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ABSTRACT 

The problem of the inclusion of sub-leading logarithms to all orders 

of the perturbative expansion is considered and solved in the case of 

multiple soft gluon emission. The evaluation of the entire set of the 

_ sub-dominant contributions is performed in a consistent way at two loop 

level in the impact parameter space for the effective quark form factor. 

The effect of the inclusion of the single logarithms is found to be 

large also at one loop level as compared with the dominant double 

logarithms and negligible corrections are seen arising from the second 

order terms. We stress the relevance of the single logarithmic effects 

by computing the cross section for production of hadrons at large 

acollinearity angles in electron-positron annihilation. 

-2- 



1. INTRODUCTION 

The question about the validity of the Quantum Chromodynamics as the 

theory describing the physics of the strong interactions has represented 

a main topic in the experimental and theoretical work in the past few 

years. ’ The appealing possibility that a perturbative treatment of the 

theory can give some insight about the dynamics of the processes 

involving hadrons has shown both virtues and limits of such approaches. 

In fact, even it seems clear that a general qualitative agreeement can 

be obtained in the comparison with the experimental data, the efforts 

toward a more precise, quantitative, analysis have been, so far, 

unsuccessful. The reason is that even if the short distance behaviour 

of the theory is quantitatively described by a perturbative treatment, 

the large distance non-perturbative effects still elude a systematic 

analysis.z 
. 

A particularly interesting class of processes in perturbative QCD is 

represented by the semi-inclusive semi-hard processes which are 

characterized by the presence of two large but different mass scales. 

Examples are the cross section electron+positron + A+B+X with A and B 

hadrons at a relative transverse momentum QTz much smaller than Q2 

(QTz << QzI the total center-of-mass energy of the initial lepton pair 

and the Drell-Yan cross section h+h + ptpFX with the lepton pair 

transverse momentum QT2 much smaller than the pair mass M2 (QT’ << M*). 

For these processes a simple perturbative expansion is not sufficient; 

large logarithms of the ratio of the two scales Rn Q2/QTz appear in the 

perturbative series and must be resummed to all orders in the running 

coupling constant to obtain a meaningful answer. The presence of double 

-3- 



logarithmic corrections in the form of a Sudakov-type3 form factor is a 

common characteristic of these reactions. When inclusive cross sections 

are considered the double logarithms disappear due to the compensation 

of the real and virtual contributions and standard resummation 

techniques can be applied. This is not the case in the particular 

regions of the phase space considered above in the semi-inclusive 

processes. Due to the enhanced importance of the soft bremsstrahlung 

the compensation of real and virtual contributions is incomplete and 

double logarithms appear. Furthermore to deal with double logarithmic 

corrections the standard resummation techniques are no longer applicable 

and particular procedures must be developed. Such an extension of the 

range of applicability of the standard perturbative analysis makes the 

study of these processes relevant to investigate the perturbative phase 

of the theory. . 

The use of this improved perturbative analysis is furthermore the 

correct theoretical framework to deal with the dynamics of multiple soft 

bremsstrahlung and has a more general range of interests than only the 

examples mentioned before: it can give a link between hard and soft 

physics. As one example in the electron positron annihilation the 

largest part of the cross section is given by the two jet 

configurations. The kinematical region QT2 y Qz is only a small 

fraction of the total phase space. The study of the intermediate 

transverse momentum region can give a link between the hard physics (3 

jet events) and the soft physics (2 jet events). 

The first step toward the understanding of the physics involved in 

the semi-inclusive processes has been made by Dokshitzer, Dyakonov and 
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Troyan.@ In an important paper Parisi and Petronzios have summed the 

leading double logarithmic contributions to the Sudakov-type form 

factor. A first attempt to include single logarithmic terms has also 

been performed. More recently various authors6-* have stressed the 

importance of the inclusion of non-dominant terms in the perturbative 

expansion. It is the purpose of this paper to make a systematic 

analysis of the leading double-logarithmic and sub-leading single- 

logarithmic contributio1.s in the semi-inclusive processes or 

equivalently in the effective quark form factor. The analysis is 

carried in the impact parameter space. We stress the importance of a 

correct treatment of the kinematics and of the inclusion of the two loop 

corrections to treat the sub-leading corrections in a consistent way. 

By including the corrections at order uz we resum leading and sub- 

leading logarithms to all orders in the perturbative expansidh, The 

sub-leading corrections are found to be large having a value comparble 

to the leading ones at present energies even if the coefficient of the 

terms arising from the two-loop amplitudes is small. We compare our 

results with previous analyses and we show the appearance of a new set 

of terms which have not been included before. In our derivation we use 

the formalism of the jet calculus of Konishi, Ukawa and Venezianog and 

the Altarelli-Parisi equation in its generalized form proposed by 

Basset to, Ciafaloni and Marchesini.‘O 

The outline of the paper is the following. In Section 2 we describe 

the formalism and consider the soft limit in which we evaluate the 

parton distributions. After solving the evolution equations we compare 

the result with the previous ones and analyze the differences. The 
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inclusion of the two loop corrections is made in Section 3 where also 

the effects of the soft approximation are estimated by computing the 

physical cross section e+e- + A+B+X. In Section 4 we comment on the 

result and draw some conclusions. A short note on this work has 

appeared elsewhere." 
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2. THE SOFT LIMIT IN THE EVOLUTION EQUATIONS 

Any process which can be described by using the Quantum 

Chromodynamics theory in its perturbative phase is characterized by the 

presence of a parton (quark or gluon) with a large virtual mass Q2. The 

parton may emit quarks and gluons by bremsstrahlung. Two comletely 

different situations can be distinguished: One case is when a single 

“hard” pat-ton (b) emitted at large transverse momentum p* u Q2 with 

respect to the parent parton (a) (Fig. la.). This configuration is 

exemplified by the process e+e- + qqg with the gluon at large angles 

with respect to both quark and antiquark (the 3-jet cross section). A 

simple perturbative analysis at a finite order in the coupling constant 

a, is sufficient to describe such cross sections. A second case is when 

the initial parent parton give rise to a series of branching processes 

in which many-pat-ton states are generated made by both soft and 

collinear quarks and gluons at small transverse momenta pz << Q2 with 

respect to the initial pat-ton (Fig. lb). Such configurations can be 

also described perturbatively in the limit in which the virtualness of 

the partons are strictly ordered Qz >> klz >> kz2 >>...>> knZ in the 

physical axial gauges by tree like graphs in the leading logarithmic 

approximation by using an improved perturbation theory. An algorithm, 

the Jet Calculus, has been proposed by Konishi, Ukawa and Venezianog to 

deal with such “semi-hard” configurations. In the Jet Calculus the many 

pat-ton states are described by par-ton distribution functions D(Q2,(Xi)) 

in terms of the initial energy and longitudinal momenta of the final 

partons. A further extension of the Jet Calculus formalism to include 

also explicitly the transverse momenta degrees of freedom in the parton 
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distributions has been developed by Bassetto, Ciafaloni and 

Marchesinil”. In their approach the parton distributions 

D(QzJxi)~(PTi)) are functions also of the transverse momenta of the 

emitted partons. This extension is particularly useful for the problem 

we will study of the description of many soft partons configurations in 

the perturbation evolution. The generalized evolution equation they 

derived is in the case of one-particle inclusive distribution 

D,b(QZ,pT,~) = bab 6(1-x) b(‘)(pT) + 1 
s 

Q2 dkz a,(kz) 1 dz 
- - 

s 
- PaC(z) 

c Qo2 k2 2n x z 

d29T 
x - G(z(l-z)k2 - 

lT 

where the a,b,c indices represent the type of initial, final and 

intermediate parton and the 1 is over all the possible intermediate 
C 

. 

partons. x and pT and zD qT are the longitudinal and transverse momenta 

of the final (b) and intermediate (c) parton respectively with respect 

to the initial one (a). 

Graphically Eq. (2.1) can be represented as in Fig. 2. The 

transverse momenta appear in the integrated part on distributions of Eq. 

(2.1) in the combination PT - x/z qT which assures the correct 

invariance of the distributions under Lorentz transformations. The 

running coupling constant is defined to be a,(kz) = Ro-’ Rn kz/h2 with 

Ro = (ll-2/3 Nf)/4n for SU(3)color where Nf is the number of flavors. 

P,c(z) are the standard Altarelli-Parisi probabilities. The scale Qo2 

defines the lower limit of the range of applicability of the 

perturbative analysis and is such that a,(Qe2)/2Tr i 1. 

-8- 



In the particular channel a = c q quark the real part of the vertex 

function b,q(z) is given by 

1 + 22 
bqq(z) = CF 

1 - z + e(k,,) (2.21 

_ where 

k2 k2n2 
e(k,,I z-z 

2k II 2 4(k*n12 

with 7) the gauge vector. Throughout this paper we shall use the light- 

like gauge vwAlr. q 0 with 7) = tl,a,-11, q2 = 0 which gives E(k,,) = 0. 

We will be interested in the configurations in the parton 

distributions dominated by the emission of soft partons. To specialize 

the evolution cascade to the case when soft emissions.take place let us 

consider the iteration structure of Eq. (2.1). The soft emission range 

can be reproduced if at each vertex (black blob in Fig. 2) the parton 

(c) carries most part of the longitudinal momentum and has a limited 

transverse momentum with respect to the parent. Such conditions can be 

satisfied by taking the limits z + 1 and qT2 << Q2 in Eq. (2.1). By 

looking at Eqs. (2.1) and (2.2) we can see that the limit z -+ 1 directly 

enters in the vertex functions and furthermore the real part of the 

quark-quark channel (2.2) is large in this limit. The large 

contribution comes form the infrared singular behavior and accounts for 

the high propability of emitting soft gluons by a quark like with z + 1. 

When also the virtual contributions are included in the total vertex 

function the singularity itself disappears. The qq vertex gives among 

the possible Pij(z) probabilities the largest contribution in the soft 
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z + 1 limit. In order to pick up the dominant contribution to the 

multiple soft emission amplitude in Eq. (2.1) it is sufficient to 

iterate the quark channel, i.e. 

_ in Eq. (2.1). The matrix equation (2.1) can be reduced to the equation 

containing only the non-singlet channel (NS) which gives the largest 

contribution to the amplitude for producing a final quark from an 

initial quark by emitting only soft gluons. As we will see later this 

is also true when two loop vertex functions will be introduced. BY 

iterating Eq. (2.1) in the non-singlet channel in the limit z + 1 the 

contributions to the q + q amplitude are given by graphs as in Fig. 3 

with emission of soft gluons, the quark lines carrying a large fraction 

of the longitudinal momentum. 

As has been pointed out by many authors1**13 a common feature of the 

processes in which the soft bremsstrahlung has a dominant role is given 

by the correct evaluation of the argument of the coupling constant a,. 

The probability of emitting a soft parton is proportional to the running 

coupling constant evaluted at the transverse momentum of the parent and 

not at its total virtualness. It has been shown13 that this behavior 

can be incorporated in the evolution equations by simply resealing the 

argument of the coupling constant from k2 to kz(l-z) in Eq. (2.1) i.e. 

a,(k2) + a,(k2(l-z)). When soft emission effects have a relevant role, 

in fact, as it is the case for example when structure or fragmentation 

functions are evaluated in the x + 1 limit, the balance between the real 

and virtual contributions is broken. The large fraction of momentum 

carried by one parton limits the available phase space for the real 
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emissions which are then unable to compensate the large, opposite in 

sign effects of the virtual contributions. As a consequence large 

corrections appear in the perturbative expansion of the form a Rn l-x 

which must be summed. It has been proven’+ that the use of the resealed 

coupling constant in the evolution equations (2.1) resums these large 

corrections at all orders in the perturbative series in the leading 

logarithmic approximation in the inclusive processes. Also an explicit 

two loop calculation15 confirm this feature of the resealed coupling 

constant in the case of inclusive processes. Furthermore, intuitive 

arguments and an overall consistency support the generality of this 

choice also in dealing with semi-inclusive processes. As first observed 

in Refs. 4,5 in fact in the Drell-Yan cross section for small transverse 

momenta of the lepton pair the argument of the running coupling constant 

in the quark Sudakov form factor is in fact the transverse mdtientum of 

the annihilating partons. By using the resealed coupling constant and 

taking the logrithmic derivative with respect to the scale Q2 in Eq. 

(2.11 one has in the NS channel 

Q2 " 
a,(Q2(1-z)) d2qr 

D(Q2,x,p~) = P(z) 
I 

- S(z(l-z)Q2 - 9.r’) 
aQ2 2a + n 

X X 

X 0 Q2,p.r - - q-r, - 
Z 2 I (2.3) 

P(z) represent the q-q vertex. Here the + sign represent the usual 

regularization procedure, i.e. 

a,(Q2(1-z)) 

I 

a,(Q2(l-z)) 1 a,(Q2(1-z)) 
P(z) = P(2) - &Cl-2) 

S[ 
P(z) dz 

2n + 2n 0 2lT 1 
(2.4) 
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to the impact parameter bT5. Defining the transformed distributions 

I 

bT'Pr 
D(Q2,bT,x) = d2PT exp i- 

I 
O(Q2,p~,x) 

X (2.5) 

with P(z) = 1+22/1-z in the light-like gauge. To solve Eq. (2.3) it is 

convenient to take the Fourier transform from the transverse momentum pT 

Equation (2.3) becomes 

Qt a?- 
1 dz a,(Q2(1-2)) 1+z2 

D(QZ,b,x) = 
J [ 

- DF 
aQ2 x z 271 l-2 I 

b(z(l-2)Q2 - qT2) D 

I+22 

u,(Q2(1-2)) - - I 
1”“] 0,: ‘b ] . X x 6(z(l-2)Q2 - q2) Jo - 2 , t- 

With b q IbTI, q = !qTl and Jo the Bessel function of the first kind. 

The last equality in (2.6) fol ows from the integration over the angular 

variable in the two dimensional space d2q . The use of the Fourier 

1 ZJ 1 2J (2.6) 

transformed equation (2.61 guarantees the conservation of the transverse 

momentum in the evolution. By taking the limit defined above z + 1 and 

setting z = 1 in each slowly varying function of 2, one has the 

solution: 

D(Q2,b,x) = D(Q12,b,x) exp(Tj(Q2,Q~2,b)) (2.7) 

with 
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T,(Q2,Q,2,b) = - - c~f:, s [ 1:’ :aSCq21[1 - z+z 

-I ck2 dq2 

0 
- aSCq21[l - 5 + ;] JoCbq)] 

q2 

where c is a finite arbitrary constant Cc < 1) explained later. 

Equation (2.7) shows that in the case of soft gluon approximation the x 

and b evolution factorize. The two terms in the square brackets reflect 

the regularization procedure in the + sign in Eq. (2.6) (see (2.4)) to 

separate virtual and rekl contributions. The appearance of two 

different upper limits in the integration over dq2 also is related to 

the real and virtual contributions. A simple way to see the emergence 

of two different scales is looking at the derivation of Eq. (2.71 from 

Eq. (2.61. In fact by using the regularization procedures in Eq. (2.4) 

one can write . 

CF 

92 d D(Qz,b,x) = - aQ2 2n J 1 dz [ a,(Q2(l-z)) 

1+22 1 dy 1+y2 

- - - b(l-2) - aS(Q2(l-y)) x 2 l-2 0 Y - 1 1-y bq 
x Jo - II dq2 6(Q2z(l-2) - q2) 0 q2,b,t 

Z I 1 Z (2.8) 

By setting z = 1 in all the slowly varying functions of z and using the 

delta function one can write in the soft limit. 
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- 

92 d- D(Q2,b,x) 
bQ2 

a,(Qz(l-y))dy I JO,(bq) dq2 D(Qz,b,x) 

- a,(k'2)dk'2 I dq2 Jo(bq) D(Q2,b,x) 

dq2 a,Cq2) 

q2 
(2 -:+;I Jo(bq) 

-I Q2 dk'2 a,(k'2) 2k'2 k" 
2 --+- I] D(Q2,b,x) 

0 k" 4' Q4 
(2.9) 

The upper limit cQ2 in the first terms come from the maximum value of 

the transverse momentum under which the soft gluon appproximation can be 

applied to real emission. Then if one approximates the real emission 

part of evolution equation all over the available phase space, c = l/4. 

Now it should be stressed that this restriction, however, does not apply 

to the virtual contributions where the limit is the total virtuality. 

The scale Qq2 in Eq. (2.7) even if arbitrary must be chosen to limit the 

integration over k2 to be within the perturbative range i.e. 

a,(Q121/2n I 1. For this purpose it is then sufficient to consider a 

value for Qf2 much bigger than the fundamental parameter A2 in the 

running coupling constant Qqz >> AZ. The impact parameter b can vary 

from 0 to c0. Since the evaluation of the exponent in Eq. (2.7) gives 

terms containing logarithms of the products Q2/h2 and Q2b2, Q12b2, to 

absorb the possible large contributions of the type RnQ,2b2 we choose 
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Qq2 to be Qq2 = l/b2 which together with the condition Qq2 >> A2 fixes 

the upper limit on b2 to be b2 << l/A2 which reflects the relevance of 

non-perturbative effects at large values of b, b y 0(1/A). 

Let us now consider the exponent in Eq. (2.7). By putting Q12 l/b2 

and dividing the integration region (0,k21 to (0,ck2), (ck2,k2) in the 

first term the formula (2.7) becomes 

T,(Q2,b2) = - - ': jyIb2 s [jr' : aSCq21[l - s + 311 - J,Cbq)I 

+ J k2 "9' aSCQ',Il - s + $11 . 
ckz q2 

(2.10) 

The explicit evaluation of Eq. (2.10) is performed in the Appendix 

giving 

= 2 [L An[l - 3 + B] + 2 (Rn 2 - .Y) A 

- -? an[l - f] + *f[j] + (power corrections) (2.,,) 
4nR0 

with L = Rn Q2/A2 and B = Rn Q2b2, and Y the Euler constant. In the 

last equality terms of the type (l/L)' (B/L)", Y 2 1, n 2 0 have been 

neglected together with power type contributions (Q2b21Wn. In Eq. 

(2.11) the first term in the last equality is made by contributions of 

the type B(B/LIn n 1 1 in the perturbative series. This term is the one 

obtain by Parisi and Petronzios and corresponds to the double 

logarithmic approximation. The additional terms come from the sum to 

all orders of the perturbative expansion of the contributions (B/L)" 
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(see the Appendix). In the limit z + 1, Q2 )> q2 also these last terms 

are large and give contributions comparable to the BCB/L)” ones since 

the region Q2 >> q2 corresponds in impact parameter space to Q2b2 >> 1 

and the sum is over the large logarithms Rn Q2b2.* The classification we 

make picks up the dominant contributions provided that L + CO and the 

(B/L) fixed limits are taken. The kinematical constraint Q2b2 >> 1 

results in a lower bound on the integration in b2:b2 >> 1/Q2. The 

second and third term in Eq. (2.11) then cannot be neglected with 

respect to the leading double logarithms B(B/L)” and their effect must 

be taken into account at present energies even if when the energy 

increases the terms B(B/L) tend to become more important. 

Among the sub-leading contributions (B/L)” contained in the second 

and third term in Eq. (2.11) a distinction can be made. The 

contributions coming from the term proportional to B/iL-B) have been 

considered by Rakow and Webber7. In their formulation this term arises 

from the inclusion of configurations in which the emission of two or 

more gluons with large transverse momenta add vectorially to give a 

smaller total transverse momentum. Due to the exact treatment of the 

kinematics in our formulation these contributions arise naturally in the 

solution Eq. (2.111. As correctly noticed by the authors of Ref. 7 the 

effect of this term is to give a slight modification of the double 

logarithmic first terms of Parisi-Petronzio thus supporting the validity 

of the result of Ref 5. The reason can be easily understood by oberving 

that effectively the B/L-B term can be incorporated in the first term by 

changing by a constant the definition of B or equivalently by changing 

*Further discussions about this point will be made in Sec. 3. 
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the value of A in L. In fact one can write by substituting 

B + 8’ q t3 + 2 Rn er12 = B + a. 

LJn[l -3 +B+,~.n[l -F] 

B 
=L,Qnl-- [ 1 L 

+B+a 

Bn 

-11 L 

The inclusion of the second term in Eq. (2.11) can be then obtained in 

l/L and B by a change of the definition of the terms in the perturbative 

series by a constant. 

Of a different nature is instead the last term in Eq. (2.11). The 

appearance of such terms not included in Ref. 7 arise from the correct 

treatment of the non-sigular terms in 2 in the vertex functions of the 

evolution equation (2.3) and as can be seen in the derivation in the 

Appendix physically is related to the single logarithms due to the mass 

singularities in the quark evolution: mass singularity coming from the 

virtual correction. The appearance of such contributions has been 

performed in Refs. 4,6.* 

In Fig. 4 we show the relative effects of the various terms in Eq. 

(2.11). The last term in Eq. (2.11) appears to give the significant 

correction to the leading double logarithmic form and changes 

significantly the shape of the effective quark form factor exp(T(Q2,b)). 

This fact shows the importance of the inclusion of the single 

logarithmic terms to obtain a sensible approximation in the soft 

emission range. It is unlikely that the neglected corrections 

*Due to the use of a different gauge in our case the coefficient is 314 
instead of 312 as in Refs. 4,6. When physical gauge independent 
quantities are considered, however, result coincides with these ones 
(see Eq. (3.13)). 
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(I/L)r(B/L)n or the power corrections l/(Q2b2) [Ref. 61 can 

significantly change the above result as far as Qz is large. To this 

purpose it is however necessary to consider the inclusion of two loop 

corrections and in general the effect of the result from more loop 

corrections. To include all the sub-leading contributions of the type 

(B/L)" in a consistent way it is in fact important that to all orders of 

the perturbative expansion the entire class of terms with the correct 

coefficient is evaluated and that there are no other similar terms left 

out. This will be the subject of the next section. 
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3. SECOND ORDER CORRECTIONS 

In the previous section we have discussed and solved the evolution 

equations (2.3) in the soft limit. The appearance of terms of the type 

(B/L)n in Eq. (2.11) shows that also at one loop level single logarithms 

are present provided that the correct kinematics is taken into account 

and that non-singular terms in the vertex functions P(z) are kept. In 

this section we will investigate the problem of how the result in Eq. 

(2.11) will be changed by the inclusion of the two loop corrections and 

the effect of higher order loop corrections. 

Let us first consider the modification of the evolution Es. (2.3) 

which arise from the insertion of second order corrections. This 

problem has been investigated in the inclusive processes in Ref. 15 by 

analyzing two loop graphs in the light-like gauge in the dimensional 

regularization scheme. BY including the two loop corrections..in the 

evolution equation (2.5) the resulting equation is in impact parameter 

space* 

a 
4' - 

aQ2 
D(Q2,b,x) = 1: t 1 dq2 [z as:'+ k]' it]+ 

x b(z(l-2)Q2 - 4') Jo[;] D[Q2hf] (3.,) 

where Pz(z) is the second order kernel. As for the one loop equation 

(2.3) the dominant contribution to the integral in the soft limit 2 + 1 

region is given by the part of the kernel containing terms proportional 

only to (l-z)-'. By isolating such terms in Pz(z) we have that the 

*The configuration in which the virtualities of adjacent quarks are the 
same order does not produce logarithmic contributions since in this case 
there are no infrared singularities which lead to logarithmic effects. 

- 19 - 



Pp(zl is 

Pt(Z) = [t&f - ;] + ~CFNFTF [-;]I k = K k 
(3.2) 

with Cs = N = 3 for SU(3JcoIor and TF = 112. The less dominant terms of 

the type Rn z/l-z, l/l-+ Rnz Rn(l-z) and 111-z Rn2z in the limit z + 1 

in PZ give only the non-dominant contribution C(l/L)~(B/L)nl in the b 

space which we neglect in our approximation. Also at two loop level is 

the non-singlet discussed which gives the dominant contribution in the 

soft limit. 

The coupling constant which appears in (3.1) is the resealed one. 

The introduction of such coupling constant also at two loop level 

requires that this choice of scale resums contributions at all orders in 

the perturbative expansion which have not been already included in the 

first order resealed one a,(k2(1-z)). This statement is non-trivial and 

a rigorous proof has not yet been given. However, we assume that it is 

the case supported by the physical argument in Sec. 2. If this is the 

case the coefficient must be that given by Eq. (3.2). No double 

counting is involved. In fact the different form of the terms taken 

into account by a,2(k2(l-z)) can be seen by expanding the coupling 

constant at order ag2. One has 

/::b 

dk2 

- J 1 dz a,2(k2(l-z)) 
- 

2 k2 x 2 l-2 

K = J;Ib2; J;’ 

as2 (k2J a,3(k2) 
XK - 2 Ro 

l-z l-z 

x In (l-2) + . . . I (3.3) 
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Equation (3.3) shows that the contributions at each order of a,(k2) are 

clearly different from that included in the first order resealing 

coupling. The term in Eq. (3.3) proportional to 130 implies that the 

dominant term in the three loop kernel is proportional to K Rn 1-211-z. 

The appearance of such terms satisfies the observation made in Ref. 14 

about an upper bound on the contributions to the anomalous dimension at 

any order in the perturbative series. An explicit three loop 

calculation should show the above structure giving further support to 

the correctness of tile use of the resealed coupling constant also at two 

loop level. Furthermore, a detailed analysisi of the Sudakov form 

factor show that the anomalous dimension have only a single logarithm. 

This fact supports also the above assumption.* 

By following the same procedure used to solve Eq. (2.61 in the soft 

limtt one gets from Eq. 13.1) the solution 
. 

D(Q2,b,x) = D(b-2,b,x) expCT,(Q2,bz) + T2(Q2,b2)1 

with T2(Q2,b) is up to the correction we neglect 

(3.4) 

CF K Q2 
T2(Q2,b2) q - - - 

n 2s I 

dq2 Q2 
- Rn - a,2(q2) 

l/b2 q2 [I q2 

Up to now we have analyzed and solved the evolution equations for the 

parton distributions in the impact parameter space in the soft limit. 

Let us consider now the use of the previous results in the evaluation of 

a physical quantity. We will consider the case of the cross section for 

the process electron-positron annihilation into the hadrons A,B 

e+e- + A+B+X in the particular configuration in which the detected 

particles are at large relative angles (acollinarity angle 0 u 18OO). 

*Of course strictly speaking the Sudakov form factor is not exactly 
equal to the quantity we are calculating. 
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In the transverse momentum space this corresponds to configurations in 

which the two hadrons have a relative transverse momentum 

(9~’ = Q2sin2D/2) Qr2 << Q2 where Q2 is the total energy of the electron 

positron pair. In this particular kinematical configuration the cross 

section is dominated by the emission of soft and collinear partons. 

This in fact must be the case if the detected hadrons are observed in 

the acollinear configuration. The emission of soft partons slightly 

changes the direction of the parent initial quark and antiquark leading 

to acollinear configurations of the final particles. In this picture 

the inclusion of non-dominant contributions physically can be related to 

the less probabale case of more “semi-soft” emissions at 1 arger 

transverse momenta which compensate each other vectorially in the 

evolution to build up a small total transverse momentum. 

For the purpose of including such type of configurations the analysis 

in impact parameter is rssential. The impact parameter, in fact, 

guarantees the exact conservation of the transverse momenta during the 

evolution. This correct treatment is not easily attainable in the 

transverse momentum space due to the complexity of the kinematics6. Due 

to the properties of the transform from pT to b space a direct 

comparison of the various logarithmic contributions between momentum and 

impact prameter spaces is only possible at leading double logarithmic 

level-l7 The structure of the sub-leading terms being completely- 

different in the two spaces. For this reason to compute quantities in 

the transverse momentum space first a consistent approximation must be 

obtained in the b space and the inverse Fourier transform can be 

evaluated only at the end. It is important to notice that, by carrying 
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such type of analysis, also the value of the cross section at zero total 

transverse momentum QT = 0 can be computed by first pinciples. We 

should add that it is this very fact that gives for this cross section a 

better chance of isolating the non-perturbative soft hadronization 

mechanism in the comparison with the experimental data. Graphically the 

cross section e+e’ + A+B+X can be represented as in Fig. 5. Due to the 

factorization of the soft bremsstrahlung the cross section can be 

written: 

1 dv 1 1 

I 

PTA PT' 
L---C d2pTA d2pTs d2PTS 6’*’ QT - - - - - PT' 

OTOT dXAdXsd'QT OTOT 2 sq XA X0 1 
x D,A(Q2,p~A,~~) D~B(Q2,~~B~~~) S(Q2j~~s) (3.5) 

graphically represented in Fig. 6. The sums extend over all types of 

quark flavors. PTA and pTB are the transverse momenta of the hadrons 

with respect to the initial q and 3 respectively and pTs is the relative 

transverse momentum of qq pair in the blob S(Q2,pTS). XA,XB are the 

fraction of longitudinal momenta of the hadrons (see Fig. 6). DqA and 

DqB are the q and 4 densities and S(Q*,PT~) represents the set of the 

two particle irreducible (2PI) graphs with the external photon vertex 

included. Due to the factorization of the soft bremsstrahlung18 in Fig. 

6, there are no lines conecting the central blob S with the D blobs and 

there is no soft line connecting the two D blobs. 

Let’s examine the various contributions to the cross section in Eq. 

(3.5). First of all we are using the light-like gauge. We choose the 

direction of the gauge vector I) along the quark line in Fig. 6. Such 

choice makes the structure of the graphs contributing to the cross 

section in Fig. 6 more simple. In fact due to the gauge vector the soft 
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gluon coupling to the quark line19 is suppressed. As a result at the 

double logarithmic level (collinear and soft) is sufficient to consider 

the evolution of the antiquark only. In our analysis which includes 

also the single logarithms it is necessary to consider the evolution of 

the quark and include the single logarithms contributions also in the 

central blob S. It should be noted that the single logarithms arise 

from both soft and collinear type singularities. The graphical 

structure of the terms contributing to the cross section is given by 

Fig. 7 where in the 0’ blobs only collinear singularities are present. 

The evolution of the quark leg can be described by an equation similar 

to Eq. (2.1). 

Qt a?- 
a,(Q*(l-2)) 

D,‘(Q*,~T,xJ = (1-z) 
bQf 3 

d*qT 
X - 6(Q*(l-z)z - pT*) 

ll 

. 

X X 

X D’ Q*,PT, - qTI - 
2 t 1 (3.6) 

where the different (l-z)+ kernel is due to the presence in this case of 

only mass singularities. By taking the Fourier transform and solving 

the evolution equation (3.6) in the b space one obtains the solution 

D,‘(Q2,b,x) = D, expCT,(Q*,b*)l 
(3.7) 

where 

CF Q* dq* 
TgtQ2,b21 = - - J - a,(q*) + (correction) 

4~ l/b* q* 
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We have not included in Eq. 

counting rules for the contr 

decoupling of the soft singu 

(3.6) the as2 correction. Since, due to the 

ibution of the mass singularities and to the 

larities, the effect of the two-loop kernel 

is to give only contributions of the type a22n in the exponent of Eq. 

(3.7) which can be neglected in our approximation. The right hand blob 

in Fig. 7 corresponds to the evolution of the antiquark line, at the two 

loop level it is given by Eq. (3.1). The solution, as discussed 

previously, is given then by Eq. (3.4). 

Let us analyze the 2PI central blob in Fig. 7. The evaluation of 

S(Q*,b) at order a5 is given by the contribution of the first four 

graphs in Fig. 8. By calculating in the light-like gauge with the gauge 

vector aligned along the quark line we have that the cross section is in 

iis subtraction scheme 

1 do CFas 1 

- - = 6(1-x1) 6(1-x*) - - 
u dx,dx2 lf (l-x*)+ (3.8) 

where x1 and x2 are the longitudinal momenta of q and Ej respectively. 

The dependence on x2 only of the second term is related to our choice of 

the gauge vector. By taking the Fourier transform with respect to pTs, 

the relative transverse momentum of the qB pair, S can be written in the 

soft gluon approximation 

s 

dzPTs 1 do 
S(Q2,b2) q dx1dx2 - exp(-ipTs.b) - - 

IT u dxldx2 

x 6(pTs2 - (I-x,)(1-x2)Q2) (3.9) 

I by substituting Eq. (3.8) into (3.9) and integrating, one has 

a,(Q*) 
StQ*,b*) = 1 + CF - Rn Q*b* + (const. term) + @(a,*) 

ll (3.10) 
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The appearance of the large logarithm Rn Q2b2, due to the choice of Q* 

as the renormalization point and also to our formulation, can spoil the 

perturbative expansion of S. The expression (3.10) must be then summed. 

This summation to all orders may be performed by changing the 

renormalization point from Q* to l/b*. This procedure suggests 

S(Q*,b*) 

(3.11) 

Although the above resummation is assumed, we shall make some comments 

concerning our two assumptions later. Now considering Eq. (3.5) and 

taking the Fourier transform on the right hand side of the various 

factors in the integrals then substituting Eq. (3.4), (3.7) and (3.11) 

and Fourier transforming back we get 

1 dv 1 
=- 

DTOT dxndxsd*QT 2 J bdb &,(bBr)[D~A[~,b,XA] DiB[;;b,x6] + (q - q)] 

- exp[T(Q*,b*)l (3.12) 

where 

CF 9' dq* 
T(Q*,b*) = T,(Q*tb*) + T2(Q2,b2) + T,(Q*,b*) + - 

s 
- a,(qz) 

b l/b* q* 

= - : Sp:,, 7 [An $ [a,Cq2) + f a,*Cqz)] 

+ 2 Rn : as[b;'] - f asCq2)) (3.13) 

In Eq. (3.13) the running coupling constant must be expanded at two loop 

level 

1 B1 RnERn(q*/h*)l 
a,(q*) = 

R. Rn (q*/X*) Do3 Rn*(q*/X*) 
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with 

33 - ~NF 153 - 19tiF 
130 = and RI 

12n 24n* 

Using the above form of a 5 the explicit form of T is 

T = ; [L An[T - F] + B] + 2 K(1) A - 2 [An[l - 3 + -JJ 

-zAn[l-3 +$[A+iAn[l -f]+i.&7 L 
PITRO 

+~h*[l-3 +An[l-3 Rn L] 
(3.14) 

with k(l) = Rn 2-r. Let us make some observations about the results 

obtained. The inclusion of the various contributions to take' into 

account terms of type (a log) has been made in the evolution of the Ej 

and q lines and in the central blob. The two loop terms enter 

explicitly only in the kernel P 2 for the evolution in the antiquark line 

due to choices of the alignment of the gauge vector. The resulting 

large logarithms An Q*b* are exponentiated also in the central blob S as 

given by Eq. (3.11). By looking at Eq. (3.11) and thinking of the 

graphs included by such summation there could be still open the 

possibility that other graphs different in structure from the iteration 

of the first order set of graphs in Fig. 9 as the ones represented for 

example in Fig. 9 can give contributions of the type (a Rn Q*b*) not 

included in Eq. (3.11). This possibility can be ruled out by a complete 

non-trivial evaluation of all the graphs contributing to the cross 



section (3.5) at order as*. An explicit calculation of the Sudakov form 

factor at two loop levelto shows in fact that the coefficient of the 

double pole in dimensional regularization exactly coincides with the 

coefficient of a* Rn* Q*b* in the expansion of the exponential eT with T 

given by Eq. (3.141. This result supports the validity of our 

conjecture about the exponentiation of the central blob and the 

correctness of our result. Moreover the result for the exponent in Eq. 

(3.13) coincides with the one obtained in Ref. 8 by Collins and Soper by 

using a completely different formalism if in our Eq. (3.13) the 

contributions from the two loop graphs are not included. 

In principle following our formalism and procedure the inclusion of 

the neglected corrections(l/L)" (B/L)" in the exponent Eq. (3.14) would 

be possible provided a two loop calculation of the central blob and a 

three loop evaluation of the kernel of the equation (3.1) is performed. 

From Eq. (3.121, it is easy to obtain the energy-energy correlation 

cross section. In fact in Eqs. (2.101, (3.4) we have chosen the 

starting scale of the perturbative evolution to be l/b* to eliminate 

logarithmic corrections other than Rn Q*b*. We restrict our analysis in 

fact to the perturbative region of b such that b* << l/h* 

a,(l/b*l/2n << 1. When l/b* is small one should use another scale 

Mo2(a,(M~*)/20 << 1) as the starting value of the evolution. Within 

this region the density D(l/b*,b,x) can be expanded in terms of 

a,(l/b*): D(l/b*,b,x) = D(l/b*,x) + OCa,(l/b*)l. D(l/b*,x) is the usual 

decay function which satisfies the sum rule 

s 1 dxAxA DA[~,~A] = 1 . 
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By summing over the final hadrons and integrating over XA,B using the 

previous sum rule with the substitution QT* = Q* sin*812 the cross 

section in Eq. (3.12) becomes 

1 dZ Q2 
--=- 

UTOT d case 4 s 
bdb Jo(bQT) expGT(Q*,b*) 

(3.15) 

which is the energy-energy correlation cross section*' and 8 is the 

acollinearity angle. Equation (3.15) is valid, due to our 

approximation, in the region of large acollinearity angles 8 5 180°. 

The total effective form factor exp T(Qz,b2) is plotted in Fig. 4 (solid 

line). The perturbative calculation we have performed is valid for 

Q* >> A* if b is sufficiently small, i.e. l/b* >> A*. By looking at the 

effective f-orm factor exp(T(Q*b*)) in Fig. 4 we see the Sudakov- 

suppression of large values of b (i.e. small values of pT). This 

suppression makes the region of small values of b relevant in the 

integration over b and supports the validity of the perturbative 

evaluation a(l/b*)/2n << 1. This very fact shows that the double- 

logarithmic approximation is clearly not enough and one must take into 

account also single-logarithmic corrections since the important 

integration region in b is outside the region in which the double- 

logarithmic approxiination is valid. However the curve in Fig. 4 shows 

that the expCT(b)l has still a rather long tail in the large b region at 

present energies. As can be easily undertood when the suppression is 

not strong enough uncertainties can come from perturbative contributions 

and from non-perturbative effects which are also important at large b. 

In a previous work** we have carried the analysis of the experimental 

data. The result is represented in Fig. 10. The use of the formula 
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1 ook 

sing 

this 

(3.15) without the inclusion of the hadronization effects compared with 

the experimental data shows disagreement with the data when the single 

logarithmic corrections are included. The reason may be understood by 

ing at the weaker suppression in Fig. 4 in the large b region. The 

le logarithmic terms leave more room to non-perturbative effects in 

region. Here the role of the sub-leading contributions emerges. 

The leading double logarithmic form factor in fact, strongly suppressing 

the non-perturbative hadronization effects when substituted in Eq. 

(3.151, can give a good agreement with the data’ also if non- 

perturbative hadronization is neglected and the simple pat-ton formula is 

used. Such agreement is however artifical and is only due to the 

flexibility of the leading formula. By varying the value of the 

parameter A one can in fact change the slope and the intercept of the 

cross section (3.15) to fit the data. The inclusion .of the .. 

hadronization effects does not affect such behavior. The inclusion of a 

limited intrinsic transverse momentum in fact affect the region of large 

b but here the strong suppression in the leading formula is sufficient 

to make the inclusion of the hadronization effects indistinguishible 

from the pure parton formula. A different situation happens however 

when the expression (3.14) for the effective form factor is included in 

the cross section (3.15). The role of the hadronization is crucial to 

obtain an agreement with the data. 23 The reason is that the inclusion of 

single logarithmic corrections, including additional terms in the 

perturbative expansion, reduces the flexibility of the par-ton level 

formula and, giving a weaker suppression ‘at large values of b, enhances 

the role played by non-perturbative hadronization effects. At present 
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energies the exp(T(Q2,b2)I (see Fig. 4) has still a long tail in the 

large b region. This fact suggests that the large b region is still 

important. When the energy increases however the suppression of such 

region becomes stronger and a pure perturbative treatment without the 

inclusion of hadronization may be possible.** This observation is in 

agreement with the belief that non-perturbative effects become less 

important when the energy increases and seems to be verified also by 

this calculation. We discuss this and related questions in a separate 

paper.23 
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4. IMPACT PARAMETER SPACE AND REMARKS 

In the previous section we have calculated the energy-energy 

correlation cross section Eq. (3.15). By looking at the b-space 

effective form factor exp T(Q*,b*) we have found that the leading 

(double logarithmic contributions) and subleading (single logarithmic 

contributions) terms are of equal importance at present energies. 

Furthermore this fact stresses the importance of non-perturbative 

effects in the comparison with the data. In this section we clarify and 

discuss the approximation scheme in b space and make some final remarks. 

The effective form factor exp T(Q*,b*) has the following formal 

structure as far as the logarithmic dependence on Q*, bZ is kept 

co R+1 
T(Q*,b*l =- 1 1 C(&,j) Bj LmR 

R=l j=O 
(4.1) 

. 

= ; [CRO B(B/LjR + C&B/LJR + CR*WL)(B/L@ + . ..I 
R=l 

where L = Rn 8*/A* and B = Rn Q*b*. The leading (double logarithmic) 

contribution corresponds to the sum of the first term in Eq. (4.1). The 

sub-leading (single logarithmic) contribution corresponds to the second 

term. This classification can be achieved by taking the limit L + a, 

with B/L fixed. The calculation of T in this paper is equivalent to the 

evaluation of CRO and CR' in Eq. (4.1). Furthermore the exponentiation 

of the soft giuon effects performed in the previous sections produces 

one constraint on b, i.e., a(l/b*) << 1. This constraint in fact is 

automatically satisfied by the "Sudakov-suppression" of the large b 

region when Q2 is large. Equation (3.14) can be considered to be a good 
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approximation to the total effective form factor in the region 

l/Q << b << l/A. 

In order to obtain phys ical quant ities like Eq. (3.15) the inverse 

transform back from b space must be performed. The integration region 

of b is in principle over all the positive values although practically 

l/Q J b 5 l/A. The effective form factor obtained Eq. (3.141 is, 

however, reliable only when l/Q << b << l/A. Therefore at an arbitrary 

energy Q* various corrections must be taken into account to Eq. (3.15). 

The case in which b is large has been already discussed in detail in the 

previous sections. Let us make a comment about the case when b is very 

small. The very small b region corresponds to the emission of hard 

gluons with large PT. Therefore some corrections are expected in the 

above processes. Such processes can, however, be treated purely 

pertwrbatively (3,4,. ..,N jet process) and such contributions‘to the 

cross section in the particular kinematical configuration considered in 

this paper are clearly suppressed. There is another corrections coming 

from kinematics. The effective form factor Eq. (3.14) was obtained 

after two approximations. One is the soft gluon approximation specified 

in the previous sections. Another is that we only summed up to 

subleading contributions with Q*b* >> 1. Explicitly we neglected the 

power corrections (l/Q*b*)" and (l/L)'(B/L)" type contributions. Such 

corrections come from for example: Energy conservation and/or the 

emissions of the non-soft gluons. It is a difficult problem whether 

such corrections can also be resummed. However such corrections can 

produce only a non-dominant contributions when transformed back to 

momentum space. This important fact has been proven by Ellis et a1.6 
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and related problems have also been discussed in detail by the same 

authors. Therefore in principle some possible corrections in the very 

small b region can be safely neglected. 

In this paper we chose L = Rn 9*/A* and B = Rn Q*b* as expansion 

parameters in the calculations of the effective form factor. However, 

one can always change these expansion parameters by finite amount; 

L -+ L’ and B + B’ as explicitly explained in Section 2. This ambiguity 

may be related to the so-called scheme dependence. Therefore there is 

the possibility depending on the scheme of drawing other curves in 

Figs. 4 and 10.29 It is unlikely however that such changes can lead to 

different shapes of the b-space effective form factor in the important 

region of b (i.e., damping part*) and therefore to different conclusion 

from the ones in Section 3. 
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APPENDIX 

In this Appendix we integrate explicitly the evolution Eq. (2.10) to 

obtain Eq. (2.11). We consider the limit of L E Rn 9*/A* + CQ with B/L 

fixed (B E Rn Q*b*) and keep the only terms which do not vanish in this 

limit. Therefore the contributions of order (l/L)(B/L)" and also powers 

(l/Q*b*)" are neglected . As it is discussed in the text, such neglected 

terms do not produce significant contributions to the cross section when 

transformed back to the momentum space when Q* is sufficiently large. 

We start with eq. (2.10): 

T,(Q*,b*) = - - 1' jTIb2 5 [/:"' 7 a,(q*) [l - ; + $1 Cl-Jo( 

fk* dq* + J - a,(q*) 1 - - + - . 
ck* q* I k* 2k" (A.11 

In order to pick up the leading contributions from each term in 

eq. (A.11, the function Cl - Jo( is well approximated by the 

e-function, f3(q - l/b). Therefore let us rewrite eq. (A.11 as follows: 

T,(Q*,b*) = - - 1' jyIb2 y [I:* F a.iq*l[l - z + z] B(q-l/b) 

+ 
s 

CF 
x [B(l-q/b) - Jo( z - - [I, + 121 . 

Tl 
(A.21 
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Now 1, is easily calculated to give 

s 

Q* dq* 
= - a,(q*) 

l/b* q* 

Q* 3 q* 4’ 
Jln - - - + - - - 

q2 4 Q* 44' 
. (A.31 

The last equality in Eq. (A.31 is obtained by changing the order of 

integration of the variables k* and qt. Now the integration of the 

CRn 9*/q* - 3141 term gives the contribution of order B(B/L)" and (B/L)" 

respectively. On the other hand the contributions from the terms which 

contain inverse power of Q* give at most a(l/b*), i.e., order 

(l/L)(B/L)", corrections since those contribution are estimated to be 

9 1 1 

= a,(l/b*) - - - - - 8 b*Q* 8b"Q' 1 . 
As far as l/b* >> A*, this term can be neglected as explained in the 

text. Then we have 

I 

Q* dq* 
11 = - a,(q*) 

l/b* q' 

Q* 3 
Rn--- 

q2 4 1 . (A.41 

The evaluation of I2 is more complicated but straightforward, It is 

convenient to change the order of integration of the variables and look 

at the Q* and b* dependence 
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I 

s 

cQ* dq* 
2 = - a,(q*)CB(l-q/b) - Jo( 

0 q* 

-1 c/b* dq* l/b* dk* 
- a,(q*)CO(l-q/b) - Jo( I - 

0 q* s q*/c k* 

q* q4 
1 --+- 

k* 2kb 

z J(Q*,b*) - J(l/b*,b*) . 

Now J becomes 

rcQ* dq* 
J= 

J 
- a,(q*) [0(1-q/b) - Jo( 

0 q* 

Q2 c* q* q' 
X Ail -++nc-c+-+--- . 

q* 4 4’ 44” 1 
In the integrand of J, the term which contains Rn Q*/q* is clearly 

dominant. Integrating such term we have 

s 

cQ* dq* 
J(Q*,b*) C - a,(q*) [0(1-q/b) - Jo( Rn Q2/q2 

0 q* 

f 

c dx2 
= - a,(Q*x*) CB(l/Qb-x1 - Jo(bQx)l Rn l/x* . 

0 x2 

Since the infrared singularity coming from the x << 1 region is 

regularized by the [e-J01 function and also we are considering the case 

of b*A* << 1, we can expand the coupling constant 

1 1 1 
a,(Q*x*) = =- c (Rn 1/x21n . 

Ro Rn Q*x*/A* Ro n=O U!n Q2/A2)n+1 
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Then 

1 
J(Q2,b2) = - ' !i 

Ro n=O (Rn Q2/h2)n+1 

1 C-1" b" 
=- 

130 n=l (Rn Q2/h21n bun 

s 

C 
X dx2(x21F-' CB(l/Qb-x1 - Jo(bQx)] 

0 E=O 

1 
e- i (-I" b" 

130 n=l (An Q2/A21n hen 

. 
E=O 

. 

Above the final equality comes after neglecting the terms which vanish 

when Q2b2 >> 1 C61. Usi ng the identity 

1 

e 1 
= - exp[-E(Rn b2Q2 + 2Jn YE/~)] 

E 

-2 "z 
$(2k+l) 

c2k+l 

k=l 2k+l 

where YE is the Euler constant and 3 the Riemann zeta-function, 3 is 

estimated to give 
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1 1 
J(Q2,b2) = - 

RO n=l (Rn Q2/A2)n 

n 
X 2h-I yEI2 (an b2Q2) n + - (2 Rn eYE/2)2(Rn b2Q2)“-’ 

2 

n(n-1) 
+ - (2 Rn eyE/2j3 Un b2Q2jne2 

6 

2 
+ - ~(3) n(n-1) (Rn b2Q21n-2 + O(Rn b2Q2jnm3 

3 1 
1 Rn Q2b2 

z - 2 Rn eyEI 
Ro Rn Q2/A2 - Rn Q2b2 

I Q2 dq2 
= 2 Rn e’yE/2 - a,(l/b2) . 

l/b2 q2 
(A. 5) 

The constant term and also those which are inverse powers of Q2 in J and 

the contribution from the coupling constant at two-loop can be easily 

evaluated to give negligible contributions [order (l/L)(B/L)“l in a 

similar way. 

A similar calculation can be performed to show that J(l/b2,b2) is at 

most of order (l/L)(B/L;” [or a,(l/b2)“l as can be easily conjectured 

from the fact that the relevant scale is in this case only b2 

(l/b2 >> AtI. 

Final ly, 12 becomes in the approximation considered in this paper 

I Q2 ds2 
12 = - (2Rn eYE/2) a,(l/b2) . 

l/b2 q2 
(A. 6) 
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The final form of Tl is given from Eqs. (A.21, (A.41 and (A.61 

T,(Q2,b2) = - - IF /ylb2 7 [ a,(q2) In z - t] + (2Rn eYE/2) a,(l/b2) ] 
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FIGURE CAPTIONS 

1. a) A typical "hard" process. b) A "semihard" branching process. 

PT is the transverse momentum of the "observed" b parton with 

respect to the parent pat-ton a. 

2. Graphical representation of the evolution Equation (2.1). 

3. The contribution to the q + q amplitude by emission of gluons 

only (NS channel) given by the iteration of Eq. (2.1) with p,q(z) 

as kernel. 

4. The contributions of the various terms in the last equality of 

Eq. (2.11) for the effective form factor exp(T1(Q2,b2). The 

first double logarithmic (dashes); first plus second (dot- 

dashes); first second and third (dots). The solid line 

represents the total final contribution (Eqs. (3.13) and (3.14)) 

with (solid) and without (double dots-dash) the two loop as2 

term. Q = 30 GeV, A = 0.1 GeV, NF = 5. 

5. The cross section e+e' + A + B + x. 

6. The cross section e+e- -+ A + B + x in its factorized form 

Eq. (3.5) with kinematics. 

7. The factorized structure of the cross section in the light-like 

gauge. The 0' blob contains only collinear singularities. 

8. The graphs contributing at order as to the central blob 

S(Q2,p~s). 

9. Some of the graphs contributing to the cross section at 

order as2. 

10. Comparison of the cross section Eq. (3.15) with the data of 

Ref. 24. 
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