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ABSTRACT 

Using the leading logarithm approximation, strong 

interaction corrections to K"-Eo mixing in the six quark 

model are computed in quantum chromodynamics. The full 

calculation involving the mixing of eight operators at 

some stages is done, as well as an approximate, much 

simpler calculation. Numerically, the exact and approximate 

results agree to high accuracy and both show that the 

corrections to the real and imaginary parts can be large. 

How to obtain the free quark limit of these and other 

results is shown explicitly. 
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1. INTRODUCTION 

The K"--ii" mass matrix has played an important role in particle 

physics over the past decade. The small value of the real part of the 

off-diagonal elements found an explanation in the GIM mechanism1 which 

invoked a fourth, charmed quark. Later calculations2 of the magnitude of 

these mass matrix elements led to a quantitative estimate of the charmed 

quark mass. While these calculations were originally done without strong 

interaction corrections, with the development of Quantum Chromodynamics 

(QCD) the short distance effects due to strong interactions were soon 

computed314 and found to change the answer rather little. 

With the standard phase conventions an imaginary part of the off- 

diagonal mass matrix elements is an expression of CP noninvariance and 

leads to the neutral kaon eigenstates, Ki and KE; not being CP eigenstates. 

With four quark flavors there is no imaginary part,5 but in a six quark 

model a phase in the heavy quark couplings to the weak vector bosons leads 

to CP violation and an imaginary part in the mass matrix. The phenomenol- 

ogy of CP violation in the six quark model has been discussed6 without 

account of QCD corrections and found to be consistent with experiment and 

in particular with its observation in the K"- 
Sq system. 

In this paper we calculate the QCD corrections to the Kg--< mass 

matrix in the six quark model. A brief account of this work- was reported 

earlier.7 Here we give a more complete treatment, including the mixing 

of eight operators at some stages of the calculation. 

In the next section we give the details of how the effective AS=2 

weak Hamiltonian that contributes to the K"-go mass matrix is calculated. 
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Successively the W boson, t quark, b quark and c quark are treated as 

heavy fields and removed from appearing in the theory. At each stage we 

get an effective theory with less fields and calculate coefficients of 

operators in the effective Hamiltonian. These are related to their values 

in the theory at the previous step by renormalization group equations 

which we solve in the leading logarithm approximation. After giving the 

full solution with all mixing included, we also give an analytic result 

based on dropping the mixing of six operators with two others. 

In Section III we give numerical results. Careful attention is paid 

to how to match up the running coupling in effective theories with differ- 

ent numbers of quarks and how the free quark results emerge as a limit. 

This limit is explicitly carried out in Appendix A. Numerical results for 

the strong interaction corrections to the AS=2 Hamiltonian are also given 

in several cases. The exact and approximate results are'numerically close 

and indicate large strong interaction corrections in some cases. 

2. QCD CORRECTIONS TO THE K"-E" MASS MATRIX 

We work within the standard model' where the gauge group of electro- 

weak interactions is SU(2)xU(l) and the six quarks, u, c, t with charge 

213 and d, s, b with charge -l/3 are assigned to left-handed doublets 

and right-handed singlets: 

[;j, 3 (: jL 3 (;jL ; (u>, , (dlR , (cl, , (dR , WR , (blR l 

The choice of quarks fields is such that' 
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( 
d' 

S’ 

b' 

-s1c3 
i6 

c1c2c3 -s2S3e 
c1s2c3 + c2s3e i6 

-s1s3 

C1C2S3+:2C3e 

'1'2'3 -c2c3e 

(1) 

where c i = cosf3.,si = sin8 1 i, is(1,2,3). Equation (1) defines three real 

Cabibbo-type mixing angles, Bi, and the CP-violating phase 6. 

The portion (with AS-2) of the effective weak Hamiltonian density 

which contributes to the matrix element between a K" and K" may be 

written uniquely as 

gglBsI=2 = s:cE (c1c2c3 - s2s3e-i’)2s eff 1 

+ sfsz (c1s2c3 + c2s3e -i6 2s 
) 2 (2) 

2 + 2sls2c2 ( -i6 clc2c3 - s2s3e >( 
c1s2c3 + c2s3e -i6 s3+h.c. > . 

The components xl, X2 and X3 of the complete Hamiltonian have relatively 

complicated expressionslo in terms of time ordered products of four weak 

charged currents contracted with W boson fields corresponding in the free 

quark model to forming a "box diagram" with virtual quarks and W bosons 

in the loop. 

In the free quark model, successively treating the W boson, t and 

c quarks as heavy results in the following expressions: 

G2m2 
x1 = - Fc 

161~~ 
$&(l - Y5) se ;igYP(l - Y5)SB (34 

x2 = dBYWY5)SB (3b) 



-5- 

73 = - "uyF1(1- Y5) (1 - Y5) SB (3c) 

where GF is the Fermi constant, and m and m 
C 

t are the c and t quark 

masses. The color indices cx and S are summed when repeated. Terms which 

2 are higher order in m:/mW, mz / m: , etc., have been dropped. 

In the presence of strong interactions, as described by QCD, the 

results in Eqs. (3) will be modified. We shall derive in leading loga- 

rithm approximation the form of the effective Hamiltonian when the W 

bosons, t; b and c quarks are treated as heavy and their fields removed 

from explicitly appearing in the theory. 

The first step is to treat the W boson as heavy and remove it from 

explicitly appearing in the Hamiltonian. This is done in a manner similar 

to the analogous step in the derivation of the effective Hamiltonian for 

AS=1 weak nonleptonic decays.ll 

For this purpose it is convenient to separate the Hamiltonian into 

pieces %(") that will not mix under renormalization by taking the four ' 

currents which were joined by W boson propagators, and writing pairs of 

them as half the sum of color symmetrized (superscript +) and antisymme- 

trized (superscript -) pieces. Then %= 9Z?(*) + ,c+-> + g&4-+> + ,G->, 

In the leading logarithm approximation each of the Hamiltonians, ;Ce. with 
J 

the W boson removed can be written as: 
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“S(% 
2, 

+ [ 1 
.(-) + ,w 2a(-) &-+> + as m$ 

ash 1 j [ 1 crs(P21 
,(--) , (4) 

j 

where a(+) = 6/21 and a!-' = -12/21, 1-1 is the renormalization point mass, 

c1,(M2) the running fine structure constant in a theory with six quarks, 

and the $8;") have the explicit form1°'12 

+_+*I (0) - iJd4x [T{O~f)(x)O~t)(0)) - 2T{((-S,(x)Y~(l-~5)U,(x)) 
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x (;,(O)v,(l-y5)c,(0)))} - T{((l,(x)~,(l-Y~)u,(x))(f~(x)Y~(l-Yg)~s(~)) 

+ T (~$x)Y~~-Y~) c,(x))(fs(x)Y~(l-ys)ds(x)) + (~,(x)yvU-y5)daW) 

(5c) 

The matrix elements of the xj are to be evaluated to all orders in the 

six quark theory of strong interactions using the MS subtraction scheme. 

The next step is to successively treat the t-quark and b-quark as 

heavy and remove their fields from explicitly appearing in the theory. 

For xl this is particularly simple since the t and b-quark fields do not 

appear explicitly in it. The effect of removing the t and b-quark fields 

from the theory of strong interactions is to change the strong coupling 

g and masses mu, . . . . mt in the six-quark theory to a coupling g', and 

the masses mu,, . . . . mb' in an effective five-quark theory and then to a 

coupling g" and masses mu,,, . . . . m C ,, 
in an effective four-quark theory of 

I 
the strong interactions. Also the exponents a (+I [a(-)] change from 
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6/21 [:12/211 to 6/23 C-12/231 and then to 6/25 C-12/251 as one goes from 

the six-quark theory to the effective five-quark theory and then to the 

effective four-quark theory of strong interactions. 

Thus the effective Hamiltonian density gtl becomes 

3y; = [f?k]12’21[a4;)]12’23 
12/25 

*(t-t> 
1 

(6) 

The matrix elements of the effective Hamiltonian density til are at this 

stage to be evaluated in an effective four-quark theory of strong inter- 

actions. It only remains to treat the charm quark as heavy and remove it 

from explicitly appearing in Xl. To leading order in the c-quark mass 

the matrix elements of 2 (++> 
1 can be expanded in the following fashion: 

rnF2 <I (Sd)V-A(&)V-A1>"'. (7) 

where 

(sd) V-A(~d)V-A = 
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The double primed matrix elements are evaluated in an effective four- 

quark theory of strong interactions while the triple primed matrix elements 

are to be evaluated in an effective three-quark theory of strong interac- 

tions with coupling g"' and masses m:", rn:" and m's". 

The operator ("d>v-A("d)V-A is a color symmetric four fermion opera- 

tor with the usual anomalous dimension 

y"I (+I 
2 

(g"') = g"' + @(g"'4) 
4s2 

. (8) 

The mass parameter rn: depends on the renormalization point )1 and its 

anomalous dimension is 

2 
Yp") = g" + @(gfV4) 

2r2 
. (9) 

The components S%?'l(ff), C%y-), G@~-+) and c%?!--) -are composed of a sum of 

time ordered products of two local four-quark operators with color indices 

respectively symmetrized in both operators, symmetrized in the first oper- 

ator and antisymmetrized in the second operator, antisymmetrized in the 

first operator and symmetrized in the second operator and finally antisym- 

metrized in both operators. They have the familiar anomalous dimensions,l 

gtt2/2Tr2 + O(gVV4), - gvr2/41T2 + O(gTV4), -glV2/4a2+ O(gVV4) and - g" 2'712 + o(grt4> 

respectively. It follows that the Wilson coefficients L (kk) (mIp, g") 

obey the renormalization group equations: 

( 
lJ & + 8’Yg”) +i + yF(g”)n$ & - 

C 

5 _ $)L(*)($,p’) = 0 r(lOa) 
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C 

5 _ &$,(+-f$ g”) = 0 , (lob) 

p & + B”(g”) --hi + v~<s”h~ &ii - ag C 

?f$ - $),(--I($ 8”) = 0 , (10d) 

These may be solved in the standard fashion, introducing a running coupling 

constant p(y,g") defined by 

g”(Y ,g”) 

Rn y = 
s 

dx 
1 - Yp 

8"(x) , al&") = EC' 9 

d' 

(11) 

and noting that the coefficients L (")Cl,~(mc/p,g") I may be replaced by 

their free field values L (+(l,o) since the running fine structure con- 

stant is taken as small at the scale of the charm quark mass and because 

no large logarithms can be generated from higher order QCD loop integrals 

when my/p = 1. 

A straightforward computation yields 

and 

L(*)(l 0) = l 2 , -7 2 [1 , 

L(+-) (1 
0) 

= L(-+)(l 0) = - 1 3 
, , IT2 

[ 1 -+ 

~- LG-)(l o) = , 1- [3 1 -7 z . 
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The factors in the square brackets stem from color summations. Solving 

the renormalization group Eqs. (10) using the leading logarithm approxima- 

tion then gives 

and 

(13b) 

Using these results the effective Hamiltonian density xl becomes 

(14) 
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where rn: is the running charm quark mass evaluated at mz2, i.e., 

* 12/25 
m = m" 

C 
c 1 (15) 

The Hamiltonian Xl already occurs in the four-quark model and our results 

agree with some of the previous results3 for the QCD corrected xl, when 

the appropriate simplifications are made. 

The derivation of the effective Hamiltonian density z2 proceeds 

along similar lines except that already at the step of removing the t-quark 

(++> field from explicitly appearing each of the x2 , SF-) , $rf'~-" and 

&-- 1 
2 collapses to a Wilson coefficient times m:CsuyP(l-y5)dcrl x 

[~Byu(1-y5)dSI to leading order in the t-quark mass. From that point on 

the successive steps are marked by renormalization of this latter color 

kndex symmetric four-fermion operator. The final result is 

2 *2 

x2 = GFmt 
- 7 ( "ay~(1-Y5)da)(~By~(l-Yg)ds) 

(16) 

x (q.&]12’” _ [22]-6’21 + 1[91”1”), 

where rn: is the running t-quark mass evaluated at m 2 . 
t, =.e., 

m: = m,Cub-+ I a(u2> 1 
12'21 

. 

The computation of the effective Hamiltonian density 38, in the presence 

of strong interactions is somewhat more complex. At the step of removing 
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(U) 
the t-quark from X3 eight operators are generated, even with the 

condition of keeping only those whose tree level matrix elements can 

yield a contribution of order my* or mix under renormalization with 

operators whose matrix elements can. Expanding the matrix elements of 

n terms of matrix elements of these operators gives 

<]+)I> = 2 L~~~)<lO~+f) I>’ + 
j=l J 

L~+f)<1081>’ 0 0 0 0 0 

to leading order in the t-quark mass. The primed matrix elements are 

evaluated in an effective five-quark theory with strong coupling g'. 

Six of the operators12 

0:") = ild4x T jOb+'(x)(",ds)v-a(;Bu,)v-A} , 

O$j") = iJd4x T ( O~f)(x)(~CXdCL)V-A[(;BuB)V-A+...+ (i;gbB)V-A]} , 

0:") = isd4x T {O~')(x)(SadB)V-A[(;Bua)V-A+ . . . + (6Bba)V-A]} , 

0:") = isd4x T {O~')(x)(~od,)V-A[(;BuB)V+A+...+ (6BbS)V+A]} , 

0:") = iJd4x T {O~')(x)(GCLdB)V--A[(;Bua)VfA+ l l *+ (6Sbu)v+A]} ' ~ 

(184 

(18b) 

(18~) 

(18d) 

(18e> 

(18f) 

(t+) 
originate from the portion of x2 , 

J 
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i[d4x T {O;*)(x) 0:") 

which is an integral of a time-ordered product of two pieces of the 

effective AS=1 weak nonleptonic Hamiltonian, one containing a t-quark 

and the other a c-quark. Note that O(") = O(tT) for j E (1 
j j 

, . . . . 6) l 

The two additional operators needed are 

(1%) 

X11(S~yV(1-yg)c1)(UGyV(1-y5)ds) 

and 

m' 2 

og = -+ ("aY~(l-v,)d,)(sBv,(l-yg)ds) . 
g 

The factor of l/gV2 is inserted into the definition of OS SO that to lowest 

(kk) 
order the anomalous dimension matrix y!. 

iJ 
(g') has all its entries propor- 

2 tional to g' . If OS did not contain the factor of l/g 12 then the elements 

yt c-1 
i8 (g') would be (to lowest order) constants independent of g' for 

is (1, . . . . 7). 
(fk) 

Then in solving the renormalization group equations Lg 
(t+) 

would have to be treated in a different fashion from the L. J 
, 

jE (1 , . . . . 7). On the other hand, with our definition13 of OS it can be 

treated on the same footing as all the other operators. Of course in 

calculating its renormalization we must now be careful to include the 

coupling constant renormalization. 
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(+-+-) The matkix elements of the operators O1 and 0:") cannot produce a 

factor of rnF2 at tree level. However, they must in principle be included 

since under renormalization they mix with the operators 0 
(t+_) 
3 , 

etc., Id whose matrix elements can produce a factor of mc . The anomalous 

(2+-) dimension matrices yl. (g') for these eight operators are 10 
1J 

’ (+-> 
Y.* 1J 

1 

3 

0 

0 

0 

0 

0 

0 

1 

3 

0 

0 

0 

0 

0 

0 

3 0 0 0 0 

1 -- ; f-i + 

0 7 - 11 -- 2 2 
9 3 9 -5 

0 
93 
22 8-S 5 

0 0 0 3-3 

5 13 0 ‘9 $-9-T -- 

0 0 0 0 0 

0 0 0 0 0 

3 0 0 0 0 

0 ‘9 ;+J$ -- 

0 0 

0 0 

0 32 

0 16 

0 -32 

0 -16 

4 -24 

0 3 

0 0 

0 0 

0 32 

0 16 

0 -32 

0 -16 

o 0 o 0 0-2 8 
7 000000~ 

+ @d4) (194 

+ ad4) (19b) 
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(g’) = 22 

81.r~ 
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5 3 0 0 0 0 0 0 

3 -5-i 4-i ; 0 0 

0 (-J+ A+-$ $ 0 -16 

0 0 22 10 5 5 0 9-3-q Yj 0 

0 0 0 0 -3 -3 0 16 

0 0-s &T-7 5 31 0 0 

0 0 0 0 0 O-2 .8 
7 0000000~ 

-5 3 0 0 0 0 0 0 

3 -5 -$ $ -$ $ 0 0 

0 0 -7 + -$ $ 0 -16 

0 0 22 10 5 5 0 9---y--$ 3 -0 

0 0 0 0 -3 -3 0 1t 

0 o-$ gy7 5 31 0 0 

0 0 0 0 0 O-8 -8 
7 

0000000~ 

+ dc4) (19c) 

. 

+ @d4) (19d) 

The coefficients L. (+-+-) b,/p,g> 
J 

satisfy renormalization group equations 

which can be solved in the standard way. In this solution values are 

needed for the coefficients L. (fi)Cl,ght/u,g)l, is the running 
J 

where g 

coupling in the six-quark theory, These are found by noting that in the 

leading logarithm approximation the L~")[l,g(mt/p,g)l can be replaced 

by their free field values Lj (+)(l,O) for j E (1, . . . . 7). 
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Ll (cy)(l,o) = 1 , (2Oa1 

L-)(1 0) = 1 
2 ¶ , (20b) 

+ql 0) = L(+ql 0) = L-)(1 0) = L(f+)(l 0) = 0 
3 , 4 J 5 , 6 , , (2Oc) 

and 

L7 
(++)(l,o)) = -1 . (2Od) 

(&IL-) For the coefficient L8 [l,g(mt/p,g)l the situation is somewhat more 

,2 subtle since the operator Og contains a factor of l/g . Explicit 

calculation gives that in the MS regularization scheme 

LS++)(mt/p = l,g) = ii2 h-i (+u2)~p=mt = 0 0, (21) 

The last step follows, not because the factor of i2 is small, but rather 

because the logarithm vanishes at p = mt. 

The final aim is to derive an effective Hamiltonian independent of 

the heavy W-boson, t-quark, b-quark and c-quark fields. To do this 

the b-quark and c-quark must still be considered as heavy and removed 

from explicitly appearing in the theory. Removal of the b-quark is 

similar to the previous step. There are still eight operators whose 

renormalization is characterized by the anomalous dimension matrices 



I! (+-) 112 
Y- * 1J 

Y 

1 

3 

0 

0 

0 

0 

0 

0 

1 

3 

0 

0 

0 

0 

0 

0 

-5 

3 

0 

.O 

0 

0 

0 

0 
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3 0 0 0 0 

0 7 - 11 -- 2 2 
9 3 9 -3 

0 23 7 4 4 
9 7-3 -3 

0 0 0 3-3 

0 4 4 4 14 -- g 7-q-T 

0 0 0 0 0 

0 0 0 0 0 

3 0 0 0'0 

0 7 11 2 2 - -- 
B 3 9 -3 

0 23 7 4 4 
9 3-9 3 

0 0 0 3-3 

0 0 0 0 0 

0 0 0 0 0 

3 0 0 0 0 

o -47 - 11 -- 2 2 
9 3 9 3 

o g-11 - -- 4 4 
9 3 9 3 

0 0 0 -3 -3 

0 o- 

0 0 

0 32 

0 16 

0 -32 

0 -1.6 

-2 8 

0 5 

0 0 

0 0 

0 -16 

0 0 

0 16 

0 0 o 0 O-2 8 
5 oooooo?; 

(224 

-I- ..@(g114) (22b) 

+ a(g"4) 
(22d 
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5 3 0 0 0 0 0 0 

0 0 

0 -16 

0 0 

0 16 

0 0 

0 0 0 0 0 O-8 -8 

0000000~ 

Finally at the step of removing the charm quark, on Ly one operator 

, 

I 

+ a(g”4> (22d) 

m~2Csau,(l-r5)d,lrsG~~(l-yg)dsl appears and its anomalous dimension 

follows from mass renormalization and the renormalization of the color 

symmetric local four-fermion operator (sd)V-A(sd) -V-A' This program for 
. 

deriving the effective Hamiltonian H3 in the presence of strong inter- 

actions is a straightforward generalization of that used to derive the 

effective Hamiltonian for weak nonleptonic decays. Its complexity is 

such that, unlike the case of %I and X2, we cannot write a simple 

analytic expression for X3. 

However there are some further approximations, beyond the leading 

logarithm approximation, which make the derivation of a simple analytic 

expression for 3Y3 possible. As can be seen from Eqs. (20), the operators 

o(+> (+I 3 , 9") ‘6 are induced through strong interactions and thus their 

(++) contribution is less important than o7 which has a nonzero coefficient 

even in the absence of the strong interactions. It follows since O1 and 

O2 do not mix directly with O7 and 08, that to a good approximation, at 

the stage of removing the t-quark, the set of eight operators can be 
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(++> truncated to the two operators O7 and Og. Again, on removing the 

b-quark there are two operators. Finally, on removing the charm quark 

only an operator proportional to Og occurs. This is the approximate 

solution we presented previously,7 It yields an analytic expression14 

for X3: 

G2rnft2 
x3 = Fc 

64~rc~?(rn~~) 
(s,v~(l-u5)da)("BY~(1-Yg)ds) 

X 

a” (m:2) 
[ 1 a”’ (p2> 

(23) 
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The matrix elements of the three parts of the effective Hamiltonian 

for K"-Eo mixing in Eqs. (14), (16) and (23) are to be evaluated using 

the mass independent E subtraction scheme in an effective theory of 

strong interactions with three light quark flavors u, d and s. The 

effects of QCD can be ascertained by comparing xl, x2 and H3 given 

by Eqs. (14), (16) and (23) with their free quark values in Eqs. (3). 

3. NUMERICAL RESULTS 

We are now in a position to evaluate numerically the coefficients 

of (Ed) TJ-A(Sd>v-A in the pieces xl, x2 and x3 of the effective AS=2 

Hamiltonian. For given values of the parameters, these coefficients 

can be compared with their free quark values. 

There is only one operator (Sd)V-A("d)V-A, so that any renormalization 

Point (P) dependence of its coefficient and of the matrix-element of the 

operator must cancel between them, at least if everything is computed 

exactly. In ratios where the matrix element cancels, such as in the ratio 

of imaginary to real parts of <K"I XeffIgO>, the u dependence of the 

coefficients must cancel out to obtain a renormalization point independent 

answer for these physical quantities. Our results for xl, x2 and X3 

in leading logarithm approximation in Eqs. (14), (16) and (23) all have 

the same v dependence through the factor [a'(my 2)/a(p2)]6'27, and satisfy 

this last criterion, leading to predictions for such ratios which are 

renormalization point independent. 

To evaluate the effective Hamiltonian we need values of the masses, 

including p, and expressions for the running fine structure constants 

a(Q2), a' (Q2), a"(Q2) 2 and a"'(Q > in effective field theories with 
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6, 5, 4'and 3 quarks, respectively. We use the standard 

a(Q2) = 33!21N l 
f Rn Q2 

0 

, (24) 

7 

where N f' the number of quark flavors, is six. 

Corresponding formulae hold for a'(Q2), a"(Q2) and a"'(Q2> with 

Nf = 5, 4 and 3, respectively, but also with A replaced by A', A" and 

A"' . That the A parameters are different follows if one demands 

matching of the value of the appropriate running couplings at boundaries 

between regions. Explicitly setting a(m:) = a'(m:) yields 

, 

while the corresponding matchings at mb and mc give . 

and 2125 
11 - 1 1 I 

A-A . 

(25) 

(26) 

(27) 

Such a use of different values for A, A', . . . does of course effect 

the numerical results and makes those reported here somewhat different 

from those we reported earlier in our short paper7 on this subject where 

the differences in A, A', . . . were not taken into account. l6 Also 

this allows us to reproduce the free quark (no QCD) resultsI as 

A, A', . . . approach zero, consistent with Eqs. (25), (26) and (27). 

This is carried through explicitly in Appendix A. 
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The effective Hamiltonian for K"-go mixing is often used in conjunction 

with that for AS=1 nonleptonic decays. For completeness we record in 

Appendix B the values of the coefficients of the operators in the AS=1 

weak nonleptonic Hamiltonian. 

In the numerical work we use rn: = 1.5 GeV, from charmonium spectros- 

copy; $ = 4.5 GeV, from T spectroscopy; m t = 30 GeV, just to choose one 

possible value which is experimentally acceptable at the present; 

%= 80 GeV; and AlI2 = 0.01 and 0.1 GeV2. It is A" in the effective four- 

quark theory which is presumably the quantity being extracted from QCD 

analysis of deep inelastic scattering experiments.18 We set arll(p2) = 1, 

although it is easy to change this by again recalling that all the pieces 

of the Hamiltonian have the same J.I dependence and multiplying all the 

answers by an appropriate factor. / 

Values for rl13 u2’ n3, which are defined respectively as the ratios 

of coefficients of (sd)y-A("d)V A in xl, X2 and X3 with strong inter- 

actions included, to those in the free quark model, are presented in 

Table I. The results for n3 are those calculated from the full mixing 

with eight operators. However, the approximate analytic results in 

Eq. (23) yield the same result to two place accuracy. It is evidently an 

excellent approximation to the full answer using all eight operators. 

, All the coefficients of Xl. X2 and X3 are lowered by QCD from their 

free quark model values. The corrections to 22 and X3 are'rather 

appreciable, but stable to varying A" (or mt for that matter). Xl changes 

by a factor of 1.4 between Alr2 of 0.01 and 0.1 GeV2. A complete analysis 

of the effects of all this on the K"-Ro system with the attendant 

phenomenology can be found elsewhere.lq 
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APPENDIX A 

REPRODUCING THE FREE QUARK MODEL 

As we take the limit of A approaching zero, the running strong 

coupling approaches zero and the theory goes over to that of a free quark 

model. In our expressions for the leading logarithm QCD corrections to 

various quantities, one finds typical factors like a~(m~)/a~(m~) raised 

to fractional powers. To evaluate such a factor as we approach the free 

quark model, recall that the running fine structure constant in an 

effective theory with four quarks, 

ai(Q2) = (A. 1) 

while that in an effective theory with five quarks, 

(A.21 

Matching the running couplings at the boundary between four and five 

quarks (i.e., 
2 

at mb> gives as in Eq. (26): 

2/23 
(A-3) 

Therefore: 
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a" m 2 ( j s c -- 

aA < ( ) 

= 23 
25 

Rn ' 
( 1 n,2 

2 
m 

Rn c 
( 1 p2 

(A.41 

25 =l+mas Rn 

The question of what is the argument of as in Eq. (A.4) is a higher order 

effect (in a,). 

In a similar way one finds 

a: 4 ( ) 2 
mt 

am 2 
i ) 

=1++ 
s jkl 0 

2 + @a: ( ) , 

s t "b 

(A.51 

2 a 
S ( ) mt 

as 4 i ) 

= 1 + & as Rn $ + @(a:) , , 

i 1 

(A.6) 

mt 

and 

111 2 
a 1-I 

S ( ) 
m2 

a" m 2 
i ) 

=1+$&a sLn-++@ai , 

0 
i ) 

s c v 
(A.71 
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Nov take, for example, the QCD corrected expressions for zl, x2 

and &X 
3 in the effective weak AS=2 Hamiltonian density that contributes 

to the K"-E" mass matrix. For Xl, given in Eq. (14), to get the free 

quark limit we need only keep the first term in Eqs.(A.4), (A.5), (A,6) 

and (A.7). The correct result, Eq. (3a) emerges immediately. Similarly 

for X2, the QCD corrected result in Eq. (16) goes over to the free 

quark Eq. (3b). 

For X3 the expression is much more complicated, even dropping the 

mixing of six operators to obtain the approximate result in Eq. (23): 

GLm*L 
s3= -Fc 

64na"(mz2) 
( sav~(l-v5)da)("BY~(1-Yg)ds) 

x [ ay+j-6’23 - lll;,;;;;]5’25 [ ay($]7’23) [S]T21 

-24123 5125 (A. 8) 

+2 

x [,yx:,l”“‘+ 2g~~,~;~;]5’25[a~~;,lli23) [2!$]-24’2;i . 
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In the limit process, the leading term cancels and we must keep the order 

as terms in (A.4) and (A.6). We consider each quantity in parentheses 

separately: 

+ -6O-24+49 
12T as in($)}= - +!& as gn($) ; (A.9) 

+ 78-12+77 
12T as En ($)I = s as !2n[:i) ; (A.lO) 

and 

+ -744+48-203 12~ (A.111 
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Therefofre, going back to s3: 

G2m2 
Fc l%f-- 

3 A+-0 64?ra 
Y5Ma 

S 
say,, Cl- >( +'(l- Y Id 5 B 

sa~lI(l - Y5)da )( sBvpU - Y5)dg , (A.12) 

which is exactly the free quark (no QCD) result for %3 in Eq. (3~). 

Similar computations give the free quark limit in other situations, 

such as the AS=1 effective weak Hamiltonian. 
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APPENDIX B 

The effective Hamiltonian for AS=1 nonleptonic decays is frequently 

used with that for AS=2 K"-zo mixing. With the use of different values 

for A, A', . . . in the expressions for a(Q2), a'(Q2), . . . corresponding 

to effective field theories with 6, 5, . . . quark flavors, the numerical 

results for the AS=1 nonleptonic weak Hamiltonian are changed from those 

in Ref. 11, where the differences in A, A', . . . were not taken into 

account. We have recomputed the coefficients in LYC (AS=l) 
= Ci CiQi 

using the same choice of parameters as in this paper: %= 80 GeV, 

mt = 30 GeV, mb = 4.5 GeV, m 
C 

= 1.5 GeV and p chosen to that a”‘(l-r2) = 1, 

The results are given in Table II and replace those in Tables I and III 

in Ref.-11. 
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TABLE I 

QCD corrections factors nl, n2 and q3 to the pieces *l, 

3 and j"e, of the effective Hamiltonian for K"-go mixing. 

Parameters 9 q2 '3 

p12 = 0.01 GeV2 0.69 0.59 0.41 

p2 = 0.1 GeV2 0.99 0.60 0.40 
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TABLE II 

Coefficients of operators in the 

weak effective Hamiltonian for AS=1 decays. 

p2 0.01 GeV2 001 GeV2 

c1 -1.0 + 0.034 -c -0.93 + 0.049 T 

c2 1.60 - 0.034 T 1.55 - 0.049 -c 

c3 -0.033- 0.006 T -0.022- 0,014 T 

c5 0.018+0.004 T 0.011+0.009 T 

'6 -0.10 - 0.10 T -0.048- 0.11 IC 

Parameters 

Mw = 80 GeV, mt = 30 GeV mb = 4.5 GeV 

m C = 1.5 GeV, ."'(u2) = 1, 

T = -i6 


