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ABSTRACT 

A direct calculation of the leading power law corrections to the 

structure functions at large x is described. Three unexpected results 

are that these terms have a form different from that usually assumed, the 

leading correction to Wz is negative, and R is large and slowly varying. 
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While PC0 is widely accepted as the theory of the strong interactions, 

detailed comparison with experiment is far from perfect. The deep 

inelastic structure functions are a case in point. It now seems clear 

that the leading asymptotic terms predicted by QCD do not explain the low 

to moderate Q2 sructure function data nor the ratio R = u~/aT Cll. 

Higher twist power law corrections to asymptotic QCD predictions could be 

important for both; several sucessful phenomenological descriptions based 

on higher twist have been given E21. In this letter we present a direct 

calculation of the leading power law corrections to Wt and WL at large x 

near 1 and large Q2 C31. We do not present a detailed fit to data but, 

rather, a qualitative picture of the results. Two surprises emerge: the 

leading higher twist contribution to VW 2 is negative and of a form 

different than that assumed in the literature; and vW~/vWz is remarkably 

large. . 

Our analysis is based on the extension of the Brodsky-Lepage formalism 

CSI first employed by Berger and Brodsky C51 in their calculation of 

higher twist contributions for pion beams. In the x + 1 limit the bound 

the 

ir 

state quark struck by the virtual photon is required to carry most of 

o+r, _ component of longitudinal momentum. In the case of the proton 

target, there are two spectator quarks wh ich must transfer most of the 

longitudinal momentum to the struck quark. The simplest diagrams 

allowing this transfer are illustrated in Fig. l(a), where we imagine 

attaching the virtual photon to the upper quark line as in Fig. l(b). 

Simple kinematics forces the interior propagators off-shell by an amount 

roughly proportional to (Lt2+mz)/(l-x) where At is a typical transverse 

momentum and m the mass of the spectator quarks. The diagrams of Fig. 1 
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determine the average value of Rt in terms of m. As x + 1 the off-shell- 

ness becomes large and perturbative techniques become rel,iable. In this 

domain, proton Fock states with more than the three basic constituents 

have more suppressed (1-x) power law behavior and will not be considered 

here. 

The method used is to first directly compute the matrix elements of 

the perturbative born graphs as a function of the longitudinal fractions 

of the initial quarks and of the final state spectator quark longitudinal 

and transverse momenta. The transverse momenta of the initial quarks do 

not enter into the leading large x behavior of the born graphs; they are 

integrated over in defining the evolved wave function for the initial 

state. The resulting amplitudes are then summed and squared and the 

final state integrals and helicity sums performed. The relevant born 

graphs are obtained from Fig. l(a) by attaching the virtual photon to all 

places on the upper quark line Cas for example in Fig. l(b)l, and by 

summing over the roles of the various quarks including different helicity 

states. Since the quark mass plays an important role it is not possible 

to ignore helicity flip terms in computing a given born graph. 

The structure functions for deep inelastic scattering are defined by 

wwv=- [ gwv-y]w,+ [ pp-q/-y[ ,,-,,y]u, (1) 

Using light-cone (+,- ,L) notation and a frame with q+ = O,q- = Y/P+, 

we have 
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w++ W -- 

w2 =- i WL 
= Qt p+2 - 

P tt 4v2 

OL r 
R =- =- ; r 

UT l-r 

(2) 

The born graphs were computed in both Feynman and axial gauges. The 

axial gauge forms, with a two loop momentum subtracted a(k2) included for 

every gluon propagator of momentum k, were used in the actual 

integrations. This procedure may reduce the magnitude of higher order 

The leading terms at large x and Q2 are of the form corrections C61. 

UWi = Si(X) (1-x I3 + Ti(X 
(1-x) (l-x)-' 

+ Ui(X) + (3) 
Q2 Q9 *** 

where the remaining x dependence in S, T and U is logarithmic in the 

variable m2/Ch,,,,,2(l-x)l = 6. There is additional logarithmic Q2 

behavior in all amplitudes except S2 and T2. There are also terms with 

higher (1-x) powers at every level which we do not examine here. We have 

retained in the matrix elements only those terms which contribute to the 

leading l-x power forms listed above. The amplitudes S, T and U are 

integrals over terms proportional to (roughly) a~C(m2+Rt2)/(1-x)3. The 

3-quark initial wave function employed is that determined by Brodsky 

et al r.71 in obtaining an overall description of the proton/neutron form 

factors and + + 3g + pj5 decay. We have tested for sensitivity to this 

initial wave function by comparing to weak binding (where all incoming 

quarks carry l/3 of the proton "+*' - momentum) and to the fully evolved 
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form (X1X2X3 - see C71 for notation). Essentially, only the overall 

normalization of St changes and by less than a factor of 3. The ratios 

quoted in the following are insensitive to the initial wave function 

choice. Our explicit calculations will be for S2, T2 and the Qz + 09 

limit of SL. 

In axial gauge the contributions to S 2 and T2 arise only from the 

(+-+I and (++-I initial state helicity configurations. In addition only 

three diagrams contribute to each; for instance for the initial helicity 

configuration (+-+I these are the diagrams of Fig. l(c). In principle 

there are two sources of the TZ term: explicit non-scaling terms arising 

in the matrix elements; and kinematic corrections arising from energy 

conservation. In the proton target calculation only the latter terms 

occur, in contrast to the pion case where both types are present. We 
. 

present our results in Fig. 2 where rneS2 is plotted as a function of the 

variable 5 defined earlier. The values were computed by numerical 

integration over 5 parameters: the transverse momenta of the two 

spectator quarks and the fraction, z, of longitudinal momentum carried by 

one relative to their combined longitudinal momentum, Cl-x)p+. The plots 

are given in the range S > 10 for which the internal a(k2)'s are in their 

perturbative range. The results for T2 are easily summarized as 

T2/S2 s -6m2 , (4) 

which should be compared to the result for the average transverse 

momentum squared of the struck quark 

KT2 S 3m2 . (5) 



The surprising feature of this calculation is the negative leading 

x + 1 higher twist coefficient, Eq. (4). This result is easily 

understood. The leading higher twist correction comes, in the proton 

target case, entirely from the phase space restrictions implicit in 

energy conservation. These inevitably reduce the cross section at 

subasymptotic Gl2. It should be recalled that the phenomenological fits 

of Barnett et al. El1 and by Duke and Roberts IIll, which incorporate 

higher twist terms, find a negative coefficient for their leading l/Q2 
. 

correction to scaling. Taking into account the fact that they assumed a 

form ~(1-x12/Q2, i.e., more strongly damped in (l-x), a value of m in the 

range of 0.1 GeV to 0.2 GeV would yield a reasonable size for our Tt/S2 

and would, at the same time, give a sensible value for KT~. The 

normalization of vW2 itself depends on the value of A,,,. We adopt the 

approximate determinations of hnom y 0.1 GeV from the high Q2 muon 

scattering experiments CSI. For these choices F > 10 requires x > 0.9. 

Thus, to decide whether our normalization for VW 2 is reasonable for the 

above range of m, we must extrapolate our curves for St back to x * 0.65 

where data exist; this extrapolation yields between 25% and 100% of the 

observed normalization. Note that St, which is the coefficient of the 

leading (l-xl3 power law behavior in m'+zIW2, increases substantially as x 

-6- 

It is clear that the calculation is sensitive to the non-perturbative 

scale, mt of the quark mass, which can be thought of as being determined 

by KT2. Indeed our calculations are infrared divergent in the limit 

m + 0. However, once m2 is fixed all relative normalizations and x 

dependences are determined given a choice for A,,,. 
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decreases; this is due to the effects of the moving coupling constants in 

our calculation, which have arguments proportional to 5. 

For vWL we have computed only the scaling term SL since r has an 

explicit l/Q2 factor. Many diagrams and all helicity configurations 

contribute to the large Q2 limit of SL. In Fig. 2 we plot m2SL/mQS2 and 

find 

SL 
- Y 3 X lob m2 
s2 

which leads to 
m2 

r - 105- 
Q2 

(61 

(7) 

roughly independent of x as x + 1. 

The large relative normalization for m2SL/m4Si has five 

distinguishable sources: 

(1) An explicit factor of (1/2Jb. 

(2) A factor of approximately (7j2 due to there being nearly seven times 

as many terms contributing to SL as to S2. 

(3) The fact that half the terms contributing to SL are weighted by 

initial state convolution integrals which are a factor of 5 larger 

than those appearing in S2, yielding enhancement by a factor of 

approximately 9 = C(5/2)+(1/2)12. 

(4) Cancellations between terms contributing to S2. [For example, the 

sign of the first two diagrams in Fig. l(c) is opposite to that of 

the third.1 Such cancellations do not occur in the expression for 

SL, yielding a relative enhancement of SL by a factor of ~16. 
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(5) A factor of more than 10 coming from the fact that the final state 

integral for SL converges only logarithmically through the moving 

coupling constants whereas the integral for St is power law 

convergent. The nearly divergent pieces arise from graphs in which 

the struck quark and one spectator quark interact in a net helicity 

0 configuration via one gluon exchange at large relative momenta 

immediately prior to the photon attachment. Since large relative 

momenta correspond to small separation, these configurations can be 

interpreted as spin 0 diquark structure. Note that T2, which has 

the same dimensions as SL, is nonetheless power law convergent. For 

vW2 it is only at the level of U 2 that one first encounters slow 

convergence. 

These crude estimates, which one can approximately isolate on the 

-computer, yield a factor in reasonable agreement.with the full result, 

30000. 

As already mentioned SL, 1~ and U2,~ must really be considered as 

asymptotic series in inverse Rn Q2 powers. One expands the energy 

conservation delta function and computes the coefficients of the various 

l/Q2 powers as integrals over transverse momenta of the spectator quarks. 

However portions of these integrals for the coefficients of l/Q2 for VWL 

and of l/Q6 for vW2 quadratically diverge. This divergence promotes 

these terms by a factor of 

a(Q2) 1 
2 

Q2( l-xl2 (8) 
aC(m2+.Ct2)/(1-x11 
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to the level of U2 and SL respectively. A similar promotion occurs for 

still higher terms. It is these corrections to SL and the explicitly 

higher-Q2-power terms in the VWL series (e.g., TL and UL) that must 

restore positivity to [TT at moderate Qt. When such corrections in 

l/Rn Q2 are present they serve as a warning that the asymptotic result 

for the coefficient function in question (e.g., SC or U2) will only be 

dominant at very large Q2. We have seen this explicitly in the case of 

SL for which the asymptotic result violates positivity until Q2 is larger 

than lo5 m2. 

At this point it is useful to compare the present results for the 

proton to those for the pion. We first note that the coefficient T2 for 

the pjon target is positive due to the presence of matrix element as well 

as delta function l/Q2 corrections. A second difference is that T2 for . 

the pion exhibits very slow convergence just like lJ2 and SL in the proton 

case. Berger and Brodsky C41 did not explicitly perform the necessary 

integrals involving moving coupling constants. They instead parameterize 

their result for the pion T2 in terms of an <KT2>. Their preferred value 

of <KT2) (of order 1 GeV2) is not unreasonably large in light of the 

above discussion for SL, item 5). Indeed it could easily be an 

underestimate. Of course, as in the case of the proton SL, the pion T2 

is expected to have potentially large l/Rn Q2 corrections to its 

asymptotic limit. 

If m 5 hmom r 0.1 GeV, then our perturbative calculation should be 

accurate for x > 0.9; thus it is not possible to say for certain that 

those features which are calculated at large x should characterize the 
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data in the range x < 0.7. However, in the large x domain we have a 

reliable gauge invariant description of the proton wave function and deep 

inelastic amplitudes, including possibilities for interference and other 

subtle effects. In this domain there is a significant negative higher 

twist l/Q2 term and a result for r, Eq. (71, which suggests that r cannot 

be reliably obtained as an asymptotic power law series until m2/Q2 is 

smaller than 10-S or, for the approximate value of m2 discussed 

(m2 r 0.1 GeV2J, Q2 > 1000 GeV2. However, we regard this calculation as 

giving support for the magnitude and sign of the leading higher twist 

terms needed phenomenologically for vW2 and as a warning that the 

standard QCD leading log component of R II91 may be much smaller than that 

coming from higher twist effects. The higher twist component will yield 

a roughly x independent result for R at large x with unexpectedly slow Q2 

dependence, not inconsistent with current experimental d.eterminations. 

We eventually hope that data in the x near 1 domain will become available 

so that a direct test of this perturbative calculation and the underlying 

theoretical techniques can be made ClOl. 
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FIGURE CAPTIONS 

Fig. 1. (a) Gluon Born graphs for the transition matrix elements; 

(b) The two photon attachments arising from the first gluon 

diagram in (a); and (c) The three diagrams in axial gauge that 

contribute to SZ and T2 in the initial helicity state (+-+I. 

Fig. 2. Numerical results at large Q 2 for W2 and WL as a function of 

f: -1 = (1-x)hm,,2/m2. 
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