Both field componenis suiteh sign at =
distance of the order of %'/3b. (¢) A schematic drauwing of the wake
field lines in the pipe. The value of % in these drauings has been
exaggerated by a factor of ~19%9,
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1.3. Resistive Wall Wake, m 2 1

In the previous section, electromagnetic wake fields are obtained for
the case m = 0. The fields are excited as the charge (i.e., the
"monopole moment™) of the beam interacts with the resistive uwall
surroundings. If the beam possesses higher moments (m = 1 for dipoie,

m = 2 for quadrupole, etc.) in its transverse distribution, it will

interact differently and generate different wake field patterns. In this

section, ue will work out the wake fields for cases m 2 §.

Substituting E£q. (1.6} into the Maxwell Eg. (1.5}, we cbtain the

following resuits in the region r { b

-1 m
— = - -8,
er r
2B, m
—_—— = - 'E'z
ar r
12 m 71 . m
- — (rtp) - — Er = &(r-al) - i k + — Ez
r ar r  FLAR kr?
12 m m?
- (rBr) - = HE'r\ = - 3 k + - ‘éz
roar r K2
m
Bg = Er + — Bz
ikr
m
Eg = - By - —— Ea . . {1.24)

ikr
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The first iwo of these equations are used to obtain ¥, and B:; the second
tuo equations can then be solved for E,. and 8,; then Bp and E¢ are found
from the last two expressions. The soiutions for the ilongitudinal

components are easy to find:

£, = Ar™ r<b

€1.25)

Bz

- Ar® r{h

where A is some coefficient that depends on k. Note that B, and B are

continuous across r = a.

The solution for the other field components is not difficult to
cbtain. GOne needs onily to obgserve that they generally can be written as
peivnomials in r, each containing three terms proportional te ra-1, pmtd
and r ™ 1 regpectively. By properly choosing the coefficients for each

of the terms for the two regicns r ¢ a and a ( r ¢ b, the solution is

found to be
[ ikA 1 [ imA 21.]
- — ™l + -1 - — + B - r- r¢a
2{m+1) 2 k naZ™
Er =
In ikA 1 imA
- A B [ -— + B ] -t a{r<b
. wratl 2{m+1) 2 K
[ ikA 1 [ imA 21.,]
- — pmEl . w—— - B rw-1 r ¢ a
2¢m+Y) 2 k paly
EB = +

Inm kA i imA
- pWtt 4 — | —— - B | rwt adrd<b
S [ 2{m+ 13 2 k
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( kA 1 [ imA 21q ]
— Pt 4~} — 4+ B - ro-t r<a
2{m+1) 2 k Faz®
EI‘ = <
Inm ikA i imA
- + LA B [ - + B ] o al{r<b
R T 20m+1) 2 k
1 kA 1 [ imA 21w ]
- ro*t + — | — + 8 - re-t r<a
2im+ 13 2 K nain
Bg = <
| P ikA 1 imA
- I [ — + B ] rm-t adr<h
L wretd 2€m+ 1) 2 Kk

(1.286)

The field components in region r ¢ a do not contain r~ ™' terms since
they are unphysical at r = 0. The parameter A appeared in (1.25) while B

is an additional coefficient. Both A and B are yet to be-determined.

In the case of a perfectly conducting uwall, A

1l

0 because E; must

vanish at r = b. The condition that Eg = 8 at r

b then gives
B = 2lw/nb?™.  The reader should be able to make an inverse Fourier

transform to obtain £q. (1.4).

To find A and B for the resistive wall case, we need to solve for the
fields in ihe metal wall. Inserting again (1.6} intoc the Maxuell

equations and setting 3 = ot and p = D, we obtain these results:

12 2Fzx) i m2
-—ir + ] a2 - — ] B, = 0
ra [ 2ar ! re
12 | 28, [ me
—— e — |+ a2 - — ] B, = 0
roar or ri

J “
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c m of 2
Br = — | - Bp+ —
4 | r ar
c [m 2B,
Be = - — | - B+ —
due L r or
c 2B c 1 m
Er = —_— — + - - - "Ez
4mza or 4no ik r
c m G 1 2E 2
Bo = C Bt | — e | — €1.27)
4n0 T 410 ik or

After the first pair of eguations are solved for E; and Bz, the other
field components are obtained from the remaining four equations. The

parameter X is given by Egq. (1.9).

Following uhat uwe did for the m = 0 case, we assume again that the
skin depth is much sherter than b, i.e., He are initerested in the region

specified by Eq. (1.106)., The tirst two equaticens in (1.273) then have the

solution
E. = - B, = A b®eiXr-b) ry>b . £1.28)

Knouwing £z and Ba, the rest of the field components are found to be
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k
E, = Eg = =~ A b" gidtr-b)
a
[ Kk b )
Bg = - -t - A b™ eidtr-b) (1.29
LAk
[k im
B. = -+ — | Ab®eirie-b)
L A kb

The requirement that €g, Be and Bg be continuous at r = b (ithe component

£, is not continuous across r b due to a surface charge on the wall)

gives
2l k
a =
ik?b ]
“b2u+t - 2
m+ J
{1.303
21 C im
g = — - A

ikZb . b
R - A
m+

it we further restrict our interest to the region specified by

Eq. €1.15), the coefficients A and B become

214k
A & - —
FbZnu-i by
(1.31)
21m k?b im
8 = 1 4+ 3 - —

phzm m+1)x ba
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Table I' can then be used to find the field components, yielding

Im c i
Ex = - r"™ cos ;8 —M8M—
rhZm+1 P lz-ct|3’z

31 1 i
r™ ' cos m8 (r2+b2)

(m+13 lz-ct|5/2

4be2’¢+ 1

Bz = =

r™ sin m@

f
o
3Im c 1] 1
Eg = - - r™ ' sin m6 (r2-p2) —
dnb2®+1 5 (1) jz-ot]5/2
/s
[+

Iz—ctlafz

21 c 1
Be = -~ Eg = —mr* ! sin mf ———
gh2mt 5 fz-ctlis2
21y ¢ ]
Bg = Ep - -~ mr* ' co5 Mp ——— . {1.32)
nhemtd C lz-ct{1/2

These expressions are valid for regions behind the beam and inside the
pipe. Again, the field vanishes in front of the beam. HNote that the
beam dimension a does not appear explicitly in the fields, indicating
that for a given m-th mement of the beam the wake field is independent of

the detailed shape of the beam distribution. See Fig. 4.

According to (1.32), the longitudinal field components £z and B,

behaves like |z-ct}-3/%, just like the m = 8 case as described by



- 30 -

I,

/I,

YL

T,

LI

T 7

Y- B2 4371

Ffig. 4. The wake field is independent of the detailed beam distributien.
The same wake field is generated as long as the beam has the same m~th
mement. Cases shown are for m = 2.
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£q. (1.17). o©n the other hand, the transverse field components behave
very differently from the m = 0 case. For example, the transverse
electric field and magnetic field are comparabie at distances [z-ct] S b
behind the beam, but the maghetic field, having a lcng |z-ctl“’z tail,
dominates at distances |z-ct] 2 b. An alternative derivation of some of

these resulis can be found in Ref. 8.

Problem 2. Follouw procedure similar to that in Section 1.2 to compute
the eiectromagnetic field components in the short range
2 ¢{ %¥/3bh for the case m 2 1. This result wiil suppiement
the expressions (1.32). Show that the longitudinal electric

field Ez switches sign in the region 8 ¢ z £ %'/ 3b.

1.4, Hake Functions

In Fig. 2, ue shouwed cases for which a beam with multipole moment can
excite a pattern of an eleciromagnetic uake field that, in general,
contains both Jongitudinal and transverse components. ¢Consider now a
test charge e trailing behind the cos mf8-ring-beam in an environment
shoun in Fig. 2¢a) or 2(b). The test charge experiences an
electromagnetic uake force. The vacuum chamber pipe is considered to be

cylindricaliy symmeiric,

He assume that both the beam and the trailing test charge move uwith

the speed of Tight ¢. The wake force patitern generated by the beam then

also moves with a phase veliocity equal to c.
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We will average the wake force over the wall periods [e.g., over the
separation d in Fig. 2¢a)]} so that the fast varying part of the uake
force asscociated with the pipe structure periods is smeothed out., The
uake force experienced by the test charge then depends only on r, 8 and
Z, uhere ue use the upper case Z to designate the longitudinal separation
betueen the test charge and the beam, i.e., Z = -{z-¢t). The assumption
that the uake forge has the translational symmetry (i.e., depends only on
2 and not on t and 2z separately) presupposes that the vacuum chamber pipe

has open ends and that the beam has been in the pipe since t = -e.

~

The Lorentz force T = e(E + 2 x B) has the longitudinal component

Fy = Fz = eE; and the transverse component ?; = Fg§ + Fpf, where
i Fo = elEp + Bp)
€1.33)
Fr = elE,. - Bg)

The wake force seen by the test charge e for the resistive uall case is

given by, using Eq. {1.32)

el c
Fy & +——meswee— [— r™ gog m@ Z2°3/2
wham+ P V]
{1.343
2e Ip )
F, = ——— [=mr®™ ' 2°1/2 (} cos m6 - § sin md)

where
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This exéression also gives the correct ansuer for m = 0 if we set Ig = g

isee Eq. €1.17)].

It is interesting to observe that the transverse force comes solely
from the 2°'/2 term of the magnetic field. WKhat happens is that the
image current penetrates into the metal wall and, as it slouly
resurfaces, drives the Z° 172 i{ail of the magnetic field. The same thing
dees not oceur to the electric field because the image charges stay on

the wall surface without penetration into the metal.

There actually exisis a general form of the wake force once it is
averaged over the structure period; Egq. (1.34) is oniy a special case of
it for a resistive uwail boundary. To cobtain the general form, the
Naxuel} equations (1.5) are linearly combined into four equatiens for the

quantities Fa, Fn, Fg and eBz. The result is, sﬁrprisingl?: rather

simple:

e 3 2 2
--— B8z = —Ffr = —F,;
r 28 oz or
€1.35)
p. 2 1 2
e — Bz = —Fg = —— Fz
ar 2z r o8

In deriving (1.35), ue have used the fact that, in the regiqn‘r ¢ b, the
source terms satisfy iz = jg = 0 and jz = ¢p. and that all guantities
depend on z and t only as functions of Z = ¢t-2, Equation (1.35) is
especially interesting since it does not contain source terms explicitly,

heither does it depend on the boundary conditions.
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Recailing that Fz and ¥ are proportional to cos mé while Bz and Fg

are proportional te sin mf, E£q. {1.35) can easily be scilved. We find as

a result
7, = elg Wel(Z) mr® 1 (F cos m6 - @ sin me)
Fz = - ely W xtZ} r™ cos mb {1.36)
eBz = ely W u(2) r™ sin mo

where W, is a function of 2 satisfying causality, W w is the derivative

of Wy. The m = 0 case is included provided ue set Iy = q.

The explicit form of W,, of course, can only be determined after
impesing the boundary conditions as was done for the resistive wall. It
is interesting, however, to note that all the explicit r, 8 and Z
-dependencies in (1.36) are derived without referfing to the boundary
conditions at all, except that the boundary is infinitely periodiec and
has eylindrical symmetry. The property €(1.358) applies to the force

components and not necessarily to the EM field components.

The result €1,36) can be combined to say that, with 2-ct dependencies,
the transverse gradient of the longitudinal force is equal to the
longitudinal gradient of the transverse force, i.e..,

a -
vV, F, = —F, . €1.37
Y4

This expression is sometimes referred to as the Panofsky-tenzel

theorem,?:? although the original form of the theorem looks rather

different.
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"The function Mp(Z) in Egq. (1.38) is called the wake function; it
describes the shock response of the vacuum chamber environment to a
&-tunetion beam. Mathematically Wy is equivalent to a Green’s function.
Sometimes it may be more convenient to call Wu(Z) the transverse wake
function and W w(Z) the longitudinal wake function for reasons that

should be obvious from Eq. (1.36). The dimensionality of W, is L2™? in

the ¢gs units.

For ithe special case of a resistive wall, the uake function is

2 c
HalZ) = ———— - 2-1s2 . (1.38)
-anR*‘ Pm [+)

Yhe range of validity of €1.38) is bsx >> Z »> V3 b, where x is the

small parameter defined in €1.113}.

Immediately following the beam, uwe expect to see a iongitudinal
electiric field that retards the beam regardiess of vacuum chamber

properties. This means the quantity j F; must be negative definite,

which implies
W W€Z) > B for Z - 0t . €1.39)

It follous that the leongitudinal wake W’ ,(Z) of a resistive wall must
suitch sign in the range between Z = 9 and Z = %72 b since W’ 4 obiained

from €1.38) is negative. This resuit was considered in Problem 2.

Another conseguence of (1.39) is that the transverse wake function Wy

rises monctonically with Z, starting from We = 0 at 2 = 8-, atter the
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point cﬁarge beam, If Wy does not diverge at Z = 0 faster than 1,2,
then Hu(9) = 0. 1t follows that a particle does not experience 2
deflection due to its oun transverse wake. This is in contrast te the
Tongitudinal dimension in which a particle does see its ouwn retarding
wake field. In other words, the longitudinal wake is cosine-1ike and the

transverse wake is sine-like. See Fig. 5.

We nowt define a Cartesian coordinate system with x = r cos & and
¥y = r sin 8, and orient the charge density in the x-y system with an
angle 8¢ [i.e., in the expression (1.3) faor p, cos mé is replaced by
cos m{B-85)1., 1In this Cartesian system, the beam nou has tue components
of m—th moments -- one normal and another skewed. Table Il iists the tuwo
moments (first the normal moment and then the skewed moment} and the
asspoeiated wake forces. A bracket ¢ > means averaging over the
transverse distribution of the beam; % and ¥ are the unit vectors in the
% and ¥ directions. The wake forces are those seen by & test charge e

with transverse coordinates %, v and ftcllous the beam at a distance 2

behind.

The transverse uake force for m = 1 iisted in Table 1l behaves like
the bending force seen in a horizontal ar vertical dipcle magnet.
Similarly, the uakes act Tike gquadrupole and skew quadrupole magnets for
m = 2, sextupole and skew sextupcie maghets for m = 3, etc. The m =0
case does not have a transverse uwake force because the longitudinal wake

does noi have a transverse gradient.
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Fig. 5. Sketches of the longitudinal wake function W o(2J and the
transverse wake function Wgpl2ld.
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TABLE I1

Distribution

Moments of Longitudinal Transverse

Beam Wake Force Wake Force
q ' -eq W glZ) 0

[ q{x> —eg{x> x W 4(Z) eq{x> W (Z} R

qiy> —eqdly> v W’ 4(2) ' eqlyy MH1{2) ¥
{ g¢xZ-y2> —eqlx?-y2Y (x%Z-v2) W () 2eqixi-y?)> W23 (xZ-y¥?

ql2xy> ~eq{2xy> 2xy W’ 2(Z) Zeqd{2xy> Hz{(2) (yk+x{)

g{x3-3xyZ>» ~eqlu3-3xyZ>(x3-3xv2IW’ 5(Z) 3egd¢x3-3xy2) Wa(Z}
E(xZ - v2)% - 2xy9]

g{3xZy-y3> ~eqd{3xZy-y{3x2y-y3 1’ 4(2) 3eqd3xty-y3> W3(Z)
[2xy% + {x? - yZ}9]




- 39 -

gne can also say something about the polarity of these transverse uwake
forces using Table II. To do that, imagine a short beam traveiling down
the accelerator with a displacement in x. The head of the beam bunch
will generate a uake force that kicks the particles in the tail further
auay from the acceierator axis since Wq€2Z) > 0 if Z is short enough.
Similarly, if the beam has an eliiptical shape in its transverse
distribution and thus possesses a quadrupole moment, the transverse uake
force is such that it tends to eiongate the ellipse further in the bunch
tail. In general, one finds that the polarity of the transverse uake

forces is such that it aluays hurts a short beam. See Fig. 6.

As Z increases, W/, and Wy may change signs and the wake forces become
beneficial., 1In particular, W g may become negative at some finite
distance behind the head of the beam. Therefore, if one ?njects two beam
gunches into the accelerator and if the separation of the tuo bunches are
chosen sitrategically, the trailing bunch will be accelerated by the uake
field of the leading bunch. This mechanism is an impertant means of
accelerating particles.12-%'2 (In soime sense, one special case of wake
field accelerators is the klystrons, which have already been widely used
to accelerate particles. The difference is thai, for kiysirons, the uake
fields are generated in a special-purpose vacuum chamber, optimized by
varicus means and then sent by waveouides to accelerate the trailing
beam. The new generation of wake field accelerators and the klystrons of

course have different regions of applicability.)
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Fig. 6. The polarity aof the wake field sluays hurts a shart beam.
For m = 8, the iTongitudinal uake force is retarding. For m = 1, the
transverse wake force further deflects the test charge e. Form = 2

tha tail portion of an eltiptical beam becomes further elongated.
Arrous represent the wake force.
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There are several interesting properties of the wake functions. GCne
has been listed in Egq. (1.39). Some of these properties for the
Tongitudinal wake function W 4(Z) are given in Problem 3 below. Here let
us shouw how property (¢) can he reached; other properties can be shoun
similarly. Consider a point charge g foiloued by another point charge g
at a distance Z behind. The first g ioses energy at a rate (q2/23H ()
due to the wake generated by itself [see Eq. (1.22)]1. The trailing g
loses energy at a rate (g2/2)W 5(08) + g2l o¢Z), where the second term is
due to the uake left by the leading charge. Physically, the tuoc-charge
system can never gain energy; this means W p(2) 2 -W (03 for any Z.

Similarly, if the second charge is -gq rather than 9, one proves

B o(Z) £ W oC0). Property (¢} of Problem 3 is thus proved for m = 0.

Problem 3. Show that the longitudinal wake function W w{Z) is unphysical

untess the following properties are satisfied:

(a) W L{(2) 0 if Zz2<0.
th) W 40} 2 0 .
(6} W W(0) ) W u(2)] for all z.
(d) IFf W wla) = W e{B) for some a, then W ,(Z) is periodic
with period «, i.e., W y{2+a) = U u(Z) for Z 2 8. -~
(e) If Walad = - W {8} for some a,
then W w{Z+a) = - W u(2Z).

1]
€f) J W w(Z) dzZ 2 0 .
0
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(g) 1 2 [W u(Z4) WalZy) W ulZe+22)1/[47 u(03]3 2 ~ /8
for any Z45 Z22.
Use these resuits to show thai the wake functions sketched in

Fig. 7 are unphysical.

In the previcus two sections, we worked out in some detail the case of
a resistive wall. The reason for using the resistive wall as an example
is that it can be handled with relative ease and yet it does contain most
of the important features of a general wake. In reality, the resistive
wall wuake contributes very Yittle to the wake fields found in an
accelerator. Most of the wake field comes from effects associated with

disceontinuities in the vacuum chamber pipe [see Fig. 2€(a)],

The_computation of wake functions analytically for a non-smeoth pipe
15 rather invelved. Here ue are forced to make d?astic approximations.
For example, one may represent the pipe structure by a series of closed
pill-boxes,'3- 1% gr to take a perturbative approach which is valid when
the pipe uwall is only slightly varied from that of a smooth pipe.16-18

indeed, the most realistic approach, it seems, is to seek the help of the

aimighty computer, 1%-2%

In Fig. & we shou the resulis cbtained by Bane, Wilson and Zotter7:22
for the SLAC linac. Their uwake funclions W e, Wy and W are_plotted
using cur language and units. For comparison, ue alsoc shou the resistive
wall wakes in Fig. 9 assuming an aluminum pipe. The uakes in Fig. &
ostillate as functions of z, indicating the electromagnetic wake field

"rings"™ after being excited. The ringing wave length is comparable io

the cavity structure dimensions.
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Fig. 7. Sketches of some unphysical uake functions W 4(Z).
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Fig. 8. Hake functions Wy, Ky and W; for the SLAC linac.
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Fig. 9. The resistive walil wakes Wg, Hy and W,. These curves are not
to be extrapolated into the region Z § 0.002 cm. The pipe radius b 1§
chosen to be 1.163 cm in order to compare with Fig. 8. The units for
M’g, Wq and W are cm 2, cm~3 and cm™5, respectively.
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i.5. Imppedance

So far the wake fields have been introduced as a function of time
after the S~function beam has passed by. It is often useful to examine
the freguency content of the uake field by making a Fourier transform on
it. One indication of the usefulness of this procedure is the fact that
we introduced the Fourier transformed gquantities E and B when we worked
out the resistive wall. Ancther perhaps more imporitant reason for its
usefulness is that the wake respense coften contains a number {say, 20} of
sharply defined frequencies. Such a situation does not cccur for a
resistive wall wake but does ococur if the wake is generated by a cavity

pipe structure. The Fourier transform of the wake function is called the

impedance.

Needless to say, the descriptions of the uake force in terms of wake
functions in the tiwe domain and in terms of impedances in the frequency
domain are exactly identical. It is only a matter of taste as to which
vieu to take, For many later developments, we find it convenient to use
the time domain description to set up the equations of moticn (F = ma)
and then use the fourier fransform techniques to solve those eguations

once they are uritien doun.

So far we have considered S8-function beams. iHakes produced by other
beam distributions can be constructed using the S-function result. For

example, consider a beam that has a current

1g0z,13 = 14 eikz-iet | {1.40)
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Oniy the real part of (1.49) is meaningful. The m = 0 wake at positien z
is a superposition of the wakes produced by all charges in the beam that
passed by position z at previous times, i.e.,

1 peo

Ezfz,t} = - - J dz? Iglz,t - (277c)] W el2”) £1.41)

c JD

which is equal to

1 ) w2'/e
- — sz, ¥ J dz’ e W qlz”)

[ -}

The lcuwer limit of integration has been replaced by -o since W'p = § for
2z’ < 0. Ue have used the fact that the uake field is insensitive to the

cross sectional area of the beam so we can integrate Jz over the cross

section to obtain Iq.

Let the accelerator section that contains the wake field be of length
L. Bne can define a retarding veltage across the section due tec the uwake

field by V¥(2,t) = - Ex{z,t)L, we then have the expression
vi{z,t) = =~ Ip{z,t) - Zp"{w) 1.42)

where the quantity Zp"(w) is called the lengitudinal impedance for the

m = 0 mode at frequency «; i1t is reiated to the wake function through a

Fourier transfcermation:

Za"{wisL =

o dz’ iwz’’/c _
e W alz”) (1.433

- c

and it describes the frequency content of the Jongitudinal wake W7yp.

Instead of Egqs. (1.40) to (1.42), an alternative view is to simply take

Eg. {1.43) as the definition of the impedance.
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Similarly, if the beam current possesses a multipole moment

Ialz,t) = 1, eikz-iat | (1.44)

one can define the relationship V = - EgLl = - T, Za" ™ cos m8 through a

longitudinal impedance per unit length

Zm" ()t =

o dz’ iwuz’/c
J e W uiz’) . £1.45)

©w o

For the beam (1.44), one can further urite the itransverse force accarding

to
F,(z,r,8,t) = de I14(2,t) mr™ '(Ffcos m0 - dsin m8) 24 (w) (1.46)

where Zypt{w) is the transverse impedance given by

Zpilwlsl = -— — e Wulz’) . £1.47)
1 J-» ¢©

1 j w dz’ iwz’/c

In the cgs system, the dimensionality is TL 2% ! {or the leongitudinal
impedance Za% and TL"2™ for the transverse impedance Znt. Sometimes it
is more convenient to express the impedances using ohwm as unit; for that

one can use the conversion factor that 1 ohm = 1.11 X 10712 gec/cm.

Note that a minus sign is included in Eq. (1.42) for the reason that
the voliage tends to be retarding, i.e., 1809 out of phase with the beam
current. Similarly, ue have included a facter 1 in Egs. (1.456) and
(1.47) since the itransverse force tends to be 99° cut of phase with the

beam current. These factors are included for convention only.
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Inverting the Fourier transforms (1.45) and (1.47) allows us to

construct the wake functions from the impedances:

1 " o
W (2} = — de e-iwz/se 2 N(gysa
27 J-o
(1.48)
1 " o
Wpl2) = — dw e~ 192/ {7 L(w)sL
27 J-w

Equation (1.37), which retates the leongitudinal wake to the derivative
of the transverse uake alse gives a relationship betueen the longitudinal

and transverse impedances for a given m:

Zn"(&)) = = le(w) . (1.49)

For a resistive wall, the impedance that corresponds to the wake

€1.38) is

w
- Zgtlwdsi
c

Zn"lwdsL
(1.503

2 1

M

o172 [t - sgntw)il
TG D b2n+1 c

As we mentioned before, in reality the resistive wall constitutes only
a small part of the total impedance in an accelerator. In the SLAC
linac, for exampie, the impedance per cavity corresponding to the wake

W’ e shoun in Fig. & is pioctted in Fig. 19,
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Fig. 10, Real part of the longitudinal impedance (m = 8) for the SLAC
linac versus frequency ¥ = w/2y, up to § = 50 GHz. The impedance
consists of a large number of &-function spikes. The height of each
spike represents the area under the &-function. The spike corresponding
to the fundamental accelerating frequency at 2.84 GHz is not plotted.
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The ,impedance shoun in Fig. 10 consisis of a large number of
b~function spikes, each correspending to & mede of uwake field that can be
excited in the SLAC linac structure and atl these wake field modes have
m = 0. Hote that it is oniy the real part of the impedance that contains
&-function spikes. The imaginary part is a continuum; for each
&~function peak of Re Z ltocated at wp., there is an imaginary part Im Z
that has a long (@ - wg}™? tail around it. See problem 4(d) and

Eg. €1.53) later.

The fact that the impedance consists sirictiy of 6-functions is due to
the assumptions that the vacuum chamber uall is infinitely conducting and
that the cavity structure is infinitely perigdic. In case there is only
a small number of cavity structures in the entire pipe, the impedance
actua{!v looks like that sketched in Fig. 11. For modes whose
" frequencies are below a certain cui-off frequenc§ ~c/b, where b is the
pipe radius, the wake fielids are trapped by the cavity and ring in the
caviiy after the beam has left. The widths of these modes are determined
by the resistance on the cavity wall and are described by dw/w # 1/28Q
Rhere @ is the guality factor, typically of the order of 10%. Above the
frequency csb, the wake fieid leaks out of the cavity and propagates in
the pipe. The impedance in this region forms a continuum. Roughly, one
can obtain this part of impedance from that of Fig. 18 by spreading each
impedance peak into a width of Aw/w ~ 1/N, uhere N is the number of
cavities in series. For this reason, the impedances are often either
sharply peaked (below cut-off} or "broad-banded" (above cut-off) and not
too often in betueen. The correspending wakes either ring for a long

time or decay quickly after being excited,
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Fig. 11. Sketch of the real part of the impedance for a small number
of cavities in series.
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in addition to (1.49) there are a feu other properties of impedances

that we will now describe:

{i) Since the wake functions are real, Eqs. (1.45) and (1.47) mply

Za''¥{w) = Znli(-w)

(1.51)
Zat¥(w) = = Zut(-w)

i.e., Re Zq4" and Im Z4t are even functions of @ while Im Z," and Re Z4t

are odd functions.

€ii} The fact that the transverse wake satisfies Wu(0) = 0 gives

[=-]
J dor Im Zpi{e) = O
0
- €1.522
0 Im Z," ()
J de = 0
g w

£ii1} The real and the imaginary parts of Z,'"(w} must be related to
each other in such a way that they, together, gusrantees the causality of
the wake functions. The relationship is given by the Hiibert

transforms: 2%

1 ~ e Im 2w’
Re Zptlw) = - P.V. doy? e
ki J-® W -
€1.53)
1 ) Re Z"{w”)
Im 2w} = - — P.V. dy’ —m————-
T J-w W -w
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where P.V. means taking the principal value.® The same expressions apply

to Zpl. The proof of (1.53) can be found in Ref. 25.

The point of (1.53) is that, at least in principle, knowing either the
real or the imaginary part of the impedance, one can construct the whole
impedange as well as the wake function.

Probhlem 4. {a) Show that the circuit shown in Fig. 12(a) has an

impedance

R

R «
1+diQ | — - —
i [A] -]

where @ = RytsL is the quality factor and wp = 1//CL is the

resonant fregquency. This impedance is drawn in Fig. 12(b).
The Width of the resonance peak is aﬁout deo 5-wn/2Q if

a > 1.

(h) Make z Fourier transform on the impedance te obtain the

wake function

gl | n

¥ The integrals (1.53) are undefined without specifying P.¥. because of
the divergence at @’ = w. The trick of P.V. is io utilize the property
that the divergences on the side w’ <(®» and the side @’ » « are of
oppesite signs and, if the integration is taken in such a way that the
divergences on the itwo sides tancel each other, the integrals can
actuaily be weill-defined.
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Fig. 12. (a) An LRC circuit. (b} The impedance of the LRC e¢ircuit.
The solid surve gives the real part and the dashed curve gives the
imaginary part of the impedance. The guality factor Q is typically
either ~1 for a "broad-band™ impedance or ~18Y for a fine-tuned sharp
impedance. Xe have draun the case for Q = 5.
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where r = 2/¢, a = wrs28, & = J;;?-t—;E and Wy integrated
through the impedance section i1s equal to ZaR.

(¢} Shou that the real and imaginary parts of the impedance
satisfy the Hilberit transform relationship (1.53).

{d) Shouw that in the 1imit @ -+ » and R > o while keeping R/Q

fixed, the impedance hecomes

"R
Re 2 = =— — wp [ &E{w-wgl) + B(wtwp) ]
2Qq
R apg i !
Im2Z = [ + ]
29 R -t R

- The corresponding sake function is W(z) = Wpcoslwpzse) for

z > 0.

{iv) Energy loss consideration gives another generaj condition on
impedance,. Consider a beam wmhose m-th moment has a jongitudinal
distribution p{z-¢t). As this beam iravels doun the pipe, it Toses

energy at a rate [compare Eq. (1.23)]

de o %0
-— =z J dz p€2z) J dz’ p{z?) W nlz’-2) . (1.54)
dt -0 z

This result can alsc be written in terms of the Fourier transformed

quantities:

de o
— = 2mc? J do {F(w)]2 Re Z "(w)/L (1.55)
dt -w
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uherq

1 » dz ] )
plwy = — j — T IWZ/C 5(3) . ' {1.586)
2m J-w ¢

Since the beam as a whole can never gain energy from the pipe

structure, and this must be valid for arbitrary p and P, we conclude that
Re Zx"tw} 2 0 for all w . €1.57)

This is the complete condition that is only partially studied in Problem
3. It follows from (1.57) and (1.49) that the real part of the
transverse impedance Z,' is positive in the region w > 8 and negative in

the region w ¢ 0.

(;) The relationship (1.49) holds for a given m. There is no a
priori connection between the impedances of different m’s. On the other
hand, a rough connection betuween Zo" and 24% can be very useful if one
knous Zg! and wants to have some idea of Z4!. from a simple
dimensionpality argument, one expects 23" ~ Zy®/b? and thereforel®

2c
T4t~ —— 2%, (1.58)
be
uhere b is a length sharacterizing the vacuum chamber structure and is
most lTikely given by the radius of the chamber pipe. A factor of tuwo is
included so that this expression is strictly valid for the resistive wall
case, In general, the relation (1.58) describes only a gross averaged

behavier; it applies more or less 1o frequencies above the cut-off

frequency cs/b and is not to be confused with the exact relationship

€1.49).
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1.6, Parasitic Loss

The energy loss (1.54) or (1.55) is referred to as the parasitic
energy loss of the beam. It is valid for a beam traversing the impedance
once. In a circular accelerator, the situation is somewhat different.

As the beam traverses the impedance region, it not only sees the uake
field generated in this traversal but alse all traversalis made in

previous revolutions. The energy loss can then be uritten as

(take m = 00
de @ @ o
- = g J dz ptz? j dz’ p(z”) z W alkCrz’~2z2) £1.59)
dt -0 —co k=-w

where C is the circumference of the accelerator, k sums over revoiutions

and we have used the fact that W e(z) =0 if 2z ¢ 0.

It is more convenient to express (1.58) in terms of impedance. To do
so, we Will use the following identity (the Poisson sum formulal:

w 27 @
¥ Ftke) = — ¥ Feanprod _ (1.60)

k=-ew £ p=-o
where F{z), F(k) are arbitrary Fourier transform pairs. In other uords,
summing a function at a regular interval € is equal to summing over its
Fourier transform at the regular intervals 2wsC. Using (1.68), the

summation over W’y in (1.59) becomes a summation over the impedance Zp¥.
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Problem 5. Prove (1.60). As a special case show

o0
Y e = 27 3 &(x + 2mp)

k= p=-w

Let the total impedance in a circular accelerator be Zy". TYhe energy
loss of a beam per reveolution then becomes

L

Y = 2mclwe 3 |BCpugd|? Re Zo"(puwe) (t.61)
parasitic p=—cw
less
where wp = 2mcs/C is the revolution frequency. Here We see cohe example of

the usefulness of the impedance concept; Eq. (1.61} contains a summation,

while Eq. (1.59) involves a summatiocn and a double integral.

The parasitic energy lost by the beam goes into the wake fields.
Under unfavorahle conditions, this energy stored in the uake fieids wiil
be transferred systematicaily back to beam motion, causing beam
instabilities. This is the subject to uhich we will devote the rest of
these lectures. The parasitic energy loss, of gourse, will have to be

suppliied back to the beam by an rf accelerating voltage.
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11. ONE-PARTICLE AND TUQ-PARTICLE MODELS

In Section I, we studied the wake fields generated by a beam in an
acceleraior environment. We assumed that the particle distribution
within the beam is rigid and that the beam is unperturbed by the uwake
fields in its motion other than the parasitic energy losses. In this
Section II, we wili study the effect of the wake fields acting back upon
the beam, except that the beam is allowed only to have center of charge
motions and not internal motions. For this purpose, the beam witl be
represented simply as a point charge ~~ a single macroparticle without
internal structure. A few of these one-particle models, leading to

tongitudinal and transverse beam instabilities, will be studied.

The advantage of iniroducing the one-particie models is cbvious; it
offers an intuitive picture of some of the instability mechanisms. In
fact this simplified description is so bheneficial that uwe will extend it
and introduce a tuwo-particle picture, in which the beam is represented as
tuoc macroparticles interacting with each other through the uake fields.
This picture offers the opportunity of looking inte the instability
mechanisms associated with the internal degrees of freedom in the beam
distribution. A few of these fuo-particle models uill be included in
this section. A full account of the internal beam wmotions will be
postponed until Section III, uhere most of the results cbtained in

Section Il uill be rederjved systematically.
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The seven one-particle and two-particle models included in Sections
2.1 to 2.7 are not meant to be exhaustive. A two-particle wodel for the
longitudinal instability, for instance, is missing from ocur jist.
Hopefully, the reader will venture along these lines to make a more

compiete 1ist,

2.1. Robinson Instability

The rf accelerating cavities in a c¢circular accelerator are tuned so
that the fundamental mode® has its resonant frequency wp very close to an
integral auitiple of the revolution freéuency wg of the beam. This
necessarily means that the wake field excited by the beam contains a
major frequency component near wp ¥ hwa, or equivalenily, the impedance
Zo" has a sharp peak at wg ® hwg, where h is an integer called the

harmonic number.

As uwe will socn shou, the exact value of wp reiative to hwg is of
critical impartance for the stability of the beam. Above the transition
energy, the beam will be unstable is wgp is slightly above hwp and stable
if slightly below. This instability mechanism was first analyzed by

Rebinson.2? Since then, various apprcaches have been taken to describe

the mechanism of this instability.7,28-30

ke will begin with the longitudinal motion of our macroparticle beam.
Let 1h be the arrival time displacement of the beam at the accelerating

¥ j.e., the lowest m = 0 cavity mede. In Fig. 11, it corresponds to
the peak uith the lowest rescnant fregquency.
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cavity in the n-th revolution, measured relative to a fictitious
reference beam that circulates around the accelerator uithout executing
synchrotron motions. The rate of change of 7, is related to the relative
energy error 8, = AE/E of the beam in the same n-th revolutien3!

d
— 7n = - @ Tp Sn (2.1)

dn
where a is a positive constant cailed the momentum compaction factor and
Te is the revelution period of the beam. A positive Th means the beam
arrives earlier than the reference beam. Equation (2.1) is valid when

the beam energy E is above transition energy so that 5, > 0 means 71,

tends teo decrease.

The applied voliage at the accelerating cavity is such that the beam
receives more energy if it arrives early and receives less energy if it
arrives late, Again from Ref. 31, this gives

d Te (Jsz
—_ By = —— Tnp €2.23
dn a
where wg is the synchrotron oscillation frequency. Eguatiocns (2.1) and
(2.2), of course, define the unperturbed svnchrotron oscillation of the

beam. Typicalily, wg is wmuch less than the revoiution freguency

wg = 2w/ Tp.

Equation (2.2) is valid uhen the beam intensity is vanishingly small.
For an intense beam, the energy variation also depends on the wake field

generated by the beam. Let Ne be the total charge of the beam, the d&sdn
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equatipn then acquires an additiocnal term:

d Towg? NelL n

— &, = Th — 7 WnTg - kT = Tn + Tx) (2.3
dn a E k=-ew

where L is the toté} length of the rf cavity, W is an abbreviation of the
wake function W p studied hefore and we have changed freely the argument
of W from a distance unit to a time unit. The summ;tion over k sums over
the uwake fields left over from all revolutions previous to n. The
argument in the uake function is the time separation of beam positions in
the n-th and the k-th revolutions, Combining the twe Egs. (2.1) and
(2.3) yields the equation of motion

d?71 aTo NeZl

. + (wgTpl2ry = ———— } UnTg - kTg = 7 + 1) . (2.4)
dn? E k

In case the beam bunch has an oscilltation amp?itude much shorter than

the wave tength of the fundamental cavity mode, one can expand the wake

function

L UInTg - kTg — 7n + 7k} 2% 3 WlnTg - kTo)
k k

= ¥ (- Tx) W nTg - kTg) . (2.5}
k
The tirst term on the right hand side of (2.5) is a stati§ term
independent of the motion of the beam. 1t describes the parasitic less
already discussed before and can be taken care of by a constant shift in
the arrival time. We will drop this term altogether. The second term,

en the other hand, does invelive the dynamics of the beam. The quantity
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Th-Tk,is the difference of v’s and -- although we will not make such an
approximation -- resembles a time derivative dr/dn. An inspection of

Eq. (2.4} then immediately gives the expectation of instabilities since a

dr/dn term in a d?7/dn? equation indicates a possible exponential growth

of r.

Subsiifuiing (2.5} into (2.4), one gets & linear,equation for 7,
Obviously one can try to solve it staving in the time domain, but it
turns out that transforming to the frequency domain makes the mathematics

much easier, 1n the fregquency domain, Tn 25 a function of n behaves like
Th & e-inlTe {2.6)

uhere & is the mode frequency of the beam osciilation and is a key
quant{ty yet to be determined. An ansatz of the.ferm 2.6} works onily if
-the equation of motion is linear in tr. By writing doun.éz.a). the
probiem of solving the equation of motion becomes the problem of sslving
for . Equation (2.4) for 7, becomes
o Ne? L o
A2mwg? = ———— F (1 - eikQTo) yr(kTy)
ETp k=~w

The uwake function is then expressed in terms of the lengitudinal
impedance of the rf cavity using (1.48). An application of the identity
(1.60) gives |

a He?

7 lpweZlpuwp) = (puwetR)Z{pwe+R)] (2.7
ETg? p=-w

1)

ﬂz“wsz - i

where wg = 2n/Ty is the revolution fregquency.
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Givep the impedance, Eq, (2.7) c¢an in principie be sclved for §i. Here
we will take a perturbative approach and assume §I does not deviate much

from wg due o the wake fields. We thus replace $ by we on the right

hand side of Eq. (2.77.

In general, @ is complex. The real part of ¢ is the perturbed
synchrotron oscilliation of the heam motion, while the imaginary part

gives the grouth rate {or damping rate if negative) of the motion,

Equaticon (2.7) then gives
frequency shift At = Rel(R - wg)

a Ne?
= — 3 lpwe Im Zépwg) - (pugtusg) Im Z{pugtwel] (2.8
2ETolwe p=-w
and
growth rate -1 = Im(fl - wg)

a Ne? ®
= ———— ¥ (pwptws) Re Z{pugtwg) . (2.9)

2ETg2wg p=-co
Note that the imaginary part of the impedance contributes to a mcde

frequency shift and the real part of the impedance contributes to

instability grouth rate.

There are iwo terms under the summation for AR. As we will show later
in Sections 3.2 and 3.4, the first term comes from a static phenomencn
called potential-uell distortion, while the origin of the second term is

dynamies. Noite that the grouth rate 1-1 does not have a term due te the
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static potential-uell distoriion; mathematically, this term vanishes

because Re Z is an even functien of w.

If we consider the impedance due to the fundamental cavity mode, the

cnly significant coniribution te the grouth rate (2.9) comes from tuo

terms in the summation: n = h and n = -h. Assuming hwg »)> wg, ue obtain
aMNe? hwg
717 = —— [Re Zthugtwg) - Re Z(lhug-wg)] . (2.10)
2ETg? wg

Boam stability regquires 7°' ¢ 0. That is, the real part of the
impedance must be lower at frequency hwg+wg than at frequency huwg-ws.
This conditien implies that the resonant frequency wp of ithe fundamental
cavity mode shculd be siightly detuned downuards from an exact integral
muliiple of wg. The situation is sketched in Fig. 13. lhen this is

dene, the synchrotron oscillation of the beam is actualiy "Robinson

damped.®

2.2. Riqid-Beom Transverse Insiability

tie now consider a macroparticle beam executing a transverse betatron
osciilation, say in the vertical (y} direciion. The beam possesses an
instantanecous dipole moment He y(%). A particle that follous the heam ati
a distance Z behind sees, at time t + 27/¢, according to Table 1I, a
transverse wake force NeZ y(t) W{Z) in the vertical directien. The

equation of motion of the beam is therefore
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Re Z(w} .
“r {o)

Stable

hwg-ws hwat wg
ReZ{w} w
R
! (b)
Unstable
I
|
}
! |
! | S
B
huwg—w, hwg +w;
9-g2 2371413

Fig. 13, 1Iliusiration of the Robinson instability. The rescnant
frequency wg of the fundamental mode of the rf cavity must he slightily
lower than hwg for beam stability.
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Tdzy(t) NeZ &
— + wg? y(ty = — Y y(t-kTg) WCkTy) (2.11)
dt? meY k=1
where mg is the rest mass of a particle (not the macroparticle), ws is
the free betatron oscillation frequency, Te is the revolution period and

the summation over k sums the wake field over all previocus revelutions,

This model was first suggested by Courant and Sessier3? and also by

Pellegrini, 33.3%

0f course, an off-axis beam aiso possesses distribution moments other
than the dipoie moment. For instance, it possesses a monopole moment
{i.e., the total beam charge} and alsc higher moments such as the
quadrupole moment, The effect of the monopole moment has been considered
in Secfion 2.1 and does not give rise to a transverse uake force.
‘Effects due to the higher moments will be ignored as compared with the
dipole wake since the beam displacement v is considered to be much

smaller than the vagsuum chamber pipe radius.

One may still object since a dipole moment also generates a
longitudinal wake, which is not considered in Eg. (2.%11). Indeed,
strictly speaking, a rigorous treaiment of the problem must also include
the longitudinal motion of the beam. Thus, the wake functiion in the
betatron equation of motion (2.11) sheould be modulated by the.arrival
time of the beam while the synchrotron motion should be perturbed by the
1ongitudinal wake associated with the betatron motion. 0Only when this
coupied hetatron and synchrotron motion is considered does the system

strictiy satisfy the Maxuwell equations and becomes Hamiltonian. However,
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for praptica! purposes, as long as the synchrotron and betatron
frequencies are not ciose to a resonance condition wg % wg = nwg and the
transverse displacements are smalil, Eq. (2.11) still accurately describes
the transverse motion of the beam. This point will be discussed further

follomwing Eq. €3.47).

We wili again solve Eq. (2.11) in the fregquency domain. Let
v € exp(-iQt) and transform the wake function into the transverse imped-
ance according to Eg. (1,48), we obtain the following equation for {:
Hele o

3 ZCpup+} (2.12)
ETQZ p=—ta

n: - wpz = -1

where wp = 21/Tg. Assuming {1 does not deviate much from wg, we have

frequency shift A% = Re (f - wg)
Nelg w
% ————— ¥ Im Zlpwg + wp) (2.13)
2E n To‘z BP=®
and
growth rate ' = Im (fI - wg)
Heic ©
¥ - Y Re Z(pwy + wp) . (2.14)

?FE wg Tg? p=-a

Siven the transverse impedance, Egs. (2.13} and (2.14) are our final
expressions. MWe first note that if the real part of Z{w) contains sharp
rescnant peaks, there can be a transverse counterpart of the Robinson
effect. More explicitly, if a resonant frequency wg is close to hwg, an

integral multiple of wy, then
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Neig
7V 8 - ——— [Re Z(hwy + dptrp) - Re Zlhwp = Apwy)] €2.15)
2E wg Tt
where fg is the non-integer part of the betatron tune vg = wg/wy and we

have chgsen -1/2 ¢ 43 { 1tr2. For stability, wp should be slightly abave

by if 84 > 0 and helow hwg if Ap ¢ 0.

Problem 6. Using (2.14), shou that the instability grouwth rate 71 = 0
if vg = integer or if vg = integer + 1/2.3% This is true for

arbitrary impedance.

As another application of Eq. (2.14), Tet us find the instahility
-aroWwth rate for an accelerator with resistive wall. Subétituting the

transverse impedance (1.50), i.e.,

2 cTy

Z(w) = — — Juw|~- 12 Isgntw) - il , (2.186)
s bd

into (2.14), uwe obtain the resuit¥

* Applying (2.18) to the frequency shift (2.13) is more subtle; the
result will diverge or converge depending on houw the summation is
performed.3? The subtlety comes from the fact that the %transverse wake
force should vanish at 2 = 0 while the wake force corresponding to the
impedance (2.16) diverges for 2 = 0% and vanishes for Z = 0°. MWe will
not explore this point here since it is the growth rate, not the
frequency shift, that concerns us., Suffice it to say that after the
subtlety is removed, the frequency shift is finite.
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Ne? ¢
7t & - 6(Ag) €2.17)

b3E Wwp Tp Yrowe

uhere ue have defined3?
1 = sgni{p+dy)

6(dg) = — § ——— (2.18)
V2 p=-o {p+bg]t/?

The function $(Ap) is plotied in Fig. 14. e see that 6(3g5) is
positive (so that v-!' ¢ 0 and the beam is stable) if 0 ¢ 85 ¢ 172, and
negative if ~1/2 { & ¢ ¥. This means one should choose the betatron
tune below & half-integer. However, this conclusion is valid only for

the resistive walil case and for a different impedance the conclusion may

very Rell be reversed.

Mote that the stability criterion invariably involves the sign of A,.
Jhis is because the beam oszillation is damped or.antidambed depending on
the relative phase betueen the wake force and the oscilliation (damped if
the wake force leads the osciilatien and antidamped if the reverse is

true) and the relative phase is determined by Ag.

2.3. Beam Break-Up in Linacs

in linear accelerators, wake field effects impose an important
Timitation on the maximum beam intensity that can be accelerated.
Although we are mainly interested in coherent instabilities in circular
accelerators, the instabilities -- or beam break-ups as they are called
=— in a linac are actualiy the basic mechanisms underiying many of the

instabilities in the circular acceleraters and deserve to be looked into.
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4371A14

The function 6{Ag4).

Fig. T14.
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In this section we will discuss three wake field effects in a finac,
using a model in which the beam is represented as tuc macroparticles each
cantaining N/2 particlies, separated by & distance 2. The three effectis
are due to the m = 0, 1, and 2 components of the uake fieid,
respectively. In a linae, the separation of the tuwo macreparticles does

not change in time.

First the m = 0 wake. The particies in the traiiing macreparticle see
a longttudinal eleciric field left behind by the Teading macroparticie
and ltose energy at a rate

de c Hel W o(2)

T — . (2.19)
dt 2

Because of this less, the beam acquires a spread of energy amenyg its
particles. Take for instance the SLAC linac with N = 5 X 10'%, Z = 2 mm,
accelerator length L = 3000 m and, fram Fig. S(ai, Wo(Z) = 0.8 cm™2, ue
find this energy spread is roughly 1.0 6eV, which is not negligible. As
pointed cut in Loew’s iecture,?5 most of this spread ean be removed by
properiy phasing the accelerating rf voltage relative to the beam so that

the energy spread is more like 1/4 GeV or so at the end of linac.

The second effect we will study is the transverse dipoie beam break-up
instability {m = 13. In our tuo-particle meodel, the leading

macroparticle executes a free betatron oscillation

yalt) = ¥ cos wpt , (2.202

while the trailing macroparticle sees a deflecting wake #ieid lefit behind

by the leading macroparticle, Thus
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NeZ Ms(Z)
' ﬁz + waz Y = = Y4
2mo¥
He? W, (2)
T em——— § co0s Wt . (2.21)
2m07

In uriting doun this equation., ue have assumed that waZs/c ({ 1 so that
one can ignore the betatron phase slip $from bunch head to tail due to the

difference in their times of arrival.

Equation (2.21) shous that the mechanism of beam break-up is that
particles in the tail of the beam are driven exactly on resonance by the
oscillating wake left hy the head of the beam. The solution te (2.21) is

Ne? N1(2)

yz(t) = ¥ [ cos gt + t sin wpt ] (2.22)

daiy mo?Y
in which the first term describes the free oscillation and the second
term is the resonant response io the driving term. WNote that the
amplitude of the second term grows tinearly with time. At the end of the
linac, the oescillation ampiitude of the tail macroparticle has groun a

factor of

Ne? W4(Z) L
By = ——— . {2.23)
4ug MY ©
For a beam bunch with realistic distribution, the off-axis motion of
the head of the bunch deflects the tail of the bunch so that the hunch is
distorted into a banana shape as sketched in Fig. 15(a). Obviously, if
the beam intensity is too high, the tail particles may acquire tvo large

an amplitude and be Jost from the beam.
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Tail {o)
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Fig. 15. Sketches of the beam shape when the bunch is vndergoing
ta) dipole beam break up and (b) quadrupole beam break up.
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The third coherent effect we want io study is the transverse
guadrupole beam break-up instability (m = 2). What happens here is that
the quadrupoie wake field generated by the bunch head perturbs the

focusing force that acts on the bunch tail, leading to an instability.

To describe the quadrupole wake, it is better to imagine that the
Jeading macroparticie is actually an elliptical-shaped slice of charge
possessing a guadrupole moment but ne dipole moment. The quadrupole
moment exXecuies a free betatron osciliation with frequency 2uwg, i.e.,

<V1z> = iz cos 2wgt.

Just like the dipole beam break-up, the guadrupole instability is also

a result of 2 rescnant excitation. The equation of motion of the

trailing particle is

Ne? W,(Z)
V2 + wp? y; = ——————— {; cos{2ugtly: . (2.24)
mg¥
The driving term on the right hand side is obtained from Table II.
Equations of the type (2.24) are unstable just like equation (2.271} is.

1f we let y; = § ¢o5 wgt be the unperturbed zeroth order solution, one

finds by a first-order perturbation calculation that¥*

Ne? K,(2) 1,

Yy ® [ cos wpt + t sin wat ] . €2.25)

dup MmpY

¥ A perturbation calculation applied to equations of the type (2.24) -~

the Mathieu equation -- can be misleading; a simple freguency shift can
be mistaken as a behavior of the type (2.25). Here, heowever, since the
driving term is exactly on resonance, the perturbation caiculation does
apply. See Ref, 36.
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Hote the similarity betueen Egs. (2.25) and (2.22). The oscillation
amplitude of the tail particle therefore grows by a factior
NeZ W,(2Z) 1.t

Nz = . €2.26)
dug mpY ©

Fig. 15¢b) is a sketch of the beam shape when the quadrupole beam break

up is taking place.

We have now discussed the wake effects in a linac in terms of a highiy
simplified beam model. Generalization to realistic beams is
straightforward although often not trivial. Interested readers should

read Refs. 37 to 42 and the references quoted therein.

Analysis similar to the above can be applied to higher. values eof m.
For instance, m = 3 requires the consideration of tuc triangular charge
slices., MWe then obtain a strength parameter n, that resembles
Egs. (2.23} and (2.26). As m increases, the strength parameter decreases
roughly uith (arb)I®, uhere a is the transverse beam size and b is the

pipe radius.

2.4. Strong Head-Tail Instability

There is also a dipole beam break-up mechanism in a circular
accelerator. It will be called the sirong head-tail instabiltity here for
reasons to be discussed in Section 2.6 and also in the paragraph

preceding Eq. (3.71). The difference from the linac case is that now the
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tuo macroparticlies are no longer frozen in their retative longitudinal
positions. Instead, both macroparticies, each ccntaining a charge Nes2,

execute synchrotron osciliations with a siow frequency wy.

ke assume the synchratron oscillatiens of the tuwo particies have eqgual
amplitude but opposite phases. Ouring time 0 ¢ t ¢ T5s/2, where
Tg = 2u/ws, particle 1 leads particle 2; the equations of motion for the

tuc particles are

0

I

V1 + wp? vy
(2.27)
Nez Wu
Vo + wp2 vy, = — v,
Zmoy
Similarly, during 7572 { ¥ ¢ Tg, we have the same equations with indices

1 and 2 suitched. Then during Tg ( t ¢ 3T.r2, Egq. (2.27) applies again,

etc. This model was first suggested by Kohaupt®? and Talman."h-%S

In uriting down (2.27}, uwe have assumed for simpiicity that the wake
function W is a constant, and yet it vanishes before the beam compietes

one revgiution, i.e.

9 it 2 L9
Ma(Z) = We if 8 ¢ Z { beam length . (2.28)

G i¥f 2 » beam iength

We will nou analyze the stability condition of the system. We start

with (2.27); the solution for vy is simply a free betatron oscillation:
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‘iwpt

¥it) PERLY {2.29)

£
n

uwhere

Fa = yq ¥ — $4 . (2.30)
wg

Substituting €2.29) into the equation for y; yields the solutien

“fwptl HeZ U, ~iugt
yo2(t) = Re [ Be + i ———— 410} te ]
Awg mpY

(2.31)

The first term describes the free betatron oscillation, while the second
term is the rescnantliy driven respeonse. Equation (2.31), of course, has

its linac counterpart given by Egq. (2.22). The coefficient B depends on

the invtial conditions v,(0) and $¥;(0).

Equation (2.31) can also be written in terms of the phasor ¥y if
wpTs72 > 1, or equivalently, wp 2> wg. The resuli is
“iwgt HeZ i, -jupt
(1) = §3(8) e + i ————= F,(0) te . (2.322
4&5 'R 4
We have thus solved the equations of motion during the period

0 ¢t ¢ Tgr2, MWritten in matrix form, uwe have

= e » £2.33)
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where [ef., Eq. €2.23)] we have define the dimensionless parameter

NEZ “n Ts

By = — . (2.345
8wg g?¥

From the properties of wake functions, we know 7, is positive.

The time evoiution during Tg72 ¢ § ¢ Tg can be cobtained hy
interchanging indices 1 and 2 in the above analysis. The tatal

transformation for one full synchrotron period is therefore

WV -iwpTg 1 17 1 1]

[}]
@
2l
>

Te “ 0

1
m
)
-
£
k-]
-
w
-l
1
=
-
~
-l
3
-
bt
-

(2.35)

—
=3
-t
—
b}
(]

As time evolves, the vector formed by the phasors ¥, and ¥; is
repeatediy transformed by the 2 X 2 materix in (2.35). Stability of the
system is thus determined by the eigenvalues of this matrix. The tuo
eigenvaiuves for the two modes -- a + mode and a - mode -- are

1

Ar o= etit L gesp o= 1 - = 7,2 . . {2.36)
2

Stabi]ﬁtv requires i = real, which is fulfilied if |cos ul €1, or

m ¢ 2 . €2.37)
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For ueak beams, the grouwths made during the half synchroiron periods
when the particie is trailing do not accumulate and the beam is stable,
As the beam iniensity increases, 7y exceeds 2, the growths of the
particlies then deo aceumulate and hooistrap into an instability. This
threshold behavior is very different from the Vinac case n which the
heam -- at least the tail of it -~ is always unstable. One can imagine
that, by periodically switching the roles of being the leading and the
trailing particles, the two-particie beam is made more stable. The more
frequently they are suitched, the more stable is the beam. This shous up
in that %4 is proportional to T4. Synchrotren oscillation is thus an
effective stablizing mechanism. The fact that %4 is inversely
proportional to ¥ is because high energ& particles are more rigid in

their motion against perturbations.

It would be interesting to Fourier analyze the center-of-mass signal
yityz to examine its frequency spectrum since the center-of-mass signal
is easily observed experimentally. TYhis is straightforuard to do and

here we give the result. In the stable region, the * modes contain the

following frequencies:%6

B
+ mode : wg * Bwg - — wg , R = even
2%
(2,383
1]
- mode : wp +* Rug + — wg , R = odd
in

Hote that each mede contains a multiple of frequencies when observed

continuously in time. Figure 16 shous the specirum.
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Fig. 16. Frequency spectrum of the center-of-mass signal of the beam in
the stable region 14 < 2. The solid lines are the sprectrum of the +
mode and the dashed lines are that for the - mode.
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For Leak beams (i.e., small 7543}, the two macroparticles move up and
down with the same phase in the + mode and out of phase in the - mode,
As M9 Increases, the mode frequencies shift and the particle motions
hecome more complicated; each mode then contains a combination of in-

phase and cut-of-phase motions. At the stability limit n¢ = 2, the

frequencies of the tuo modes merge intoc each other and become imaginary,

which means the beam is unstable.

Figure 156 shous the result obtained for a two-particle beam assuming
the wake (2.28). MWe will shouw later (see Fig. 35) the result of a more
sophisticated calculation assuming the same wake but taking fully inte
account the internal motions of the beam. Heluill then find that Fig. 16
does offer a qualitative description of the beam spectrum for £ = 0 and
£ = -1 modes. It is not surprising that the tuo-particie model fails to

describe the behavior of the higher modes.

One might want to have an idea of what happens in the unstable region.
Suppose dHe are slightly above the instability threshold so that 7, = 2+¢
kith € < 1, Equaiion (2.36) can be used to find the instability grouth
rate: 11 = 2J;/Ts. Nete the square root dependence of 77! on €. This
means a small & can give rise to a sharp grouth rate; for instance, 10%
above threshold gives 7 2 Tg. One consequence is that feedback systems
are not very effective to bring the bheam in{ensity substanti%]ly beyond

the threshold unless the feedback damping rate is at least comparahle to

g,
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2.5. JTransverse Buadrupole Instability

It does not require too much stretching of the imagination ts suspect
that there is also an instability which is the circular accelerator’s
counterpart of the quadrupole beam break-up in linacs. By pbserving the
similarity between (2.25) and (2.22), we expect to find a stability

condition that assumes the form
ny & 2 (2.39)

where, with Ko the constant quadrupple wake function and a the rms radius
ef the unperturbed beam cross-section,
Nel Wy a2 Ty
gz = — . £2.49)
4(«?5 Mo?¥Y

What happens here is that the throbbing motions of the itwe charge
slices couple through the quadrupole wake force, leading to instability.
At this point, the reader may want to read Ref. 4, in uhich the various
throbbing beam instabiliities are discussed under the assumptien that

synchroiron motions can be ignored.

We uilt nouw show the stabitity critericon (2.39) somewhat more
elaborately. For this purpose, ue represent the beam by two elliptically
shaped charge stices, each slice is described by a symmeiric 4 X 4

z-matrix whose elements are the second moments of distribution, i.e.



{(x2>; xR 0 ]
{xky; x> 0 0
Iy = , 1= 1,2 . (2.41)
8 0 <y2); {yyd;
0 0 Cydds {92y;

e have assumed the ellipses are upright in the x-y plane.

We first concentrate on the leading slice. The moments of the slice

execute free betatron oscillations. The equation of motion is

£, = 05, + 5,0 (2.42)

where a tilde means taking the transpose of a matrix, and

0 1 0 0
Wyl a g ]
2 =
9 0 8 1
b} D -wy? 0

with wx and wy the betatron frequencies. Eq. (2.42) has the solution

T(8) = T 50 F (2.43)



where

cos tt

~y 5in wyt
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- 5in w,i
Wy
c0S Wyl
]
0

oS Wyl

_w, 5in wyt

1
— sin @yt
Wy

cas @yt

In the folleouwing ke will do a perturbation salculation. Let

{xTy;

{REY;

<yPYr;

{93;

i

a% + Ay

0 + Bxi

Wyx?a? + Cyj

al + Ay;

B“"Byi

@yta? + Cyj

(2.44)

The first terms on the right hand sides are the unperturbed values and

the second terms are small, time-dependent perturbations.

assumed that the unperturbed beam is round with rms radius a.

Since the beam emittances ({x2»;<nZy; - (w&>»;8)172 and

We have

(Cy2yi<p2>; - (y9>;2)1'72 are constants of the motion, it follous that

WxfAyi * Cxi and wy2Ay; + Cy; are invariants.

stability infoermation,

Without 1osing any beam

we are therefore free to choose the constraints
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=~ wx? Axj

Cyi - Wy'z Ayi ’ i=14,2

in terms of the periurbation moments, Egq. (2.43) can be wriiten

explicitly as

Bas (0)
Agqft) = Apq(B) cos 2wpt + — sin 2uwpt
“n
(2.45)
B|31('t) = = ngg"(ﬂ) sin 2(Jgt + Bpq4{8) cos 2w|3t r B =,y .

Equation (2.45) describes the free gquadrupole oscillation of the first

slice. The osciliation frequency is 2ug.

Stice 1 leaves behind a quadrupole suake force that, according teo
‘Yable II, is equivalent to the force due to a quadrupoie magnel with a
gradient B,/dx = -NeWo({x234~¢y2>,) = -Nelgl{A1-Ay1). This uake

contributes an additional term to the equation of wmotion for I, i.e.

£z 0= Q3 ¢ D8 ¢ ————— (Ayxq ~ Ayy) . £2.46)

This equation can be integrated exactly, but we will keep only the

resonant terms, vielding the result

T, = T S§F (2.47)
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khere
Ne? kg a?t
S{E) = E,(02 ¢+
2wmoY
1
= = B (3) A,:(0) 0 ]
Wyt
Ay (D) B,y (D) 0 0
x
1
ﬂ G -— By1(0) Ry1(0)
Wyl
0 0 Ayi (D) Byq (1)

We have assumed wy and wy are different so that there is no resonant
coupling betuween the two dimensions. The x and y motions thus decouple
and ue need only to consider one of the tuo dimensions. HNote that the

second term in S is proportional to t.

The solution (2.47), written in terms of the perturbation woments, is

. B,(08)
Az{¥) = Az(0) cos 2wat + sin 2ugt
“n
NeZ Hg a®t Bq€03
+ [ - cos 2wgt + A4(0) sin Zwpt ]
2meY g wn
{2.48)
B2(t) = - wa Az(0) sin 2wgt + B(0) cos 2wt

¥

Ne? Wp aZt [ By(Q)
[ sin 2wpt + A1€0) cos Zwgt ]
2moY Wa



-89-
He haver dropped the subscripts x and y on A’s and B’s, and wg is either
Wy or wy depending on wuhich dimension is being considered. Equations

(2.45) and (2.48) are our soluticns during the fime 0 { t { Ts/72. If ue

now form two phaseors

By
81 = A¢ v i —
“a
(2.49)
B2
G2 = Az + 1 — P
Wa
the transformation from t = 0 to t = 7572 is found toc be
[ —lwpTs 1 0 Q4
- = e (2.502
Q2 in2 1 Q2
t=Tgr/2 : 0

uhere wz is the parameter defined in €2.40),

Equation (2.50) looks almost identical to the dipole result,

Eq. €2.33). The same analysis aof the previous section then leads to the
stability criterion (2.39). The freguency spectrum of the quadrupotle

oscillation, of course, clusters arcund 2wg.

2.6. Head-Tail Ipstability

In our analysis of the strong head-tail instability in Section 2.4, ue
have assumed that the betatron and the synchrotron motions are decoupled

trom each other. By doing so, we have ignored an important source of
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instabiiity knoun as the head-tail instability,26,%%»%5,%7-%% {5 ghich ue
now turn. This instability is one of the cieanest to be observed

experimentaliy. 50:3%1

The betatron oscillation frequency of a particle in a circular
accelerator depends on the energy error § = AE/E of the particle. If we
denote that bhetatron frequency of an on-momentum particle as wg, the

betatron frequency for an off-momentum particle can be uritten as

wa€Bl = wp t wekd ’ (2.51)

where wp is the revolution frequency, ¢ is the chromaticity parameter

determined by the accelerator lattice. .

In Section 2.4, we have used the time of an external clock as the
independent variable. This is no longer convenient here because nou we
have to consider synchrotron motions and the varying time-of-arrival
complicates the analysis. We will therefore choese the longitudinal

coordinate along the accelerator, s, as the independent variable.

Let us first examine the free betatron oscillation in the absence of
the wake field. The accumulated hetatron phase is given by an

integration of (2.51), 1i.e.

j wg (8) dss/c WpS/t + Wok J & dssc

Euo
wps/c - — 71(8) (2.52)
a



._91._
where a.is the momentum compaction, v is the time displacement and use
has been made of Eq. (2.13. This is already a remarkable result; the
modulation of betatron phase due to the chromatic effect depends oniy on
7 and not on oiher dynamical variablies such as §. The moduiation, of

course, 15 siow and weak.

We now consider tuwo macroparticles whose synchrotron oscillations are

given by

Ty = T sin(wss’sc) and T2 = - 1, . {2.53)

where wg is the synchroiron oscillation frequency. Particle 1 teads
particle 2 during 0 € s/¢ { §/we and trails during nmruwg { s/¢ ( 2n/0s.

The free betatron oscillations of the tuo particles are described by

fwp : WesS
ya{s) = ¥, exp | - iwpssc + § — 3 sin —
X a c
(2.54)
[ Fwg WssS |
v2€8) = ¥, exp | - dwgsse - 1 — ¥ sin
a c )

As the particles exchange their roles of being a leading particle and a
trailing particle, the betatron phases are such that the leading particle
aluays lags in phase behind the trailing particie if £ > 0 and the
situation reverses if £ ¢ 0, as shoun in Fig. 17. The factor fweT/a is

called the “head-tail phase.®

The guantities yy{s) and y;{s) are the displacements of the tuo macro-

particles as chbserved at a fixed location s. One revolution later, their
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Fig. 17. The svynchrotron osciilations of a tue-particle beam;
b¢g = $5(1) - $#5(2) is the difference of the betairon phases of
the tuo particles.
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displacements observed at the same Tocation will he yy,(s+C) and yp{stC),

where € i1s the accelerator circumference,

Recalling the strong head-tail instability studied before, the
trailing particle is always unsiable due to the resonant driving by the
wake generated by the leading particle; the grouths of the tail particle
during the half-synchrotron-periods are strong, but below a certain
threshold, the synchrotron osciilation washes auay the growths and the
net result is that the beam becomes stable. The additional chromatic
term that we are studying now does not have this fartunate property. As
we shall see, the ueak grouwths associated with chromaticity do accumulate
persistently from one hali-synchroiron-pericd to the nexi, thus slouly

build up an instability. Ne shall aisc see that there is no threshold

behavioer in this instability.

Let us look at the motion of particle 2 during 0 ¢ s/¢ ( 7/ws in the
presence of the wake field. The wake function, we assume, is that given

by (2.28). The equation of wmoticen is

diy, EoTe @es |2 Ne? g
¢z + | wp + ces y, T v . (2.55)

ds? o c 2oy

The vy, on the right hand side is given by the free oscillation result
{2.54). 1If¥ we let y; also be given by (2.5%4), but allouing ¥; to be
slouly varying in time, Eg. {2.55%) leads to an equation for ¥;:

d iNe? Wg Eug WsS

— Yzls) &% ——— P4(0) exp 2i — T sin
ds dmoYwpt & c

(2.58)
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For most practical cases, the head-tail phase fwgfs/a is much less than

unity, the exponential in (2.56) can be Tayior expanded and y; can be

integrated to yield

iRe? W, 2ifuoTe W@sS
¥208) = {0 + — §,(0) [ s + ——— |1 - cos ]
dmeYwpe Qg

c

(2.573
The first term in the brackets is the rescnant response already studied
in Section 2.4, The second chromatic term is small because it is
proportional to the head-tail phase and aiso because i1t is not a resonant
response. HNoie that the chromatic term is 90° ocut of phase from the
resonant term; this result follous from the fact that the chromatic
effect modulates the phase, rather than the ampiitude, of the free

betatron oscillations.

The transformation from s/sc = 0 {0 s/¢ = w/we is thus given by

Vs i 0 V1
= (2.58)
Ve iny 1 V2
T/ W 0
where
mHeZ Hp dtwpT
Ny = [ 1+ i ] . (2.59)
dmp¥ wplis 113

This %4, of course, reduces to (2.34) if ¢ = 0. Note that now m is

complex.

A similar procedure applied to the peried w/wg ¢ s/¢c { 27/0s leads to

the transformation
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¥ 1 My

“1
-

(2.60)

hy
)
o
—
ha)
~

Z}E/(ds RlUg

As uwe did before, the stabiltity of the system is determined by the

total transformation matrix

1 i 1 0 1-712 i

0 1 it 1 5 2 1

The eigenvalues of this matrix have been obtained before in Egq. (2.36).
For a weak beam intensity, |n1| {{ 1, the two eigenvalues are
2174 :
Ar 2 e . (2.61)
The + mode (- mode)} is the mode when the two macroparticles oscillate in

phase (out of phase) in the 1imit of weak beam intensity. The imaginary

part of 7m4 thus gives a grouth rate of the bhetatron oscillations. HWe

find

Nezuo E%No
i~V = 3 - . (2.52)
2mmpYuwg o

The + mode is damped if £ > D and antidamped when ¢ { 0. The - mode
is damped if & ¢ 0 and antidamped when ¥ > 0. UKe conciude from this
resuylt that the only value of ¥ that assures a stable beam is ¢§ = 0. ©n

the other hand, as we will see much later using a Vlasocv equation
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technique, the two-particle model has over-estimated the grouwth rate of
the - mode. This consideration, together with the presence of some
stabilizing mechanisms such as the radiation damping in electron storage

rings, leads us to choose slightly positive values for ¢ for rings above

ftransitiaon.

2.7. toupling of Muttiple Bunchesg

So far we have itreated a beam that has oniy one bunch of particles.
in this section, we will consider a beam that has two bunches circulating
in the same direction in the acceleraior. Each bunch is represented as a
point charge Ne and the tuwo bunches are separated by half the accelerator

circumference. HHe will specify the tuwo bunches by indices 0 and 1.

We assume that a transverse m = | wake force is functioning. The
equations of motion for the two point particlies are
He?

90(t) + NBZ YQ(t) = —
Y

x 2 [N(kTo + To/2) yqe(t - kTg - T723 + WlkTg) yo(f—kTo)] . {2.83
k

and another eguaticen with yp and y4 exchanged. The index k sums over all

previous revolutions.

Let the tuo bunches be executing itransverse motion in a mode with

frequency fI, i.e.,

Vo,1(t) = ¥o,q e it . (2.64)
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The compliex guantities Vp,1 give the amplitudes and phases at a fixed
time t, i.e., they are the "snap-~shot" gquantities rather than quantities

observed at a fixed location.

Substituting (2.64) into (2.63) and assuming & is close o wp, we

chtain
(1 - wg + wpNal¥o + g M V2 = O
(3.65)
wg N Yo + (0 - wg + wpHad¥e = 0
where we have iniroduced two dimensioniess quantities
Ne? itJBi(To
na = ¥ HkTy) e
ZMQZMQT k
(3.66)
Ne? iwn(kf!/Z)Tu
ng = T W(kTo + T572) e -

2ugmgy k

The only sclution to the abeve pair of equations is the trivial solution

Vo ¥ U3 = 0, unless

fi-wptwaha Wwg B
det

1l
(=]

(2.67)
W Mo fi-wg+wgna

In other words, in order for a mode to exist at ail, ft must satisfy

Eg. (2.673. Solving Eq. (2.67) gives tuwo vaiues for §i:

g = wagll - na ¥ np) . (2.633
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Expressed in terms of the transverse impedance, Egq. (2.638) reads
iNeZc ©
s —wg = -~ ——— 3 {1 £ (-1)P] Zlpuy + wg) . (2.69)
2ngng p=—w

1t feilous that the + mode is affected only by the impedance sampled at
pila*wn With even p’s uwhile the - mode is affected oniy by odd p’s.
Compared with Egq. (2.12) for a single cne-particle bunch, the right hand
side contains an extra factor of two but the summation over p is twice

more sparse. Hote that N is the number of particies per bunch.

Substituting (2.68) into {2.65), e find that the tuo bunches
oscillate in phase for the + mode and out of phase for the - mode, i.e.,
Vo = Vs for + mede

£2.71)

Ya = — ¥, for - mdoe

For this reason, the + mode is also called the 0 mode and the - mode is

called the w mode.

The property (2.70) has a generalization to the case of M equally-
spaced, egqual-intensity bunches.2%:32 Then there uill be M oscillation
modes of the bunches; each mode is specified by an index p which assumes
the vaiues 0,%,...:M1. The ampliitudes of the M bunches, as the uhole
beam is executing the p-th mode. are given by

() -2minp/M
Yn x e N 2.71)
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where no = B,1,...,M-1 is the index specifying the bunch number. If

M =2, {(2.71) reduces to (2.78). The oscillation amplitudes y, in

various modes are shoun in Fig. 18 for M = 4.

Problem 7.

Probiem 8.

follow the procedure of this section to Work out the case
for a beam with M equal bunches. Show that the amplitudes

ef the bunches are given by Eq. (2.71).

onsider a beam with 100 bunches, each affecting onty the
next bunch through the wake fiald. Study the stability
conditions on the coupled bunch modes. Show that 50 modes
are stable and 50 modes are unstable. #hat happens to those
modes and their stability % ue remove one bunch from the

beam so that the "logp"™ is broken?%?
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Fig. 18. Coupled bunch modes for a beam with four bunches.
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,ITI. PERTURBATION FORMALISM OF BUNCHED BEAM INSTABILITIES

In Section I1, we have studied instability mechanisms using hightly
simplified models in which the particle beam is represented either as a
single point charge without any internal structure, or as two point
charges interacting with each other through wake fields. This approach
offers intuitive pictures of the physics of several coherent

{

instabiiities encountered in high intensity accelerators.

However, these simplified models de¢ have their limitations. 0One
Timitation is that the quantitative predictions of these models are
rather crude.® Another is that the instabilities are treated one by one
and it might be desirable 1o have a more formal treatment that puts these
instabilities into one framework. Still another limitation, which is
perhaps more serious, is the fact that many instabilities .observed in
circular accelerators involve higher oscillation modes in the
langitudinal structure of the beam. A few of these modes are skeiched in
Figs. 19(a) and 19(b).53% (We have used the symbol £ to denote the
longitudinal mode number. This is not to be confused uith the mode
number m we have been using for the transverse modes.) Tuov-particle
motels cleariy do not suffice to study any mode with mode number higher

than £ = 2.

* To have a more drastic example, substitute the LREC-cireuil impedance
given in Problem 4 into the frequency shift formula (2.8). The 1w
tail in the imaginary part of the impedance makes the summation
divergent.
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Fig. 19. sketches of the louest few modes in the longitudinal structure
of the beam. Successive "snapshots™ are taken for each mode as the beam
executes collective (al) longitudinal (m = 0) and (b) transverse (m = 1)
motions. These sketches represent the behavior at lou beam intensities.
The mode patierns become more complicated as the beam intensity
increases. The mode withm = 0 and £ = 0 is static.



- 103 -

One could of course inerease the number of macroparticles in the
model, but as soon as there are more than ituo macroparticles in the
system, the analysis aleng this line becomes cumbersome. A compuier
tracking program may be used to extend the model to anywhere from three
to a few thousand macroparticles, but dealing with 108%2 particles this

ray seems hopeless.

The solution to this difficulty is to go to the other extreme in uhich
idealily one would have infinite number of particies, and then appiy the
result to our 10'Z-particle system. 1In this approach, the motion of the

beam is described by a superposition of modes rathar than a collection of

individual particles.

In principle, the "mode representation™ and the "particle
representation™ of the beam motion are identical. "To describe foully 1512
particles, one needs 18'2 modes, and vice versa. The detailed methods of
analysis in the tuwo approaches are different -- the particle
representation usually is conveniently treated in the time domain, while
in the mode representation the frequency domain is meore convenient -- but

in principle they necessariiy give the same final resultis.

In practice, the mode representation does offer a formalism which can
be used systematically to treat the stabiliiy problem and, in many cases,
be used to obtain analytic results for arbitrarily high mode numbers.

The advantage over the particle representation in these respects will

become obvicus later.
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In Section 3.1, the basic matheimatical tool, namely the Viasov
equation, % %% uged for the mode representation of the beam motion will
be discussed. This Vlasov technique is applied in all following
sections. In Section 3.2, we discuss a phencmenen in uhich the
longitudinal wake field distorts the parabolic potential uell formed by
the acceterating rf veltage, and as a result, the longitudinal beam
distribution gets deformed.5%%7 Such a phenomenon is depicted as the

static mode with m = 8 and 2 = 0 in Fig, 19¢a}.

From Section 3.3 on, a perturbation ireatment of the Vlascv equation
that leads to the evaiuvation of the mode frequencies and mode
distributions will be presented. The stabiliéy of the beam requires that
all modes be stable; if any one of the modes has the potential of growing
exponentiaily, the beam will not be stable. A critical analysis of the
éodes therefore ieads to the stability criterion of the beam. The
technique of mode analysis that ue will follow was largely developed by

Sacherer,5%+%?% and supplemented and extended by a number of others.59-79

Strictly speaking, in a complete treatment of the beam-environment

system, an oscilliation mode X is specified by the quantities
yid)y, Fexy Bedy, gpd atM .

where ¥(*) §s the beam distribution functicﬁ, (A and B2 are the
electromagnetic wake fields and R{*) is ithe mode frequency that describes
the time dependence. To study such a problem would require setting up
and solving the "Vlasov-Maxuell™ equations in which E(») and BYA) appear

in the Vlasev zquation as the forece terms and ¥(A) zppears in the Maxuell



- 105 -
equation as the source term.55 This sclution scheme is difficult to
handle, but fortunately it is alse not necessary. RBhat we have done in
the previous sections has allowed us to express E{?) and B(A) directly in
terms of ¥(*! through the wake functions. After doing so, the number of
variables of the problem is greatly reduced and one needs then only to

soive the Viasov equation for ¥{*) without having to pay attention to

210 and BOM).

He need first to linearize the Viasov equation; this wilil be done in
Section 3.3. Modes will) be found in Section 3.4. Stability conditions
are then discussed in Section 3.5. It turns out that when the beam is
unstable, particies Rill not be tost from the beam but the bunch length

and the energy spread of the beam will increase; we will discuss why this

occurs also in Section 3.5,

The three Sections 3.3 to 3.5 treat the longitudinal motiocns. The
Sacherer formalism also applies {o the transverse dipole motion of the

beam. This motion Wwiil be treated in Sections 3.6 and 3.7.

3.1. Ihe ¥lasocv Eguation

The Ylasov egquation is an eguation that describes the colleciive
behavior of a system consisting of a large number of particies under the
influence of electromagnetic forces.®%:5% To construct the Vlasov

equation, one invariabiy begins with the single particle equations of

motion

*e
H

iz, p, B
(3.1
gi{x, p, t)

b= L
1l
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1¥ the system is conservative, i.e., if the system is not influenced by
any damping or diffusion due fc external sources,* we have the conditions

that f = 2H/2p and g = ~dH/2x where H is the Hamiltonian. Therefore,

of 2y
—_— o e— = 0 . (3.2)
P34 2p

The {x,p) plane is calied the phase space. The state of a particle is
represented as a point in the phase space. UHe sometimes do not
distinguish betusen the representative point in phase space and the
particle itself; although someuhat ambiguous, this should not cause any
major confusion, As uwe will see, the construction of the Vlasov equation

is pretty much a fechnigue of drawing boxes in the phase space.

Particles move in phase space. For a particie_executing a simple
harmonic motion, for example, its representative point in phase space
moves in a circle with angular speed w. If a group of particles all
execute simple harmonic motion with the same @, the disiribution of
representative points rotate rigidly in phase space. If we arbitrarily
draw a box in the phase space and let it rotates uith the distribution,

there will be no particles leaking into or out of the hox.

¥ 1t is possible that the degrees of freedom of the system are couplied
among themselves so that motions in seme degrees of freedom grou
exponentially at the expense of having some other moticns damped. 1In
fact, this possibitity ef damping and antidamping through internal
couplings is the origin of heam instability we are studying. One uay
of teliing whether the damping and antidamping come from an externai
source or an internal source is ioc sum over the grouwth rates of all
modes {provided they can be found); the sum should vanish for an
internat source. See Problem 13 Jater. '
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A similar situation happens for the general motion described by
Eg. (3.1). 1In Fig. 20(a) we have draun the distribution of a group of

particles in the phase space at time 1. A rectangular O4xdp box is then

draun:
Alx, p)
B(x+Ax, pJ)
S{x+ix, p+ip)
D(x, ptap)

The size of the box is smali encugh so that the number of particies
contained in adjacent boxes -- if they are drawn -- are abouf equal. On
the other hand, the bax is large enough so that there are at least

‘several particles inside of it.
Let the number of particles enclosed by the box be
¥{x,p,t} &x 4p »

with ¥ the density depending on x, p and t. We will normalize ¥ by

I dx J dp ¥{x,p,t} = N 3.3

with ¥ the total number of particles in the system.

At time t+df, the box has moved toc A’B’C’D’ as shoun in Fig. 20(b).
Note we have used 8x and &p (rather than dx and dp) to denote the

dimensions of the box, and have used dt to denote the time increment.
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4371420

Fig. 20. f(a) Phase space distribution of particles at timé t. A Axlp
box is draun and magnified. (b) At a later time t+dt, the box moves and
deforms., All particles inside the box move with the box.
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This jis because we do nhot want the box size ito be vanishingly small but

dt should be considered truely infinitesimal.

In general, the rectangular box deforms inte a paralieiogram. The
enly case in which the box remains rigid in shape as time evolves is the
simple harmonic motion discussed hefore. The vertices of the

parallelogram are

+-

A7 Ix flx,p,tidt, p + glx,p, t)dt]

+

B’ Ix Ax + F{x¥Ax,p,ti)dt, p + gix+8x,p,t)dt]

+

¢4 Ix + Ax + f{x+8x,p+ap,t)dt, p + Ap + glx+Ax,p+ip, t)dt}

-+

D7 {x + f{x,p+ap,t)dt, p + Ap + g(x,p+Ap,t)dtd

The condition that no particles leak into or out of the hox nou takes

the form
¥v{x,p.t} area(ABCDY = ${x + Fdt, p + gdt, t + di)
X area{A’B7C’D") . (3.4)

For a Hamiltonian system, we have the condition (3.2), uwhich implies

the area of the box is conserved:

BT % ATRY
| a’8” x A’D7 }

af a9
aAx Ap [ 1 + _— o —— di ]
Fe2d op

Ax Ap = area(ABCD} . (3.5}

arealA’B/C’0”}

I
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Equatibn (3.4) then gives

It

vix,p,t) Yix+fdE, prgdt, t+dt)

2y 2 2v
¥+ — §dt + — gdt + — dt
x 2p 2t

or, after cancelling out ¥ on beth sides,
ay 2y v
— + f — 4+ g — =0 . (3.6)
ot % op

Equation (3.6} is the Vlasov equation -- especially when the forces

involved are electromagnetic in origin. 1t can also be put in the form
¥ = constant in time . (3.7).

Equatien (3.7), uwhich we somewhat lcosely refer to as the tiouvilile
fheorem,* states that the lgcal particle density does not change if (an
important if) the cobserver moves with the flow of boxes, but it does not
tell how the boxes flow. The ¥ilasov form (3.63, on the other hand, does
not have this probliem since 1t containg explicitly the single particle

information ¥ and g.

*¥ The ¥ilasov equation applies to a system of many particles. Sirictly,
the Licuville theorem applies to an "ensemble™ of many systems, each
centaining many particlies. Ffurthermore. we are ignoring the "collision
terms™ in E£q. (3.6). MHhen included, we obtain the Boltzmann equation.
For a discussioen on the Boltzmann equation, as well as discussiens an
the Vlasov equation and the Liouville theorem, the reader should refer
to texthooks on statistical mechaniecs,?®



- 11t -
Problem 9. Solve the Vvlasov equation for a simpie harmonic motion with

f = wp and g = -wx. Show that the general solution is

¥{x,p,t) = any function of (r, ¢+uil) ’

where r and ¢ are the poiar coordinates defined by

X =rcos ¢ and p = r sin ¢,

3.2. Potential Kell Distortign of Bunch Shape

As a first application of the Vlasov technigue, we will study the
effect of tongitudinal wake fields on a distortion of the equilibrium
shape of a particle bunch,.73,56,587 The mechanism is a static one; ne
part of the beam bunch is executing collective motion., The dynamics of

the bunch shape oscillations will be pestpened until later sections.

consider a bunched beam that travels along the axis of the accelerator
pipe. He assume the beam does net have any transverse dimension, i.e.,
the beam is an infinitesimally thin thread. Such & beam does not generate

transverse wake fields; only the m = 0 uwake is excited by the beanm.

As uwe mentioned before, the Viasov eguation is constructed by first

uriting doun the single particie equatiens of motion. In the present

case, the equations are

o
o)

ds c
(3.8

|Q.
[+4}
1
+]
-
-y
r

ds
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The notations are the same as those used in Egq. (2.1) excepit that here we
have used the longitudinal coordinate along the accelerator, s, as the

independent variabie. The same variable s was used in Section 2.6. He
4

have lett the d&/ds egquation open for the time being, except that we do
know g is not a function of § because the system is Hamiltonian. [See

£q. (3.2).1

The Vlasov equation corresponding to (3.8) is¥

2y aS 3¢ ¢

— - — — + gl(f) — = 0 (3.9
25 ¢ 2?7 o6

where we will set 29/2s = 0 since we are looking for a static
distribution. The general soiution, it turns out, can be written as

¥{r,5) = any function of H » (3.18)

uhere H is given by

652 c It
H = — 4+ - J gl{r’} dr”’ . {3.112
2 a 40

In what follous, we will take ¥ to be an exponential function of H,

i.e, ¥¥%

¥ A subtlety arises if one (incorrectly) uses time t, instead of s, as
the independent variable. The difference, houever, is negligibly
small. What happens is that the quantity Z(w’)/w’ of Eq. €3.28) later
will be replaced by Z(w’”)/pwy. See Ref. 70. '

¥% gut of the infinity of possible solutions (3.10), Eq. {3.12) is the

only relevant solution fer an electron beam. To shou that, one needs
to modify the Viasov equation by taking into account the effects of
external damping and diffusion to ohtain another equation cailed the
Fokker-Planck equation.?5+7% 1i then follous from ithe Fokker-Planck
equation that (3.12) is indeed the unique soiution of the stationary
beam distribution. for 3 proten beam, the distribution does not have

te be given by £q. (3.12), but analysis very similar to this section
still applies.
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1 ~65%/20g2
¥y T — e plr) (3.12)

Var os

with the longitudinal beam shape

c T

plT) = Ag exp [ - J g{r’) dr” ] . (3.13)
aug? }JO

In these expressions, ¢g is the rms relative energy spread, Ap is a

constant determined by the normalization condition fdr p = N. Note that

the energy distribution of the beam is always Gaussian, regardless of the

form of g(r).

Ideally, gl(1) = wg?rsac [see Eq. (2.2)]. The equilibrium distribution

is then also Gaussian in 1. In the presence of longitudinal wake fields,

"however, the t-distribution Will be distorted out of a Gaussian shape,

Suppose the wake has dissipated before the beam completes one

revolution. MHe have

sl e

g(Tr)

i
-y
!

¥iT)
ue TgEe

(3.14)

[+-]
Vit el J dr’ p(77) W(T’~T) s

T

where V is the retarding voltage caused by the uake fields; it involves
integrating the wake left by all charges in front of the particle under
consideration; L is the total length of the pipe structure in uwhich the

wake is generated and Tq is the revolution period.
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The H in Egs. €(3.718) and (3.11) is just the Hamilionian of the system.
The secend term on the right hand side of (3.11) can be regarded as a
potential well term. 1In the absence of wake effects, the potential well
is parabelic, as we expect for simple harmonic motions., The well

distorts when wake fields are included,

Substituting (3.14) into (3.13) gives a transcendental integral

equaticn feor p:

ws? ezl
p€T) = RAgp exp [ - — gl s
2e? ggt «og? ETyp
T % .
X J dr’ J dr®™ (") W{r"-17) ] . €3.15
i} T’

_Obvicusly this equation is not easy to handle and ofien needs to be
solved numericaily. Figure 21 shous one such attempt.?? The bunch shape
calcutated according to (3.15) is plotted assuming a given wake function.
{See the discussion touards the end of Section 3.5.) The bunch shape is
Gaussian at Jow beam intensities, but clearly distorts as beam intensity
is increased. Another feature of Fig. 21 is that the high intensity
distributions Tean foward the front so that the parasitic energy losses

can he compensated by the rt voltage.

It is not ciear uhether a static solution for p satisfying Eq. (3.15)
aluays exists for an arbitrary wake function W. Also being asked is the
question of what are the implications when a solution does not exist (for
example, does it wmean the beam is unstable?) or even if it exists, the

numerical convergence of Eq. (3.15) is pogr.?78
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0.6

437 1A21

Fig. 21. Potential uell distortion of bunch shape for various beam
intensities calculated for the storage ring SPEAR. The unit for pfr)
is not spacified and Iay is the average beam current in the ring.
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3.3. Linearization pof the ¥lasov Equation

On top of the static distortion of the bunch shape, particles execute
acgidental collective motions. Although they wmay have only infinitesimal
ampiifudes originaliy, these motions grou exponentially under unfavorable
conditiens., Mhen this happens, the beam is unstable. Some of these
instabilities uere studied before, using simpiified beam modeis. In this
and foallouing sections, the Viasav technique will be applied to treat
this subject. The approach basically folious that of Sacherer’s.5%.5°9

The result contains all the insiabiltities ¢f Section 11 as special cases.

Consider again a thread beam. At first, lei us suitch off the uzke
field and let {he beam have an initia!'phase—space distribution vy.
Being —an equilibrium distribution, ¥y is only a function of r, i.e.

Yo = Yolr) s ) - {3.163
where we have introduced the polar coordinates

r cos #

il

T

(3.7
3

— &
Ws

r sin ¢

Note that r is related to the unperturbed Hamiltorian by H = wgiris2al

and (3.16) follows from (3. 10).

Nou we turn on the wake fields and suppose there is a disturbance on

the disiribution so that nou we have®

% Strictly speaking, ¥g now should be given by the potential uell
distorted distribution. However, to first order in the disturbance, ue
shall ignore the potential uell distorticon on ¥o. As uwe shall see
Tater, the potential weil distortion is just one of the modes -~ the
one wWith mode frequency ft = 0.
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Yir,$,8) = VYolr) + ¥4(r,$) e illsre | {3.18)

We have assumed the disturbance has a single frequency §I, i.e., it
contains coniribution from only one single mode of oscilliation. He will

consider the disturbance to be small,

The mode frequency @ and the mode distribution ¥y, are not arbitrary.
First, the disturbance ¥; generates a wake field. Then, being an
cscillatien mode, the additional disturbance on the beam distribution
caused by this uake must have the same pattern as the original
disturbance ¥4. The beam-uake system therefore has to be solved self-
cansistently. As a resuit, snly a disérete set of values are possible
for -and, associated with each value of , there is a wuell-defined
_distribution ¥:. Below, we will show how to obtain thesée solutions for f

and ¥1 using the Viasov technique,.

If we project ¥y onto the 7-axis, ue get the longitudinal distribution

0

p1(7) e isse = J 45 ¥1(r,$) e-ifkssec {3.19)
0

This p1€7} is the distribution cbserved at a fixed iocation (the lacation

of the impedance, for instance) in the accelerator. One revoluticn

before, the beam observed at the same Yocation has a distribution

p1(1) exp [-ifi(sre - Tp)] uith Ty the revolution period.

The wake field excited by ps produces a retarding voltage. The

voltage at location s seen by a pariicle at cr is [compare Eq. (3.14)
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and see Fig. 22]

Vi7,8} =

© ® -iftl(ssc)~ktp]
el ?r' Y el e W(kTo+7/-7)

(3.28}

in writing doun this expression, we have included the multi-turn wuakes

and have used the causality property that W(r) = 0 if ¥ ¢ 0.

Since we anticipate soiving the problem in the freguency domain, ue
Will now introduce the Fourier transform of p4 according to Eg. (1.56}

and the Fourier transform of W according to Ea. (1.48). Equation (3.203

then becomes

- -ifis/c o ilpwg+idr
y(r,5) = ewp e Y Palpweill) e 2 {pwgt} £3.21)

pe-e

where Z€w) is the lengitudinal impedance of the accelerator, we = 2n/Ty

and ke have made use of the identity (1.50).

NHote that the heam distribution observed at a fixed time, i.e. a

snapshot, is given by py(7)expl-if¢ssc+r)]. The corresponding frequency

spectrum is therefore related to Fq{(w) by

Palerd = Pafle + ) . £3.22)
snapshot

Had we used the snapshot specirum in Eq. (3.21), the frequency off-set in

the argument of B, drops out.
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Observer

ref. pt.

Jeslal

Fig. 22. UDisturbance on the beam as observed at a fixed location
in a c¢ircular accelerator.
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Having obtained V¥(7,s), the Vlasov equation (3.9} can be written as

oy

ab ¥

——

3T

¥
?—--—- -
25

(g2

s c ec

e a¥
V(T}S) — = 0 -
P

Toic

The two middle terms can be simplified if we use polar coordinates

(3.17), yielding

3y g oV e

—_— e — — -

¢

s © TgEc

We nou substitute (3.13) inte the

keeping only the first order terms in ¥,.

¥{r,8} — = @ .

Fa 4

(3.23)
25

above equaticn, linearize it by

Remembering that ¥ is already

first order¥* and that ¥¢ depends only on r, We obtain the linearized

Viasov equatien

a¥,y ael wy

- 0¥y + g — -
b? TOE ws
ilpwp+il)r

X ¥ Pqlpwstit) e
p

Note that uwe have linearized with
with respect to the impedance or the
the beam intensity do not have to be

procedure.

sind ¥golr) -

ZlpuotRt) = © {3.24)
respect te the perturbation ¥q, not
beam intensity.

The impedance and

small in this linearizatien

* Actually, ¥ also produces a make field, which means V contains a

zeroth order term. Such a ferm is

equivalent te imposing a potential

weil on the motion of ¥4; it will be dropped since it is not essential

if we only want to study the stability of the beam.
potential well does contribute to a frequency shift in ws.
all wg’s from here on should be added a shift Aws.

result,
10 tater.

the
As &
See Problem

HBowever,
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3.4. Llongitudinal Modes

Next, let us Fourier expand ¥4 according to

o

¥1lr,#} = ¥  ag Relr) eif® | (3.25)
A=-w
This is possible since ¥, must be pericdic in ¢ with pericd 2w. He have
used 2 as the summation index in anticipation that it aciually is the
longitudinal mode index used in Fig. 19 in the limit of weak beam

intensities.
Substituting (3.25) into (3.24), ue get

iL’é ae? pg
- iy agr Rgt(r) e (0-Rwe) -
‘ﬂl

sind ¥ elr)
TOE 95

iw’rcos?
X Y Patw’) 2lw’) e = 8
P

where ©’ in the summation is an abbreviation for pwe+Rl. Multiply the
equation by exp (~iR#) and integrate over ¢ from 0 to 2n. and repeat it
for all vaiues of &. We obtain an infinite set of equations:

aeZ wy ¥alr) Zlw’)

- ilf-fws) ag Rgler) + 2iR ¥ Fila’)

Jglw’ry = 0
o’

L = 0, ¥y, 22, ... . (3.26)
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In (3.26), Jg(x) is the Bessel function.* Some properties of the Bessel

functions are given in Tabhle III.

We still need an expression for F,(w’) in Eq. (3.26). This is done

helow:

1 [ -iw’T
Pefw’y = — \l\ dr e p1(1)
2m §-

1 o o -iw’r
= — J dr J dé e Yilr,.¥})

(Js 2“ -]
= J d¢ J rdr exp{~iw’rcos#) ¥ ag Rg'(r) e

2wa 40 0 L7

g Y -R
— rdr ag+ Rg(r) i Jegrlw’'rd
¢ 230

When (3.27) is substituted into (3.26), we find Sache

equation for the lengitudinal (m = 8) instabilities:

(1 - Rwe) ag Reir)

- i £ )
Tok r &’

-2 Zle’)
X agr Rg+(r’) i )
P w

Jelw’rd Jdgrlew’r’)

ey  ¥e(r) J

is7é

3.27)

rer’s integral

[~
r’dr”

8

(3.28)

* One may regard the Bessel functions as nothing mere than the sine and

cosine functions expressed in poiar coordinates.
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TABLE Il

Some properties of the Bessel functions

T M2n ild-ixcosé -2
— J d¢ e z Jdpix)
2w JO
Jrl=x) = (-1F® Jptx) = Jogp(x)
Jeplhl = Sgq

1 2% -iié+ivcosd )
-—_ d# sind e = ~i% - Jplx)
29 JG %

R+L7-a+i
Tta) T
2

¥ %dx Jglx) Jg+{x)

-HR7+ T4 LR+ 14 £-87+14a
¥?r{ ———— 4} r|—§j 1| ——
2 2 2
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Given the impedance Z and the initial distribution ¥p, we have to find
the Rgi{r)’s and ag’s to satisfy the Sacherer equation. This is neot easy
to do in general and is currently one important research area; but

without lesing any essentials, we will proceed by choosing a simplified

model of ¥y, namely

B if r>7
Yelr) = Na . (3.29)
if r¢#
17 2wg

The impedance, on the sther hand, is leit to be general.

The distribution (3.29) is called the water-bag modei.?%:73 1Iis phase
space distribution and projection onto the ¥-axis are shown in Fig. 23.

The distribution is normalized so that fd§ fdr ¥o = N.

Any perturbation on a water-bag beam #ill have tc occur arocund the

edge of the bag, i.e., around r T. As a result, all Rg’s are

S-functions, i.e.

Relr) 8(r - 1) . (3.38)

This resuit also follous from Eq. €3.28) by inspecticn if ue note that
Vo & 6{r-7). Having obtained (3.30), the Sacherer eguation (3.28)

reduces to a set of equations for the coefficients ag:

He? auwp Ar-4w
(-R%ws) agr = § ——————— 27 ¥ age i
2(w’)
x ¥ Jpefw’T) Jgmlw’T) ;&7 = 0,%1,22,... . (3.31)
P @
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Fig. 23. Phase space distribution and tengitudinal distribution
of a water-bag beam. For this distribution, rpms = /2.
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He.are nou finally ready to distuss modes, First note that when

# =0, 1.e., in the zero intensity 1imit, the soluticns to {(3.31) are

1 if 47 = &
az!{ﬁl =

g it R ¢ R
{3.32)

QtR) = ﬁw; »

where & is an integer specifving the mode number. in other words, the

£-th mode is described by

i£¢ _i.gwgsfc
V88 = s(r-%) e - e . (3.33)
I-’/ - g e -
long. time
dist, dependence

These are the modes shown in Fig. 1%(a). Projections of these modes onto

the t-axis, without the time dependences, are draun in Fig. 24.

In case the heam intensity is nonzero but stil! wesk, we can find the
2-th mode frequency by substituting the zero-th order solution (3.32)
into the right-hand-side of (3.33%), j.e.

Ne? a wy o Z{w’)

Q&) - pog = i — £ ¥
Twg ToE T2 Pz~ @’

Je?lw’t} (3.342

uhere w’ represenis pwy + Rus.

Some resuli on instabilities at 1ast! Given the impedance, Eq. (3.34)
gives the complex mode frequencies for a water-bag beam with relatively

weak intensiiies. In particular, the real part of Eq. (3.34) gives the
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Fig. 24. The longitudinal distribution pa{®} of the modes & = 0,1,2,3 in
. the zers intensity JTimit.
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mode frequency shift, 80t%), while the imaginary part gives the
instability grouth rate v V(%) This result is chviously more pouerful

than that obtained using cne~ or tuc-particle models which are restricted

tc £ £ 1 or 2,

One should be careful in obtaining the AQ'®? from Egq. (3.34) because
it does not contain all the contributions. A frequency shift term has
been dropped uhen we linearized the Viasov equation bhack in Egq. (3.24).

See the footnoie there and also Probhlem 10.

Take the 2 = 1 mode as an illustration. Let us assume the beam bunch
is short enough so that w’f <{ 1. Then J1(w’F) % w’#72 and we have
rediscovered the Robinson grouth rate,27 Eq. (2.9). Equation (3.34),
when applied to £ > 1, gives the growth rates of the "higher order

Robingon effect.®

Problem 19. From Eq. (3.14), obtain the frequency shift for small
oscillation particles in the potential uell:

ea ov(ir)

awg, - -
2T¢E wg o7 7=0

elawg?

Z Polpwelp Im Z{pwg)
2ToEug P

Shou that the above Awg gives the first term in-the Robinson
frequency shift (2.8) by letting pol7) = N&{z}. This
potential well frequency shift Aws has been dropped when we
linearized the Viasov equation and, as a resuit, £g. {3.34)

gives only the second term of (2.8},
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The procedure followed in this section resembles closely the
perturbation technique used in gquanium mechanics. Indeed. since the
Bessel function Jg is actually the &-th component of Fq{w’) [see (3,2711],
the right hand side of Eq. (3.31) can be expressed in a gquantum

mechanical notation:
T o<t zrw ] 2y €3.35)
"
1t should be mentioned that the water-bag beam is particularly simple
since one can readily solve Rg(r) in Eq. (3.30). The price we pay here
is that all radial structures are degenerate and some information is
lost., For more realistic beams {such as a Gaussian beam), the problem
becomes more complicated. These complications are not essential for our
purposes shich are mostly pedagogical. Readers interested in the more

complete treatments should study at least Refs. B2 to B9..

In Ref. 69, the results obtained for a uater-bag beam are compared
With the Gaussian beam results and it is found that they agree rather
well numerically, at least for the lowest few modes. This means to some
extent the stability critertion does not depend criticaliy on the
unperturbed distribution ¥. On the other hand, this conclusion is not
to be taken for granted. Shoun in Figs. 25(a) and 25(b} are tuoc possible
unperturbed beam distributions. For an impedance that has a significant
high-frequency tail, one can imagine a situation in which arbeam uith
distribution 25(a) is siable while distribution 25(b) is unstable. The
significance of the instability of distribution 25(b)} is rather limited

because after losing the particles in the spike, the beam becomes stable

again.
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(e} Pott)

{b} PolT)

-

Y—E2 4371424

Fig. 25. Tuo possible unperturbed beam distributions. Distribution (b)
has a §-function spike at the origin. bepending on the impedance, they
may have very different stability criteria; but the significance of the
difference is rather }imited.
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3.5. Bunch Lengthening

The only instability that the ueak beam result, Eg. (3.34)}, allous is
of the Robinson type. That is, instability occurs only shen the
impedance consists of sharp peaks like that shoun in Fig. 11(b} belon
cut-off, or equivalently, when the wake field Tasis longer than a
revoluiion periecd. In case the impedance is a smooth functicn in
frequency, 1.e., if the impedance is "broad-banded," one can approximate
Zlpwg + Rwg) by Z(pwp). The right hand side of Eg. (3.347 then becomes
purely reai. {Remember the real part of the impedance is an even

function in frequency.) All modes are, therefore, hecessarily stable,

It we further increase the beam inténsity, houever, £q. (3.34) breaks
dowun and instabilities will appear even for & broad-band impedance. What
7happens then is that the frequency shifis are comparable to ws so that a
linear mixture of several unperturbed modes, Eq. {3.33), is needed to
describe a single perturbed mode. Such a phenomencon, sometimes referred
to as "mode mixing™ or "turbulence™,¥® can lead io insiabilities other

than the Robinson type.

For a broad-band impedance, we will drop the @t frowm the argument of
the impedance in Eq. €3.31)}, i,e., repiace &’ by pwge. The problien
reduces to that of solving for the eigenvaiues of a linear system. The

eigenvalue @ is determined by the condition

% The term “turbulence™ has a weli-defined meaning in fluid dynamics.

it is not cliear how this term geis to be used here, but somehow it has
managed.
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i 9

det [ Mm-—1 ] = 0 {3.36)
Us

where I is a unit matrix and M is a matrix with elements

do
@ 1]

Meg+ = 26gnr + i

NeZa R0 o Z(w)
i J Je(af) Jeg(wT)

nwg? ToE 72
{3.37)
We have replaced the summation over p by an integraticn. By doing so, ue
have in etfect ighored the multi-turn wakes. MHritten out explicitiy, N

has the form

2+7 R I R !
R 1+1 R I R
M = D 0 0 i ] €3.38)
R I R -1+f R
I R I R -2+7

where the 2 = 0 elements all vanish; I’s and R’s are some real
quantities, all different from cne another, with 7 coming from only Im 2
and R coming only from Re Z. MHNote that if ue drop all the off-diagonal
mode-coupling terms, ue will obtain (3.34)., Notie also that = 0 is
always a solution; this is the mode that describes the static potential-

well distortion.
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Lteb us proceed again with an example. Let the impedance be given by
Z€w) = Ry lwgrwf'/2 [1 + i sgn (w3l (3.39)

where Ry is a real positive constant, This impedance corresponds to a

wake function M{z) « 2°1/2, Then the matrix elements of M are

£
Mge» = Rbges - 7 — Tpe (3.40}
2 .
with
R¥R7-1/2 ( [R-871s2
ry -——— (-1} it 2-R7 = even
2
Cogr = 1
R7~-2+572] [R¥R*+5/2) [R-R7+5,2
T T r [A-27-11r2
2 2 2 L (-1 it 2-27 = odd
uhere we have defined a dimensioniess parameter
Nel a Rg
n = ’ (3.4

USZ TOSXZE §3/2
and I'(x) is the gamma function.* Use has been made of Table IT1.

He have evaluated numerically the eigenvalues Qt/wg using (3.36) with
the matrix (3.40). The results for the louest feuw modes are shoun in

Fig. 26.%¥% The mode frequencies fI7we are plotted against the parameter

ey ey T b 7 ——

* Gamma functions are generalized factorials. One is certainly familiar
with the factorial ef an integer; the gamma function defines how te
take factorials of fractisnal numbers as uwell.

*¥% Remember these resultis ignhore the shift in ws due to potential well
distortion.



- 134 -

9-82 77 4371A25

Fig. 26, Longitudinal mode frequencies {I/ws vs the parameter » for a
water-bag beam with the impedance (3.39). Instability occurs when
MY Hinh ¥ 1.45 and the £ = 1 and & = 2 mode frequency lines merge and
become imaginary. The solid curves give the real part of the mode

frequencies uhile the dashed curve is the imaginary part of the the 2 = 1

and £ = 2 mode frequencies abave threshold. There is zluays a static

mode with fI/ws = 0., The spectra for £ ¢ D are mirror images with respect

to the 2 = § line,
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#. At 7 = 0, the mode frequencies are simply multiples ¢f wg. As 9
increases, the mode frequencies shift. As n reaches the critical value
Nth # 1.45, two of the mode frequencies become equal; then above N¢hs
they become imaginary and the beam is unstable. The parameter nin thus
defines the stabiliiy thresholid of the beam. Hote that the instability
grouth rate increases sharply as soon as n exceeds #ip. This is a
general property of the mode mixing instabilities and is sometimes

referred to as "phase transition™ for the case of a Tong bunch in which

many modes participate.t8+:67 See also the discussion at the end of

Section 2.4.

The mairix (3.38) has infinite dimensions. The eigenvalues are
evaluated uith the matrix truncated. Ffor the fruncation procedure to
converge, fhe beam spectrum, as well as the impedance, must not have leng
tails at high frequencies. For a water-bag mode]; the imbedance at high
frequencies must decrease with frequency at least as fast as a power lau.
This impedance (3.39) and also (3.70) and (3.75) later are chosen with
these consideraticens in mind., In case the truncation procedure does not
converge, the formalism that fellious from the expansion (3.25) breaks
doun. A betier convergence may be achieved by expanding ¥, in terms of
the "crasting beam™ modes that are expressed in the Cartesian coordinates

7 and §,%%°67 instead of the present polar coordinates r and #.

Let us suppose a beam of "matural®™ bunch length §4 and intensity N is
stored in the accelerator. If the intensity is such that » ¢ %in, the
beam is going to keep its length ¥3 and not much wiil happen. But if

" > Nih, the instability takes over and ¥ starts te lengthen. An
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inspection of (3.41) shous that as the heam lengthens, % drops and when 7
drops below #¢ps» the beam becomes stable again. In equilibrium, the beam
#ill be lengthened just enough so that 7 stays at the stabiiity

threshoid. When this happens, we have

NeZ ¢« Ry 2s3
T = . (3.42)

The behavior of bunch length as a function of beam intensity therefore
looks like Fig. 27(a}. For the impedance (3.39), the curve above the

bunch lengthening threshold has # « N2/3, Belou threshold, we have shown

2 slight potentiai-uell distortion effect on 7.

The change of bunch distribution due to potential-uell distorticn and
that due to instabiiity are distinctly different. 1In the former case,
the energy distribution of the beam is unaf*ecte& fsee qu (3.122], shile
in the latter case, the synchrotron oscillation brings the changes in 7
rapidly intoc changes in energy spread §. As a result, the energy spread

of the beam behaves Jike that shoun in Fig. 27(b). Below the bunch

lengthening threshold, & is constant; above threshold, & « N2/3,

We have been using the impedance (3.38) as an illustration. It turms
out that, in general, for a given acgeierator uith an arbitrary
impedance, 7 above threshold depends oniy on the single parameter

L

¥ = . (3.432)
ve? E

In cther words, the accelerator mav he cperated uwith various possible

values of the average beam current I,y = Ne/Ty, monentum compaction
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Fig. 27. Bunch length 7 and energy spread § as functions of beam
intensity N. Below a certain bunch lengthening threshold Nir, 7 changes
{shortens in the case shoun) due to potential-uell distortion while 5
stays constant. Above Nin, both # and & increases with N. If impedance

is given by Eq. (3.39), then §¥ and & are proportional to NZ/3 in the
region ¥ > Nih.
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factor «, synchrotron tune ve¢ = ws/wg and beam energy E, but the bunch
length above the lengthening threshold depends only on these factors
combined together as given by (3.43). This behavior is called the
scaiing law and ¥ is the scaling parameter.?3:7?® Fquation (3.42) of
course obeys the scaling., Figure 28 shows sSome experimental data for the
storage ring SPEAR.2? The scaling property of these data is quite

obvious.

There is more. It is not difficult to shou that if the impedance

behaves 1ike

2fw) « @@ . (3. 44}

then the bunch length above the lengthening threshold will hehave with

-

T o« pisiz+a) . (3.45)

For exampie, the impedance (3.39) has a = ~1/2 and thus T & ¥273, figure

28 shous that for SPEAR, 0y « £°-76, from which we deduce that a = -0.68,

The behavior Z{w) ® @*¢:-%% fgr SPEAR of course is valid only in the
frequency range of interest, which covers roughly from cso; to a feu
times c/0z. These bunch length data, combined uith measurements on the
parasitic losses,®? jndicate that the SPEAR impedance looks more or less
Vike that shown in Fig. 29. This impedance is in fact the one used to

obtain the poiential welil distortion shown in Fig. 271.
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Fig. 28. Bunch length vs the scaling parameter for the storage ring

SPEAR. Data are taken above the lengthening threshold. The momentum
compaction factor a uas kept constant in these experiments and gz is

the rms bunch length.
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3.6. JYransverse Mgdes

By the transverse modes here, we mean those modes withm = 1, 1.e.,
the beam has a dipole moment (pointing, say, in the vertical y-direction}
in the transverse plane. The dipcie moment is not necessariiy constant
lengitudinally fraom the bunch head to the bunch taii. Instead, it may go
pesitive and negative and, depending on the longitudinal mode number 2,
its longitudinal structure may be simple or complicated as skeiched in

Fig. 19(b).

Rhat ue wiil do in this section is to study these transverse modes.
Hote that, although called the transverse modes, the transverse structure
6f these modes is simple (How complicated can a dipole be?) and our main

task is in fact to find their longitudinal siructures.

It may seem that the problem is going to be muﬁh more éomplicated than
the longitudinal case treated in the previous few sections. The Viasov
equation, feor example, now needs to take into account both the transverse
and the longitudinal phase spaces. Fortupately houwever, the transverse
structure of the beam is simple and can be solved with ezse, and the
strategy is that, after removing the fransverse dimensions from the
Viasov equation, ue are left with an equatien very similar to Eq. (3.24).
The analysis developed for the longitudinal case can then be followed

straightforuardiy for the transverse casSe as uwell.

The phase space distribution ¥{y,Py.7.6,s) satisfies the V¥lasov

equation
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-3 4 2V oy 44 v
— Yy — + Py + 70—+ 86" — = Q@
s 2y APy ar 28

, (3.46)

where a prime means taking the derivative with respect to s. The

dynamics of the beam is contained in the single particle equations of

motion

v’ = Py
g z 1
Py = - | — | v+ - Fyls,s)
C E
(3.47)
L+ 4
T’ = - -5
¢
Wl y dF (1,8}
57 = T - —
ag cf o7

The quantity Fy is the transverse wake force generated by the dipole
moment of the beam, E is the particie energy, wg and wg are the

unperturbed betatron and synchroiron frequencies.

In Eq. (3.47), ue have inciuded a wake field term in the 8§’ equation.
It comes from the fact that a dipole moment generates not oniy a
transverse deflection force but alsec a iongitudinal retarding force.
(See Table I1.} 1In what follous, however, this term wili be dropped.
{The system is therefore non~Hamiltonian.)} Thus the betatron moiion is
affected by the wake uwhile the synchrotron metion is treated as
unperturbed. This is a good approximation provided the synchro-betatron

resonance conditions wg * fLwg = nwy are aveided and the transverse beam
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size hag not grown to become too large. See the discussion follouing

Eq. (2.1) and also Problem 11 later.

Me now transform the longitudinal and the transverse coardinates inte

their polar forms defined by Eq. (3.17) and

¥y = g cosb
£3.48)
W
Py = - — gq sinf .
c

The phase space cocrdinates are shown in Fig., 30. Equation (3.463 then

becomes

W wg 2y 1 34 ws DY
— +t — — + = Fylr,8) — + — — = 0
3s ¢ ?¥% E Py © 2

. (3.49)

The unperturbed stationary distribution of the beam is a function onily
of r and q. On top of the unperturbed distribution, we will consider a

small perturbation that describes a transverse dipole oscillation mode.

The distribution is therefore written as
¥ = folq) golr) + ¥4(q,0) gylr,$) e-ifts/c (3.50)

where © is the mode frequency, T4 and g4 describe the transverse and
Tongitudinal heam structures of the mode. As ue did for the longitudinal

instabilities, our job now is to look for self~consistent soluticns for

Q, f1 and 1.
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Fig. 30. Phase space coordinates (a) in the betatron plane and
{(b) in the synchrotron plane. Particles siream in the counter-

clockuise direction in both cases.
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In uriting down (3.50), we have implicitly assumed that the center of
the unperturbed beam coincides with the accelerator pipe axis. Effects
associated with a distorted beam trajectory f(i.e., a distorted ¢losed-
orbit) are therefore excluded from our study. We will discuss this again
touards the end of Section 3.7. We will also discuss in Section 3.7 the
fact that the perturbation distribution factorizes into f4 and g4 as

given by (3.50).

We next introduce a complication that comes from the head-tail effect
discussed in Section 2.6. What happens is that the betatron frequency is
not a constant; it actually depends on & through the chromaticity §&.

The quantity we in (3.49) is therefore reptaced by wg + fweb, using
Eq. (2.51), where wy is the revolution frequency. Substituting (3.59)
into €3.49) and linearize uith respect to the perturbsaticon, keeping in
‘mind that Fy is already first order, me find
5t wptEwed 2f4 g 094 c
=i — f489 ¥ ————— —— gy + — §4 —Je W5/C - — 35ind F,fo’gs = O
¢ c 28 c 1.2 Ewg

(3.51)

As uwe mentioned before, the transverse structure f, is easy to salve,

indeed, since it describes a dipole motion, we anticipate a solution
f40G,8) = =~ D fg’(q} exp(if) » ) {3.52)

where 0 is the dipcie moment of this distribution:

§ v 19 dg ds

= b . €3.53)
I foq dq d8

This dipole motion is sketched in Fig. 31.
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fig. 31. Dipole motion in ithe trangverse phase space.
distribution fp{g) is displaced by a distance D.

distribution then rotates.
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*Substitute (3.52) into (3.51) to obtain a reduced Vliasov equation that

invelves only longitudinal coordinates

294 c?
[ i€t - wg - Fwpbligy - wg — ] Be- ¥fissc Fy Go = 0 .
2f

(3.54)
In obtaining (3.54), the factor sin 8 in Eq. (3.51) has been replaced by
exp{ifl}s/2i. Rigorousiy one needs both exp(iB8) and exp(-i18} compeonents in
{3.52), but the exp(-i8) component can be ignored if the frequency shiftis

due to the wake field is small compared with the betatron frequency wy.

The solution for g4 can be uritten as

o il$ JEwgr/at
ge(r,$3 = ¥  ag Rp(r) e e . (3.55)
Az
This Fourier expansion is in analegy to Egq. (3.25) except that, due to
the chromaticity, we now have an additional head-tail phase factor. The
same factor appeared in our two-particle treatment in Seciion 2.6. From

here on, the treatment is very similar to uhat ue did for the

longitudinal case.

Substituting (3.55) inte (3.54), uwe find the chromaticity term is

cancelied excepit the phase factor, and we have

iR*é  -ifis/c
i Y (R-wg-R’ws) agr Regrl(r) e De
£I

c? ~iEgT/R
Fylr,8) golrl) e = 0 . €3.586)

2iE€dg
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We need to find Fy. The dipole moment of the beam, ohserved at

location s as & function of 7, is

&

[+
pe- s/ J 48 gilr,¢) = De - 0s/¢ 5 (1) . (3.57)

The defleeting force is then cbtained by summing the uake in all previous

revolutions:

Fylr,8 = dr’ ¥ p1{t?) e W{kTot7’ -1} .

o0 k=—w

o @ -iftl{s/c)-kTq]
De?

(3.58)

The longitudinal counterpart of this expression is Eq. (3.20). The uake

function here is of course the transverse ane.
Going to the frequency domain, Eq. (3.58) reads

Gelwy -ifis/c fa’r
e Y Patle’) e 2€¢w") (3.59)}
p

Fy(f;S) = i
CTQ

where w’ represents pugt+fl and Z(w) is the total transverse impedance in
the accelerator. Substitute (3.59) into (3.56), multipiy the resuylt by
exp(-1243 and integrate over ¢ from § to 2n, ue get an intinite set of
equations:

celay

i - wg - fws) ag Rel(r) = i® gelr)

ZECJQTO

£
x E Pylw’) Z(w”) Jg[ @'t - — ugr ] » £ = all integers
P [+

(3.60}
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Furthermore, similar to Eq. {3.27), we have

e « &

Balw’) = — Z J rdr ag Rgl(r) i-® Jei w'r - = wpr . {3.61)
a £ JG@ o

Note that the chromaticity has caused a shift in the spectrum F4 and in

Egs. (3.503% and (3.61). Equations (3.60) and (3.81} form Sacherer’s

integral equations for m = 1.

To proceed further, uwe will assume 3 simple model of the longitudinal

distribution, nameiy%5.,5%

Ng
gy = §{r-1) . (3.62)
2“@5%

in this distribution, shoun in Fig. 32, particles populate an elliptical
ring in the phase space. This 15 called a hollouw-beam modei, or an "air-

bag"™ model.,

The advantage of using the air-bag model is obvious; ail Ryp’s
degenerate into 6{r-7), i.e., We have Eq. (3.30) and consequently
Eg. {3.60) reduces to

Nelc J ST Al

(9 - wg - R’wglagr = -1 —— 7 agn i
2ETolwp AT

4 4
X E 2{w’) J_Q'[w’; - = WQE] Jg"[w"i' - = UQ%] i3 jl-’ = ﬂ}iitiZJ-.
p « o

£€3.63)



~ 158 -

S
UJS/%/Q
M T
,? ?
polt!
|
!
| o |
| t2-7% |
I |
| |
i l
f |
| !
-T T
¢ — 82 4371434

Fig. 32. Phase space distribution and the longitudinal distributien
" of & hollouw beam, or an "air-bag™ beam, For this distribution,
orus = TAVZ.
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A mode is nou specified by the mode frequency 1R} and the set of
coefficients ag+(®¥, where £ is the mode index. In the absence of the
wake field, the right hand side of (3.63) vanishes; the f-th mode is

described by

1 it 2 =2
c._g-(‘m =
] if L7 £ 4
(3.64)
RERY = g + fae
The digtribution of this mode is given by
iB iL¢ ifwpT/C -ifepg+lwg)s/c
t'glale « 6{r=-1)e - e ‘e . £3.65)
trans. icng. head-tail’ time
dist. dist. phase factor dependence

These modes, uwithout the head-tail phase factor, are those sketched in
Fig. 19¢(h). The longitudinal projection onto the r-axis of these modes

are the same as those shoun in Fig. 24 if § = 0.

In case of a weak beam intensity and frequency shifis small compared
with ws, cne can obtain the first order perturbaticn by substituting
€3.64) into the right hand side of (3.683) to obtain

Nelc & E
AR« o -~ Rug 5 -1 ———— ¥ Z(@?) dp?i @' - — weT |
2EToZwp pT-w o

(3.66)

where w’ = puwp + wp + fws. Again, the real part of this expression gives
the mode frequency shifis and the imaginary part gives the instability

growth rate.
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The wake term in the 867 equation of £q. (3.47) was dropped.
To see the significance of this term, let us keep it but
drop the wake term in the Py’ equation. Follow closely this

section, assume fy = Baussian and gp = water-bag. Shou that

Qfo iG
f4 = D —— g
Gyl
and that
Ne?cwg sy |2
(f-~wg-Rfuglegr = § ——— a| — L7
20ETqug cf

Rr-8n w Z(w’)
X ¥y agn i Y e Jpr Jgm
" p @ = kwgra

Compare with (3.63). Shouw that this wake effect can be

ignored if oy is small compared with ywg/awg times the bunch

length of.

1f there is a longitudinal impedance 2" present, one can
also compare the above result uith £q9. (3.31). Shou that
this effect can be ignored if 2{w) is much less than
cZMwisweyZ, If 2"(w) is related to 2{w) through
Eq. (1.58), then the criterion becomes oy ¢({ b. Both the
conditions o, <« c%J;;;;;; and 6y <C b are fuifiited in most

accelerators.
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Probiem .12. Consider an air-hag beam executing mode (3.65%). Shew that
the center-of-mass of the beam as a whole has ap oscillation
amplitude proportional to Jgléwgrsal. Therefore, if & = 0,
a pickup electrode will see only the £ = @ mode, but all
modes show up i1f the head-tail phase fwpTsa becomes

substantial.

3.7. Jransverse Instabilities

Let us first consider the weak beam result (3.86), The & = 0 mode
describes a rigid-beam mode in which the dipole mowment of the beam does
not have an oscillating longitudinal structure. In the limit of a short
bunch tength, uwe have for the & = B mode

Nelg
RE8Y - gy = - ——————— ¥ Zlpuwg + wa)} . (3.67)
2ETolwg p
This resuli has been cbtained before in Eq. (2.12) using a ene-particle
model. As pointed out in Secticn 2.2, Eq. (3.67) leads to the transverse
Robinsen instability if the impedance has sharp peaks With widths
Aw L Lwpl, where [wpl] is the betatron frequency modulus the revolution
frequency Wy, and it also Teads to the resistive wall instabiiity studied

by Courant and Sessler in Ref. 32.

Equation €3.68) is more general than Eq. (2.12) in two ways. First,
it can be appiied to the £ # 0 modes as uell, and secondly, it contains
the chromaticity information that leads to the head-tail instabiiity.

obviously a sharply peaked impedance would introduce transverse Robinseon
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instabilities in the 2 # 0 modes. What is interesting nevertheless, is
the head-tail! instability. To study that, let us consider a broad band
impedance (single turn wake field) so that the summation in (3.66) can be

approximated by an integral. The grouth rate then reads

NeZg © ¥

P B dw’ Re ZEw?’) JgZ| w'f - — wot | - (3.638)
AET guwp J—to o

The real part of the transverse impedance, Re Z, is odd in w. It § = 0,

the integral vanishes and there will be no instability. For finite but

small £, Eq. (3.68) becomes, keeping only a first order term in the head-

tail phase fwpT/a,

nNelc £ 20
7108 = « — wat | ww Re Z(w) Jplw?) J7glw?) . (3.69)
TETglin @€ 0
As an iilustration., let us consider an impedance that gives rise to a
constant wake (2.23), namely
1
ZCw) = cTaMp [ — = ime{w) ] . £3.783
o
The integratien in (3.69) can be performed using Table I1I, yielding the
head-tail instability grouth rate
NEZCZNQ £ 2
771 R = Ll g F ¢ e—— (3.71)
TE wp e w(482-1)
The same result was obtained in Ref. 48. One can compare (3.71) with the
result (2.62) obtained using the two-particle model. The present
expression is clearly superior in that it gives the grouth rate for all

modes. Hote that the tuwo-particle model predigts 7-101) = —7=T1®), yhile
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in the present model 71} j5 suppressed by the form factor

170422-1) =

/3.

According to (3.71), the £ = D mode is unstable if £ ¢ 0 and the

higher order modes are unstable if ¢ > 0. This behavior is model

dependent.

1f the impedance is different from (3.70) or if the head-tail

phase is net small compared with unity, this conclusion may change.

Figure 33 shous the grouth rates 7-7(®) versus fuwgisa for £ = ¢, *1 and

*Z assuming the impedance is given by (3.70). Equation (3.71) gives only

the linear portion cf these curves for small fwgoisa.

Problem 13.

Problem 14,

From Egq. (3.68), show that

-~

z 7‘1(23 = U

R=—e :
That is, the sum of the growth rates and damping rates of
alt modes is zero. In other words, the existence of damped
modes implies the existence of at least one antidamped mode,

and vice versa. This result is valid for arbitrary

impedance and head-tail phase.

The imaginary part of the impedance {(3.70) gives rise to a
mode frequency shift. Shou that
NeZcZig ¥
At = - — g, — wet
4E wp «
For small &, the only mode that suffers a frequency shift is

L4 = §; the shift is negative and is aimost independent of &.
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Fig. 33. The grouth rate 7% versus the head-tail phase x = fwoi/a
for the impedance (3.70). The vertical axis y is 7-Y¢R) normalized by
NeZcZWo/Ewp. For x € B, 7°!' can be obtained using the fact that ! is
an odd function of x.
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As the heam intensity increases, expression (3,66) breaks down. One
has to consider the general case described by Eq. {(3.63). A mode
therefore is no longer approximately given by Eq. (3.64). Instead, it
has to he described as a linear mixiure of all the unperturbed modes.
This phenomenon has been referred tc as "mode mixing,"62-63,68-70
?transverse turbulence®’! and "strong head-taii™,*® depending on the

authors. The associated instability mechanism has been illusirated by a

tuwo—-particle model in Section 2.4.

Consider a broad-band impedance and £ = 8. Equation (3.63) can be

uritien as an eigenvalue problem, i.e,,

ﬁ‘wg .
det M- i = 0 ’ (3.723

Qe

which is the same as Eq. (3.36) except for a shift in & b& wg. The

matrix elements of M are

Nelc L-87 ©
Mg+ = f6ge* — 1 — i J dw Z(w) JeolwT) JerfwT). (3.73)
4T epve -0
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The form of the matrix M looks like

2+1 R H R I
R 141 R I R
M o= I R i R I (3.74)
R I R ~1+J R
I R i R -2+1

The symbols are the same as those used in Eg. (3.38). Note thai, unlike

Eq. (3.38), the R = D row does not vanish. The elements of M are all

real.

Me will iliustrate by an example. Take the impedance

Ze Wy 3s2

Ziw) = Ro —_ [sgnfw) + i) . (3.75)
bzwg [}

This impedance is related to the lsngitudinal impedance (3.39) through
the relationship (1.58). The transverse wake funciicn associated with
{3.75) is W(z2) « 272, sSubstituting (3.758) into (3.73), ue find

7’

ngq = 28220 + — (Cpp-» > (3.786)
4
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where Cgp+ are the coefficients given by £q. (3.40) and % is a
dimensionless parameter retated to the longitudinal scaling parameter 2,

Fq. (3.413, by
cT |2 we
A = gl — 1 = €3.77)

As a rough estimate of whether the longitudinal or the transverse
instabilities dominate the beam behavior, we can compare #n and nf. If
#* > %, the beam stability threshoeld is prebably determined by the
transverse instability, while if 5’ < 7, the longitudinal instability has

a louwer threshold.¥*

) Figure 34 shouws the resulis of a numerical caiculation using
Ea. €3.72) and the matrix (3.76). The eigenvalues {fi~rugl/ws are plotted
versus the transverse sgaling parameter 57 fﬁr severél 2fs. At »n’ =0,
the mode frequencies are located at wp, wgtwsg, wgt2wg, ete. As 97
increases, the mode frequencies shifi and at n” % 9.28, the two modes
R =0 and £ = -1 become degenerate. At this value of %/, the other modes
have shifted only slightiy. Further increase of %’ makes the beam

unstable. The threshold %745 = 0.28 is substantialiy tcuer than the

longitudinal threshold 7 = 1.45 found in Section 3.5.

o . — — —  —  —  — —— — —  ———

¥ As an alternative to (2.77), one can urite #’/m = 4o,05B8z/b%2, where o,
is the rms bunch length, og is the rms relative energy spread, Bz is
the beis=function at the location of the transverse impedance. The
replacement of wp by 1/Bz occurs because we have assumed a smooth
focusing uhile in a real accelerator, the focusing contains a weight
function B.
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9-82 n/ 4371A35

Fig. 34. TJTransverse mode freguencies (fI-wg)/ws versus the parameter n’
for an air-bag beam with the impedance (3.75). Instability threshold is
located at n/ % 0.28 where the modes R = 0 and -1 become degenerate. The

dashed curves give the imaginary part of mode frequencies for £ = 0 and
-1.
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1t may seem that the beam is more stable for shorter bunch Jengths
since 97 « §'/%, but this is very model dependent. Ffor a different
impedance, the reverse may turn out to be true. The scaling with respect
to the otiher parameters, on the other hand, is not model dependent. For
example, for a given accelerator and given bunch length ¥, the threshoid

beam intensity oheys¥*

Neh & wg wg £ . (3.73)

The same scaling is obeved by the two-particle analysis, Egs. {2.34) and

(2.373, as it should.

Prebliem 15. Shou that for the impedance (3.70), the wmatrix M hes the

elements

4

M | ————— i -’
Mge+ = Rbgpr + — wERE-272)

“z

add

~wbgpbgrp iF RA~-L7 = even ,

where 74+ 15 the parameter defined by (2.34) when we studied
the tuo-particle model using the same impedance. Using the
tuo-particie model, we obtained Fig. 16. Using the matrix M

above, we chtain Fig. 35. Compare the tuo figures.

* An alfernative to Eg. (3.78) i5 lth & veEsBz for a given bunch length,
where [ty 15 the threshold beam current, ve = wgs/wg is the synchretron
tune.
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O I 2 - 3

9-82 17! 4371A28

Fig. 35. Transverse mode frequencies (fl~wp)/ws versus the parameter 4
for an air-bag beam with impedance €3.70). The instability threshold is
located at #¢ # 1.8. At the threshold, the 2 = 8 mode frequency hasg
shifted doun from wp hy ~0.8 wg. The dashed curves are the imaginary
part of the mode frequencies for £ =0 and £ = -1,
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in bhoth Figs. 34 and 35, the £ = 0 mode frequency shifis dounward as
7’ increases from 0. This in fact is a general behavior for short
buniches regardless of the details of the impedance. What happens is that
the transverse wake force produced by an off-axis beam has the polarity
that the beam is deflected further away from the pipe axis. (See
discussions following Table Y1.} This forece therefore acts as @
defocusing force and as a result the rigid beam wode (the £ = § mode)
frequency shifts downuward. (See also Problem 14.) For experimental
chservaticn of this effect, see Refs. 81 and 82 for instance. For long
bunches, this property is not necessarily irue because the iransverse

wake function W{z) may change its polarity at some finite =z.

Recall that in the longitudinal case, as the beam becomes unstable,
the bunch lengthens without losing beam particles. The same thing does
not happen in the transverse case. As soon as the threshold is crossed,

beam particles wiil be lost, at least according to the linear theory.

Aside from this apparent difference, houever, the transverse and
longitudinal insiabilities are almost exactly parallel. For each
longitudinal effect, there is a transverse analogue, and vice versa. for
example, He have mentioned that the Robinson instabiiity has its
transverse counterpart and that at high beam intensities, both the

lengitudinal and the fransverse cases have the mode coupling

instabilities.

One may ask then if there is a head-tail instability in the
iongitudinal case and 1f there is a transverse counterpart of the

potential well distortion. The answer to both questions is yes. The
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longitudinal head-tail instability®3 resuits from the fact that ihe
momentum compaction factor a is not strictliy a constant; it depends on
the instantaneous energy error & just as the betatron frequency wp does.
The longitudinal beam distribution then acquires & head-iail phase and

instability may arise as a result.

The transverse analogue o¢f the potential well distortion comes from
having the unperiurbed beam off-centered frowm the accelerator pipe
axis.®* Such a displacement of the unperturbed beam may come from a
closed-orbit error caused by imperfections of the accelerator magnels.
The transverse wake field associated with the slused-orbit error deflects
the bunch tail by a fixed amount every time the beam passes by the
impedapce. The result is that the beam is distorted into 3 banana shape

and this distortion is static in time.

In the most general descripticn, Sacherer’s equation (3.28) form = D
and (3.60) for m = 1 are part of a grand scheme in #hich modes with
different m’s and £’s are all coupled together. To study the heaw
stability, one then has tc sclive the eigenvalue problem of a doubly
infinite matrix, of uhich we have separately studied only the m = @ and
the m = 1 components. In reality, as Jong as the mode frequency shifts
are smaii compared with wp, the matrix degenerates into blocks, each uith
a distinct value of m. If the mode frequency shifts are smail even
compared with ws, further degeneracy occurs and indeed we cbtain resulis
Tike Egs. (3.343 and (3.668). The factorization of the perturbation
distribution into ¥4 and gy in Egq. (3.50) is the result of assuming the

moade freguency shifts are small compared with wp.
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3.8. Multi-Bunch Instabiltities

In the previous sections, we have assumed that there is only one bunch
cf particles in the accelerator. Me will now show that with a slight
modification, the analysis can be appiied to & heam of M bunches,

provided the bunches are equally spaced and equally populated.

Consider first the longitudinal instabilities. A mode of the multi-

bunch beam is described by

s nTg ny
Ynir,%,5) = ¥p(r) + ¥4(r,¥) exp[—in -+ — ] expl-27t —
c M M

n=08, 1, ..., B-1 (3.79)

where ¥, is the distribution function of the n—tb buinch observed at a
_fixed tocation s, ¥g is the unperturbed distribution normglized by

fdr Jd6 Yo = N = number of particies per bunch, ¥, is the perturbation
distribution (same for all n’s), p is the multi-bunch mode index that
assumes the valtues 0,1,...,M-1. Successive bunches oscillate with a
phase difference of Zwn/M if the phases are compared at a given time so
that bunches are separated by distances cTesM. Khen M = 1, Eg. (3.79)

reduces ios (3.138). The mode number p and the phase factor exp{-ZwinpsM}

have been discussed in Section 2.7,

We will concentrate on the reference bunch for which n = 0. The uake

voltage seen by particles in this bunch is
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! o o
V(r,s) = etL J dr’ ¥ pat1?)

© k=-0o

M-1 S nTg ny nTo
X 3 exp[—iﬂ -+ — - kTp] - 2mi ——] WikTg = —— + 77 - 71 . (3.80)
n=0 c M M M

Compared with E£q. (3.20), this expression contains an additional
summation over the M bunches. The quantity py is the projection of ¥4
anto the t-axis; it has been defined in Eq. (3.19). In the frequency

domain, Eq. (3.88) reads

-ifls/c iw’y
V(1,8 = Mewg € T Pitw’) e Z{w') {3.81)
ps-w
uhere
W’ = Mpwg t+ puwp + R . (3.82)

Compared with Fq. (3.21), Eg. (3.81) has an additional factor of M in

front but the summation over p is M times more sparse.

We then follow the procedures of Sections 3.3 and 3.4 te set up and
linearize the Viasov equation for the 0¢-th bunch. For a uaterbag
distribution (3.293, uwe obtain again Eq. (3.31) with the modifications
that the right hand side is multiplied by M and that w’ is repiaced by

(2.81). A similar result was obtained in E£g. (2.69).

The Robinson instability occurs if the impedance has a sharp peak
(i.e., long wake field) at wg # (Mp+uluwg. For the accelerating savities,

the fundamental mode peaks at wg # hwg, where h is the harmonic nhumber
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and is necessarily an integral multiple of M. This means the most
important Rebinson instability (or Robinson damping) cccurs for the p = 0
mode in which ail bunches osciliate in phase. Under these conditions,
the growth rate is proportional to M, i.e., it is determined essentially

by the tctal beam current, not the singlie hunch current.

For a broad-band impedance (i.e., short wake field), the summation
over p is replaced by an integral. The replacement removes the factor of
M in front and cne obtains results identical to the single bunch resultis
Egqs. {3.36) and (3.37). This is not surprising since broad-band
impedance means the wake force is short-ranged and instability is &

result of a local interaction among particles in a single bunch.

Treatment of the transverse motion of a multi-bunch beam is again very
similar. For an air-bag beam., for example, one obtains tg. {(3.63) with
the same modifications as for the lengitudinal case. Similar discussions
on instability aiso apply.
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