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ABSTRACT

Using the leading logarithm approximation, strong

- interaction corrections to K°—&° mixing in the six quark
model are computed in quantum chromodynamics. The full
calculation involving the mixing of eight operators at
some stages is done, as well as an approximate, much
simpler calculation. Numerically, the exact and approximate
results agree to high accuracy and both show that the
corrections to the real and imaginary parts can be large.
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results is shown explicitly.
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I. INTRODUCTION

The K°—&° mass matrix has played an important role in particle
physics over the past decade. The small value of the real part of the
off-diagonal elements found an explanation in the GIM mechanism! which
invoked a fourth, charmed quark. Later calculations? of the magnitude of
these mass matrix elements led to a quantitative estimate of the charmed
quark mass. While these calculations were originally done without strong
interaction corrections, with the development of Quaﬁtum Chromodynamics
(QCD) the short distance effects due to strong interactions were soon
computed3** and found to change the answer rather little.

With the standard phase conventioné an imaginary part of the off-
diagonal mass matrix elements is an expression of CP noninvariance and

o

leads to the neutral kaon eigenstates, KS

and Ki; not being CP eigenstates,
With four quark flavors there is no imaginary part,5 but in a six quark
model a phase in the heavy quark couplings to the weak vector bosons leads
to CP violation and an imaginary part in the mass matrix, The phenomenol-
ogy of CP violation in the six quark model has been discussed® without
account of QCD corrections and found to be consistent with experiment and
in particular with its observation in the K;——KE system.

0
In this paper we calculate the QCD corrections to the K(S)“KL mass

matrix in the six quark model. A brief account of this work was reported

earlier.’

Here we give a more complete treatment, including the mixing
of eight operators at some stages of the calculatiomn.

In the next section we give the details of how the effective AS=2

. . . 0 =0 . .
weak Hamiltonian that contributes to the K —K mass matrix is calculated.
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Success'ively the W boson, t quark, b quark and ¢ quark are treated as
heavy fields and removed from appearing in the theory. At each stage we
get an effective theory with less fields and calculate coefficients of
operators in the effective Hamiltonian. These are related to their values
in the theory at the previous step by renormalization group equations
which we solve in the leading logarithm approximation. After giving the
full solution with all mixing included, we also give an analytic result
based on dropping the mixing of six operators with two others.

In Section III we give numerical results. Careful attention is paid
to how to match up the running coupling in effective theories with differ-
ent numbers of quarks and how the free quark results emerge as a limit.
This limit is explicitly carried out in Appendix A. Numerical results for
the sffong interaction corrections to the AS=2 Hamiltonian are also given
-in several cases. The exact and approximate results are numerically close

and indicate large strong interaction corrections in some cases.

2. QCD CORRECTIONS TO THE K°—K° MASS MATRIX

We work within the standard model® where the gauge group of electro-
weak interactions is SU(2) xU(l) and the six quarks, u, c, t with charge
2/3 and d, s, b with charge -1/3 are assigned to left-handed doublets

and right-handed singlets:
(u c t
\d' H Sl 3 bl ; (U‘)R b] (d)R 5 (C)R H) (S)R s (t)R ’ (b)R .

The choice of quarks fields is such that?
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where ¢, = cosb;,s; = sin@i, ie(1,2,3). Equation (1) defines three real
Cabibbo~type mixing angles, Gi, and the CP-violating phase §.

The portion (with AS-2) of the effective weak Hamiltonian density
which contributes to the matrix element between a KO and EO may be

written uniquely as

las|=2 _ 2 2 ~18\2p
Horr = 51%(c1cpe5m 5,850 ) H)
- 2 2 ~18 2%
+ slsz(clszc3+-czs e ) (2)
) -i8
+ 2s SZCZ(CIC2C3 s2 )(c1s2c34-c s.,.e )9f-+h c. .

The components Jﬁa, J%avand 5%3 of the complete Hamiltonian have relatively
complicated expressions!® in terms of time ordered products of four weak
charged currents contracted with W boson fields corresponding in the free

quark model to forming a "box diagram"

with virtual quarks and W bosons
in the loop.

In the free quark model, successively treating the W boson, t and

¢ quarks as heavy results in the following expressions:

GFmi — = _u
Jfl = - 6.2 (daYu(l'YS)sa><dBY (l-YS)sB> (3a)
™
2.2
GF t (= = u
H, = - o2 <ddYu(l—Y5)Su> <dBY (l-YS)SB> (3b)
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1
Gch n(mt/mc)

” - F {3 = LMt V
Hy = - o2 <daYu(l'Y5)sa> <dBY - Ys)se) (3e)

where GF is the Fermi constant, and m, and m_ are the c and t quark

t

masses. The color indices o and B are summed when repeated., Terms which

%, mi/ mi, etc., have been dropped.

are higher order in mi/nx

In the presence of strong interactions, as described by QCD, the
results in Egs. (3) will be modified. We shall deri&e in leading loga-
rithm approximation the form of the effective Hamiltonian when the W
bosons, t; b and ¢ quarks are treated as heavy and their fields removed
from explicitly appearing in the theory.

The first step is to treat the W boson as heavy and remove it from
~explicitly appearing in the Hamiltonian. This is done in a manner similar
to the analogous step in the derivation of the effective Hamiltonian for
AS=1 weak nonleptonic decays.11

For this purpose it is convenient to separate the Hamiltonian into
pieces gf(ii) that will not mix under renormalization by taking the four -
currents which were joined by W boson propagators, and writing pairs of
them as half the sum of color symmetrized (superscript +) and antisymme-
trized (superscript -) pieces. Then<?f=¢%f(++) + 3¢(+—> +*7f(_+) + Jf(_—x
In thg leading logarithm approximation each of the Hamiltonians, 5%3 with

the W boson removed can be written as:
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where a(+) = 6/21 and ac_) =-12/21, u is the renormalization point mass,

aS(Mz) the running fine structure constant in a theory with six quarks,

(££)

and the J%a have the explicit formt0212

# 0y = 1 f a*x [t{ol® o ® 0} - 215, oy, =y 5w, ()
x (25" (1-v)a, () 2 (5, (v, (1-vg) d, () (2 Y (114 ) ug ()
% ((5,,07° (1-v5) ¢, () (5017, (1-v5) 5 (0)) G

¢ (3,007 (1154, ) (3507, A-1g e, @))}] :

#0 = 1 f d*x [T{Oéi) ot (o)} - ZT{«EO‘(X)Yu(l—ys)ua(x))
x (E,07(1-v)dy () # (5,07, (1-v5)d, () (B (Ov" (A-v)ug )
% (5, 07, (1-v5)t, () (T (017" (1-v5)d(0)) (5b)

+ (5,01, (1-v)d, (M)(F50)v " (1=v)t 5(0)»}] ;



and

(™) (0) ifd‘*x [T{Oéi) )0l <o)} T {«ga(x)Yu(l—YS)ua(x))
5 (EB(X)Yu(l_YS)dB(X)):t(ga(x)yu(l_ys)da(x))(EB(X)YH(I—YS)UB(X))>

(3, 07" (175, ) (55 (0, (1-¥5) 4 (®) = (5, (@7 (1-v5)d, ()

X

CROMREEBIN (o)))} - T{((Ea(x)yu(l—YS)ua(x))(Ee(x)yu(l—ys)ds(x))

+

(3,697, (1=v5)d, () (£, GOv¥ (A=vg)u, ))((5, Oy, (1-v5) 2, (0))

X .

(350)7" (1~15)d (0)) # (5, (0, (1-v5)d, (0)) (5 (7" (L-v5) e, (o>))}

-+

(6,001, v, () (F, v (org)d, () 2 (5, Gov” (L-vg)a ()
« (E007" U=vgde ))(5, @, (-r5)t, ) (301" (1-75)d5(0))

‘—t(EA<o>yv<1—v5)dk(o>)(Ea(on%l—vs)té(m))}] B (5¢)

The matrix elements of the tﬁﬁ are to be evaluated to all orders in the
six quark theory of strong interactions using the MS subtraction scheme.
The next step is to successively treat the t-quark and b-quark as
heavy and remove their fields from explicitly appearing in the theory.
For é%z this is particularly simple since the t and b-quark fields do not
appear explicitly in it. The effect of removing the t and b-quark fields
from the theory of strong interactions is to change the strong coupling

g and masses My eees W in the six-quark theory to a coupling g', and

t

the masses M oys eres My in an effective five-quark theory and then to a

coupling g" and masses Moy eevs Moy in an effective four-quark theory of

) [a

the strong interactions. Also the exponents a <_)] change from
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6/21 [-12/21] to 6/23 [-12/23] and then to 6/25 [-12/25] as one goes from
the six-quark theory to the effective five-quark theory and then to the
effective four—-quark theory of strong interactions.

Thus the effective Hamiltonian density in becomes

2.112/21 2, §12/23r , '25112/25
JOR I e I T R IR o
Lo amd) o (m! %) "(u?) !
[ 47 & (my ) ] L")
2,.9-6/21r 2. 1-6/23 [ v 1247 —6/25
I 2 I ICIC T I EC RN I
2 e ) 2
L o@D | o' () U
6)
2.1-6/21 r 2, 7~-6/23 v, 12.1-6/25
N F“(Mw) o(m) o (m) ()
2 12 ne 2 1
- _a(mt)J o' (m] )_ a' (1)
Fa(M‘ZJ)‘—ZZ;/ZI “(mi) ~24/23 a'(mﬂz) ~24/25 -
+ ———ee —— H
2 ' 12 wy 2 1
_a(mt)J a'(m b) a (u7)

The matrix elements of the effective Hamiltonian density Jﬂi are at this
stage to be evaluated in an effective four-quark theory of strong inter-
actions. It only remains to treat the charm quark as heavy and remove it
from explicitly appearing in J?l. To leading order in the c—quark mass

+4
the matrix elements of Jff_") can be expanded in the following fashion:

<ot o L(ﬁ)(—f— ") m? <] Ga),_,Gay_,[>". (D)
where

Gy, GOy, = v a- V5, |[Spr - Y5, | -



The double primed matrix elements are evaluated in an effective four-
quark theory of strong interactions while the triple primed matrix elements

are to be evaluated in an effective three-quark theory of strong interac-

1

tions with coupling g''' and masses m''', m!'' and mé".
u

d

The operator (Ed)V_A(gd)V_A is a color symmetric four fermion opera-

tor with the usual anomalous dimension

m2
Yll!(+) (glll) = & +ﬁ(g"‘4)

4n2

. (8)

The mass parameter mg depends on the renormalization point u and its

anomalous dimension is

3]

n

i

vie = B o+ o o 9

N

2w

The components Jf§++), J%{+—), J%{-+) and Jff__) are comﬁgsed of a sum of
time ordered products of two local four-quark operators with color indices
respectively symmetrized in both operators, symmetrized in the first oper-
ator and antisymmetrized in the second operator, antisymmetrized in the
first operator and symmetrized in the second operator and finally antisym-
metrized in both operators. They have the familiar anomalous dimensions,!!
g2 /217 +0(g"), -g"?/4n? +0g"), —g"?/un’ +0(g"") and - g"?/n’ + 0(g"")
respectively. It follows that the Wilson coefficients L(it) (mg/u,g")

obey the renormalization group equations:

u dm

"2 "|2 m"
L h (g™ a4 (eMm" o - B - B )OS ) =0, (10a)
%8 ¢ ¢ Mg 2n2 4ﬂ2 M
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n2 m2 . m'
<“ o ET(E" g+ v Em g - 2y - B >L( )(‘E’ g") =0 , (10b)
C

2 2 m"
_9___ ne n d Ny 9 Sg" gm (- < "

=0 , (10c)
4 4w
2 2 mll
a 3 [1] "t ———
(u 2+ g"(g") o + VAW sow - 2 - B 2>L( )<T°,g"> =0, (104)
c s 4r :

These may be solved in the standard fashion, introducing a running coupling

constant g'(y,g") defined by

~ ?(yyg") 1 -vy"(x) ;
my = [ ey s TN =8 (11)

g

and noting that the coefficients L(ii)[l,gﬁ(mc/u,g")] may be replaced by
their free field values L(ii)(l,O) since the running fine structure con-
stant is taken as small at the scale of the charm quark mass and because
no large logarithms can be generated from higher order QCD loop integrals

when mg/u =1,

A straightforward computation yields

(+) -1 (3
L (1’0) = - ﬂz [2] . (123)
1,0 =1 P am - -5 [-3] (120)
™
and - -
(--) - _1[1
L& 1,0y = - _2_[_2_] . (12¢)
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The factors in the square brackets stem from color summations. Solving
the renormalization group Eqs. (10) using the leading logarithm approxima-

tion then gives

-~ mg . a"(uz) 12/25 a"(mgz) 6/27 a"(mgz) 24725 )
L \w8) = "2 ) 2 2 [E]
m a"(mg ) ' (p7) o' (u)

: (13a)
(+-) m_'c; _ (D) f’;
L <U 1 g> =L <1—| ’ >
- "o 25
) a"(uz) 6/25 an(mZZ) 6/27 o (mcz) 24/ [ l}
nz a"(mgz) a"'(uz) a"(uz) 2
(13b)
and B
(_—) m'(: 1 Cy'll(uz) —24/25 an(m|c|2) 6/27 a”(m'eyz) 24/25 1
L R 81 = ~ 7 2 wir 2 2 [E]
L (mc a''(u) a"(u)
(13c)

Using these results the effective Hamiltonian density 5%1 becomes

2

¥ = - 16?2' m’éz(gaYu(1‘Y5)da)(§BYu(1~Y5)dB)

”a..(mgz)’6/27 ; a,(méz) 12/25 a(mi) 12/23 “(MVZJ) 12/21
X iy ———m
o™ (1) 2 Lam@h a’ (m! ) q(mb

Ot'(mi)z)ﬁ —6/25[ O‘(mi) ]—6/23 [Q(M‘%) -6/21

a" (2 o' (%) a(n2)
¥ 0L.(m],)z) —24/25[- “(mi) -24/23 a(Ma) -24/21 (
1 14)
2 u"(mzz) La'(mﬂz) a(m%)
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. . 2 .
where mg is the running charm quark mass evaluated at mg , 1.€4,

e = (et fenad)

[od Cc

12/25
] (15)

The Hamiltonian J&i already occurs in the four-quark model and our results
agree with some of the previous results’ for the QCD corrected 3%1, when
the appropriate simplifications are made.

The derivation of the effective Hamiltonian density gga proceeds
along similar lines except that already at the step of removing the t—-quark
field from explicitly appearing each of the 9?§++), J%§+—), J%é-+) and
J%é__) collapses to a Wilson coefficient times mi[guyu(l-ys)da] X
[EBY“(l-YS)dB] to leading order in the‘t—quark mass. From that point on
the successive steps are marked by renormalization of this latter color

index symmetric four~fermion operator. The final result is

2_%2
m
¥, = - 1“’6:2 (547, (11524, )(5gr* (1-v5)dg)

a"(mgz) 6/27 a'(méz) 6/25 a(mi) 6/23
X |\ —_— —_— (16)
m 2 1] ||2 1 |2
a (u7) ot (ml) o' (m ")
) 2,q12/21 2,7-6/21 2, 1 -24/21
e a (M) a (M) L1 a (M)
2 b

a(mi) a(mi) a(mi)

where mi is the running t-quark mass evaluated at mi, i.e.,
% = 2 2 12/21
m* = m La(m) / a(u) ] .

The computation of the effective Hamiltonian density Jfé in the presence

of strong interactions is somewhat more complex. At the step of removing
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++)

the t—-quark from J%é eight operators are generated, even with the
condition of keeping only those whose tree level matrix elements can
yield a contribution of order m22 or mix under renormalization with
operators whose matrix elements can. Expanding the matrix elements of

(1)
H 3

in terms of matrix elements of these operators gives

~J

Y¢logl>' 00000

to leading order in the t-quark mass. The primed matrix elements are

evaluated in an effective five-quark theory with strong coupling g'.

Six of the operators12

Ogii)A= fde{ ()(x)(sd) A(uBBVA}

( I € = 3
0, = 1fd xT {Oc (%) (SadB)V—A(uBuG)V-A}

( _ ()
O " = fd x T { () (5odg)y_p [(Pgugdyan +

originate from the portion of Jfg""

f oéi) () (5,d)y_s [(Bgugdy_s *
02 - if a1 {Ot(:i) () (5odgy_y [(GBua)V-A+

+ - -
Oc(: )(x)(suda)V—A [(gugdyen

?

(18a)

(18b)

(18¢c)

(184)

(18e)

(18£)
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' iJ(;4x T {Oéi)(x) oﬁi)}

which is an integral of a time—ordered product of two pieces of the

effective AS=1 weak nonleptonic Hamiltonian, one containing a t—quark
+ +F

and the other a c-quark. Note that Oéi“) = O§‘+) for je (1, ..., 6).

The two additiomnal operators needed are
(zx) _ . [ 4 = = u
0, = 1;/; X T{[Ksa(x)yu(1—y5)ua(x))(c8(x)y (l—YS)dB(x))

¢ (5,07, (1y)d, ) (3, (01" (1-y5)ug () |

(18g)
-X[Kgxyv(I'YS)CA)(EaYv(l'YS)da)
o (EAYv(l'Y5>dx)(ﬁayv(l—Ys)ca)]}
and
, L |
Og = ;%5 (anu(l-ys)da)(gsyu(l—ys)de) . | (18h)

The factor of l/g'2 is inserted into the definition of 08 so that to lowest

++ . .
order the anomalous dimension matrix Yi; )(g') has all its entries propor-

tional to g'z. If 08 did not contain the factor of l/g'2 then the elements

++
Yié )(g') would be (to lowest order) constants independent of g' for

t+
ie (1, ..., 7). Then in solving the renormalization group equations Lé )

pue

would have to be treated in a different fashion from the Lg ),

je (1, +..5 7). On the other hand, with our definition!3 of O8 it can be
treated on the same footing as all the other operators. Of course in

calculating its renormalization we must now be careful to include the

coupling constant renormalization.
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The matrix elements of the operators O1 and O2 cannot produce a

factor of mg at tree level. However, they must in principle be included

s T+
since under renormalization they mix with the operators O( ), 02 ,

3
etc., whose matrix elements can produce a factor of mgz. The anomalous
(£
]

+
dimension matrices yi _)(g') for these eight operators arell

1 3 0o 0 0 0 O o}
1 1 1 1
3 1-9 3-3 3 00
7 11 2 2
o o I -2 2 o 3
o o 22 8.3 3 o 16
12 5 3°9 3
) (g'y = B Y
Ti3 62 |0 0 0 0 3-3 0-32(+ &) (19a)
- 5 5 5 13
0 0-5 3-g-73 0-1f
O 0 0 0 0 0 &4-24
7
[0 0o 0 0o 0o 0 0 7|
"1 3 0 0 0 0 0 07
1 1 1 1
3 1-3 3-3 3 00
7 11 2 2
o 0o T 2.2 %2 o m
22 8 5 5
210 o 22 8.2 2 o 16
Y gy = B 5 3 9 3 + o™ (19b)
1 gn2lo 0 0o 0 3-3 0-32
5 5 5 13 . _
0 0-3 2-3-3 o-16
O 0 0 0 0 0-2 8
O 0 0 0 0 0 O %
o od




I
frd
[

I

' 5 3 0 0 0 0 0 0O
1 1 1 1
3-3-35 3-5 3 00
47 11 2 2
0 0-% S -5 3 0-16
22 10 5 5
2]lo o0 2£-22_2 2 o0 o0
t (=4 ] .
vis Ve = 2 #0393 + o' (19¢)
8w 0 0 0 O0-3-3 0 16
5 3 _5_31
0 0-g 3-g-73 0 O
O o0 0 0 O 0-2 -8
o 0 0 0o o o0 0 <
- 3-
.5 3 0 0 0 0 O 0]
1 1 1 1
3 5-35 3-9 3 00
. 47 11 2 2
0 0-% F -5 5 0-16
o o 2210 5 35 4
'(__) ' '2 3 9 3 '4
Yy (g)=4g——2 + o(g ) (194)
J gt 0 0o 0 0-3-3 0 16
5 5 5 31
0 0-53 3-5-3 0 0
0 0 0 0 0 -8 -8
7
_o 0o 0 0 0 0 0 3]

4
The coefficients L§—')(mt/u,g) satisfy renormalization group equations
which can be solved in the standard way. In this solution values are
++ - '
needed for the coefficients Lg——)[l,g(mt/u,g)], where g is the running

coupling in the six-quark theory. These are found by noting that in the

++ -
leading logarithm  approximation the L§——)[l,g(mt/p,g)] can be replaced

+
by their free field values Lé_)(l,O) for je(l, «vuy 1o
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Lfti)(l,O) -1, (20a)
L§¢i>(l’o) -1, (20b)
Lgii)(l,O) = Liii)(l,o) = Léii)(l,o) = Léii)(l,O) =0 , (20c)
and
L a0 - -1 . o (204)
(

++ -
For the coefficient LS__)[l,g(mt/u,g)] the situation is somewhat more
subtle since the operator O8 contains a factor of l/g'z. Explicit

calculation gives that in the MS regularization scheme
(+4) =N L=2, (2,2 - | 21
L, (mt/p = 1,g) g kn(mt/u )u=ﬂk 0 . (21)

The last step follows, not because the factor of éz is small, but rather

because the logarithm vanishes at p = m

t

The final aim is to derive an effective Hamiltonian indepehdent of
the heavy W-boson, t-quark, b-quark and c-quark fields. To do this
the b~quark and c-quark must still be considered as heavy and removed
from explicitly appearing in the theory. Removal of the b-quark is
similar to the previous step. There are still eight operators whose

renormalization is characterized by the anomalous dimension matrices

Y"(ii'(g") :
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[
—
O

I

' -5 3 0 0 0 0 0 O]
1 1 1 1
3-5-5 35-5 3 0 O
47 11 2 2
0 0-% -5 5 0-16
23 11 4 &4
n2 0 0 =-=%-— = 0 0
n(==), 53 3
ANRICOIE oS ? + o™ (22)
J 8 0 0 0 0-3-3 0 16
o ook &4 32 4
9 3 9 3
0O 0 0 O 0O O0-8 -8
5
o 0 0 0 0 0 0 3

Finally at the step of removing the charm quark, oniy one operator
mnggaYu(i-YS)dGJEEBYu(l-YS)dB] appears and its anomalous dimension
follow§ from mass renormalization and the renormalization of the color
symmetric local four~fermion operator (Ed)V_A(gd)V_A. This program for
deriving the effective Hamiltonian g%% in the presence of strong inter-
actions is a straightforward generalization of that used to derive the
effective Hamiltonian for weak nonleptonic decays. Its complexity is
such that, unlike the case of JQE and J%E, we cannot write a simple
analytic expression for J%%.

However there are some further approximations, beyond the leading
logarithm approximation, which make the derivation of a simple analytic
expression for J%b possible., As can be seen from Eqs. (20), the operators

. N :
Og’) Oé”) are induced through strong interactions and thus their

(1)

s erss
contribution is less important than g which has a nonzero coefficient
even in the absence of the strong interactions. It follows since 0y and

O2 do not mix directly with O7 and 08’ that to a good approximation, at

the stage of removing the t-quark, the set of eight operators can be
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(£1) . .
and O,. Again, on removing the

truncated to the two operators 0, 8

b-quark there are two operators. Finally, on removing the charm quark
only an operator proportional to Og occurs. This is the approximate

solution we presented previouslyo7 It yields an analytic expressionl¥

for J%%:
2m 2
F c - U -
H, = ——————— (s.¥Y (1-v.)d, ) spY, (1-Y.)d
3 64wa"(m"2) ( a 5 a)( B'u 5 B)

) a"(mgzﬂ 6/27 { » 5[1'(“%2) 12/25 “(mi) 12/23
" 2 35 u2 |2
a" (u7) "(m! ") @' (m ™)
12y75/25 2, 712/23 V12,7 5/25 2, 17/23
e a(n?) Jeed {a(mg >
i gz)d @’ (@) ?) " (%) @' ()
a2y 12721 02 1-6/25[ 2. 7-6/23  [Lr, +2y75/25
B . 48 <13[ (o >} () |
| o@?) B3\ e @n?y | a' m??) a" (mr?)
™ 2 -6/23 V124715725 2 7/23 2,1-6/21
x u(mt) - 11 : (mb ) oL(mt) )[Q(MW)]
Lo @) o' (u'?) a' (! %) a(n?)
24 a'(mg ) -24/25 a( 2 -24/23 d'(méz) 5/25
+ =31 ——— + 2
899 2 "eonl
d"(mg ) a'( mé o (mc )
a(m%) -24/23 5/25 i 7/23 G(Méy -24/21%
X = .
a’ (m' %) (%) a’ (my %) a(m?)

(23)

o'ﬁ’.
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The matrix elements of the three parts of the effective Hamiltonian
for K°—K° mixing in Eqs. (14), (16) and (23) are to be evaluated using
the mass independent MS subtraction scheme in an effective theory of
strong interactions with three light quark flavors wu, d and s. The
effects of QCD can be ascertained by comparing J%l, Jﬁa and 3%3 given

by Egs. (14), (16) and (23) with their free quark values in Egs. (3).

3. NUMERICAL RESULTS

We are now in a position to evaluate numerically the coefficients
of (sd)V_A(sd)V_A in the pieces Jﬂi, J%a and éﬁg of the effective AS=2
Hamiltonian. For given values of the parameters, these coefficients
can be compared with their free quark values.

There is only one operator (sd) so that any renormalization

V—A(gd)V—A’
point (u) dependence of its coefficient and of the matrixdelement of the
operator must cancel between them, at least if everything is computed
exactly. 1In ratios where the matrix element cancels, such as in the ratio
of imaginary toc real parts of <KO| J%;fflﬁo>, the u dependence of the

coefficients must cancel out to obtain a renormalization point independent

answer for these physical quantities. Our results for éﬁa and 6%3

~1?
in leading logarithm approximation in Egqs. (14), (16) and (23) all have
the same p dependence through the factor [a"(m"z)/a(uz)]6/27, and satisfy

C

this last criterion, leading to predictions for such ratios thch are
renormalization point independent.

To evaluate the effective Hamiltonian we need values of the masses,
including u, and expressions for the running fine structure constants

a(Qz), a'(QZ), a"(Qz) and a"'(Qz) in effective field theories with
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6, 5, 4'and 3 quarks, respectively. We use the standard

2 2 1
0 (Q®) = i = (24)
f 4n(Q”
A2
where Nf- the number of quark flavors, is six.

Corresponding formulae hold for a'(QZ), a"(Qz) and a"‘(QZ) with
Ne =5, 4 and 3, respectively, but also with A replaced by A', A" and
A'''. That the A parameters are different follows if.one demands
matching of the value of the appropriate running couplings at boundaries

between regions. Explicitly setting a(mi) = a'(mi) yields

L \2/21
A= A'(A—) , (25)

m
t

‘while the corresponding matchings at my and m, give

2/23
A"

A' A" . (26)

and

(27)

Such a use of different values for A, A', ... does of course effect
the numerical results and makes those reported here somewha; different
from those we reported earlier in our short paper7 on this subject where
the differences in A, A', ... were not taken into account.l® Also
this allows us to reproduce the free quark (no QCD) results!’ as
A, A"y ... approach zero, consistent with Eqs. (25), (26) and (27).

This is carried through explicitly in Appendix A.
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The efféctive Hamiltonmian for K°—K° mixing is often used in conjunction
with that for AS=1 nonleptonic decays. For completeness we record in
Appendix B the values of the coefficients of the operators in the AS=l
weak nonleptonic Hamiltonian.

In the numerical work we use mi = 1.5 GeV, from charmonium spectros-
cOpPY; mg = 4,5 GeV, from T spectroscopy; m* = 30 GeV, just to choose one

t

possible value which is experimentally acceptable at the present;
M, = 80 GeV; and a? = 0.01 and 0.1 GeV2. It is A" in the effective four-
quark theory which is presumably the quantity being extracted from QCD
analysis of deep inelastic scattering experiments.l® We set a"'(uz) =1,
although it is easy to change this by again recalling that all the pieces
of the Hamiltonian have the same u dependence and multiplying all the
answeréiby an appropriate factor. ’
Values for Nps Nps Ngs which are defined resbectivel§ as the ratios

of coefficients of (Ed)V_A(Ed)V_A in Jf}, J%é and J%% with strong inter-
actions included, to those in the free quark model, are presented in
Table I. The results for ny are those calculated from the full mixing
with eight operators. However, the approximate analytic results in
Eq. (23) yield the same result to two place accuracy. It is evidently an
excellent appréximation to the full answer using all eight operators.

. All the coefficients of . I, and 3 are lowered by QCD from their
free quark model values, The corrections to 3%3 and éﬂg are rather

appreciable, but stable to varying A" (or m_ for that matter). Ty changes

t
by a factor of 1.4 between A”2 of 0.01 and 0.1 GeVz. A complete analysis
of the effects of all this on the K°—E° system with the attendant

phenomenology can be found elsewhere.!?



APPENDIX A

REPRODUCING THE FREE QUARK MODEL

As we take the limit of A approaching zero, the running strong
coupling approaches zero and the theory goes over to that of a free quark
model. 1In our expressions for the leading logarithm QCD corrections to
various quantities, one finds typical factors like a;(mi)/a;(mé) raised
to fractional powers. To evaluate such a factor as we approach the free
quark model, recall that the running fine structure constant in an

effective theory with four quarks,

ol (%) 2, (a.1)
s A”z
25 4n 5
- Q
while that in an effective theory with five quarks,
0l Q%) = Lzn . (A.2)
S A'Z
23 4n 5
Q

Matching the running couplings at the boundary between four and five
2
quarks (i.e., at mb) gives as in Eq. (26):
nw\2/23
A= o A (A.3)
my .

Therefore:
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(A.4)
,
in —E
m
= 1 + _.____.—_C__
12
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m
. c
m2
_ 25 b ( 2
= = — |+
1 12n % 0 2 4 “s)
(&

The question of what is the argument of oy in Eq. (A.4) is a higher order
effect (in o).

In a similar way one finds

OL'< 2) m2
AN VA i AT A i @<a2> , (A.5)
o 2) 127 s 2 s
o m,
ag(mt) i
s\®t/) 21 My 2>
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and
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T
0N
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—
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=
€]
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Now take, for example, the QCD corrected expressions for 3%1, 5%2
and J%B in the effective weak AS=2 Hamiltonian density that contributes
to the K°—K° mass matrix., For 3%1, given in Eq. (14), to get the free
quark limit we need only keep the first term in Eqs. (A.4), (A.5), (A.6)
and (A.7). The correct result, Eq. (3a) emerges immediately. Similarly
for J%E, the QCD corrected result in Eq. (16) goes over to the free
quark Eq. (3b).

For éﬁg the expression is much more complicated, even dropping the

mixing of six operators to obtain the approximate result in Eq. (23):

2 .2
—*EETE————(' M (1-v) 4, )(557, (1-Y5) dg )
H, = s,Y (1-v.)d, )sgY,(1-Y:)d
3 64ﬂu"(m22) Q 5/7a/\"8 u- 5778
) au(ﬁZZ T6/27 2 ' ( ,2) 12/25 a(mi) 12/23
e N A N e @' (my*)
., a,(ng)ﬂ 5/25 a(mi) 12/23.- 7 a'(méz) 5/25 a(mi) 7/23
@) | [ @) " (%) o' ()
- 2.q12/21 v 2:)-6/25 2, 1-6/23 Vo 12.75/25
R I R Rl o (mp) I i
(D) 3\ Lo ) a' () o (m't?
o - -6/21
) a(mi) 6/23.— N a,(m£2) 5/25 a(mi) 7/23 G(Mé) 6/2
o' @ %) a" (') a’ (m' %) a(ul)
” & (') -24/25 a(ud) ~24/23 2 @' (m'?) 5/25 (4.8)
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@’ (@ %) a" (%) at () a(n?)
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In the limit process, the leading term cancels and we must keep the order

a  terms in (A.4) and (A.6). We consider each quantity in parentheses

separately:
-a'(mé ) 12/25 a(mi) 12/23 a'(m'g) 5/25 a(mi) 12/23
5| =5 - 2 e PR
a"(mg ) a'(mé ) u"(mg ) a'(mé )
v 42, 5/25 2. 7/23 2
5 o' (') alm) -60-10435 [T
e n2 1o 12 12w s 2
| o (m ") o (mb ) A0 m
m2 m2
-60-24+49 _t _ 35 t .
—*—EE;—f— us Ln 5 = - Ton % n 7 : (A.9)
" M
o (mlz) 6/25 (x(mz) 6/23 a'( 12) -5/25 I" o (m 2) 6/23
t ™ (O
n " t " " ]
7 a(mc) a(mb) a(mc); mb
1, 12.=~5/25 2 -7/23 2
o (m ™) o(m) 78+10+55 b
- 11 2 2 > i2r % |3
1 1" ] 1 :
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78-12+77 t | _ 143 e .
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Therefore, going back to 3{3:

2 2
Gch H
H, —— - (3 - d)(' - d)
3 A0 64ﬂas (SaYu(l Y5) o SBY (1 YS) B
2
72 ( 35 48 143) 24 _s99> Tt
"{ 35( 12n>+ 143(12n * 899( 127 }“s il
c
Gémi mi _ .
= - — - s - .12
= 5 in > (Squ(l Ys)da)( sgY (1 YS)dB) R (A.12)
16m m,

which is exactly the free quark (no QCD) result for $¢3 in Eq. (3c).
Similar computations give the free quark limit in other situations,

such as the AS=1 effective weak Hamiltonian.
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APPENDIX B

The effective Hamiltonian for AS=1 nonleptonic decays is frequently
used with that for AS=2 K°—&° mixing., With the use of different values
for A, A', ... 1in the expressions for a(Qz), a'(QZ), ... corresponding
to effective field theories with 6, 5, ... quark flavors, the numerical
results for the AS=1 nonleptonic weak Hamiltonian are changed from those
in Ref. 11, where the differences in A, A*, ... were not taken into

account. We have recomputed the coefficients in JW(AS=1) = E:i CiQi

using the same choice of parameters as in this paper: MW 80 GeV,
m. = 30 GeV, my = 4.5 GeV, m, = 1.5 GeV and u chosen to that a"'(uz) =1,
The results are given in Table II and replace those in Tables I and III

in Ref. 11.
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TABLE I

QCD corrections factors Nys Ty and Ny to the pieces I,

Jﬁa and é%g of the effective Hamiltonian for K°—K° mixing.

Parameters nl n2 n3
A% = 0.01 gev? 0.69 0.59 0.41
A2 - 0.1 gev? 0.99 0.60 0.40
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TABLE

IT

Coefficients of operators in the

weak effective Hamiltonian for AS=1 decays.

A2 0.01 Gev? 0.1 Gev’
= —
C1 ~-1.0 + 0.034 ¢ -0.93 + 0,049 T
C2 1.60 - 0.034 T 1.55 - 0,049 T
C3 -0.033- 0,006 Tt -0.022-0,014 T
C5 0.0184 0,004 < 0.011+0.009 t
C6 -0.10 - 0.10 T -0.048-0,11 =
Parameters

Mw = 80 GeV, m, =

m, = 1.5 Gev,

2
T = 52+G2

30 GeV my = 4.5

at ) = 1,

c.8 e—i6 c.c
253 13)

GeV




