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ABSTRACT 

The standard method for basing nuclear physics on elementary particle 
physics is to first derive a "potential" and then use this interaction in 
the nonrelativistic Schroedinger equation for the nucleonic degrees of 
freedom. Unfortunately there has never been a consensus as to how to 
perform the first step. Currently we have dispersion-theoretic models and 
one-boson-exchange models which contain much the same physics, but which 
differ in detail; more "modern" approaches start from quark bags, but 
again there is no consensus as to whether the bag should be large or small. 
In this paper we offer an alternative approach in which the mesonic and 
nucleonic degrees of freedom are put on the same footing. 

The basic relativistic three particle Faddeev equations for separable 
two particle amplitudes were given long ago by Lovelace, and more recently 
by Brayshaw. Lindesay has shown that if we specialize the input to a two 
particle amplitude containing only the term generated by two particles mi, 
m. forming a bound state of mass uij - 
s:attering length model 

a relativistic generalization of the 
- that the resulting integral equations can be 

easily solved numerically and give unitary and covariant results. In 
particular they reproduce the logarithmic accumulation of nonrelativistic 
three particle bound states predicted by Efimov when the scattering length 
goes to infinity. If this model is still further specialized by assuming 
the system to consist of two scalar particles of mass ml and m2 and a meson 
of mass P with no scattering between the particles and bound state of mass 
uiC E mi physically indistinguishable from the particles which never come 
apart (i.e., there is no mi+mg scattering for physical momenta) except at 
short distance, one can calculate a fully covariant and unitary off-shell 
amplitude for the scattering of ml and m2 caused by repeated exchanges of 

"s* 
At this point we could simply use the amplitude so generated in a 

three nucleon Faddeev equation, or use it to compute a "potential" from 
the Low equation. We think a more interesting alternative is to write 
down and solve the Faddeev-Yakubovsky four particle equations - which have 
been derived for this type of "zero range" theory - for a system containing 
m1m2m3 and mQ. Then our restrictions reduce the 12 (3,l) configurations to 
six amplitudes and eliminate the (2,2) configurations entirely. Thus the 
difference of including the mesonic degree of freedom is that there are six 
rather than three amplitudes and that the equations have internally a four 
particle rather than a three particle propagator. Explicit equations will 
be given. 
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The basic assumptions on which our three and four body covariant 

theory of single meson exchange rest are that the only elementary process 

is the (s-channel) absorption and re-emission of a meson by a nucleon, and 

that there is no direct nucleon-nucleon scattering. This is a covariant 

generalization of the scattering length, or zero range "bound state," model 

of nonrelativistic quantum mechanics (i.e., e i6 sin6/q = (-l/a-iq)-l, a>O). 

We use i,j,k,.,. to distinguish nucleons and Q to distinguish the meson; 

generalization of the model is briefly discussed at the end of the paper. 

For simplicity we confine ourselves here to scalar nucleons and scalar 

mesons, following an old tradition of attempts to understand nuclear forces 

in a covariant context; again, brief discussion of the removal of this 

restriction will follow. 

Once a separable, unitary and covariant two particle amplitude is 

postulated, Faddeev equations for the relativistic three.‘particle problem 

follow and predict unitary, covariant, and time reversal invariant three 

particle amplitudes, as has been proved several times.1,2,3 Although we 

restrict ourselves here to two or three nucleons and one meson, subsequent 

work will relax both restrictions, and include degrees of freedom corres- 

ponding to antiparticles. Our restriction at each level of approximation 

to a finite number of particulate degrees of freedom and exact unitarity 

differentiates our approach from the S-matrix program in a subtle way. 

S-matricists who follow Chew add to unitarity the postulate-of "crossinglt 

which necessarily brings in an infinite number of degrees of freedom as 

customarily employed. We clearly differ from theories based on the second 

quantization of the matter field, which bring in an infinite number of 

degrees of freedom in another way. What has recently been discovered4 is 
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that by concentrating on two particle scattering as the basic concept we 

can go to a nonrelativistic limit corresponding to 'two body interactions" 

in a Hamiltonian theory without ambiguity, but need not take that limit; 

our theory is both covariant and unitary at any energy. 

The covariant three particle model explored by Lindesay3 is extremely 

simple. We simply take the invariant two particle amplitudes in the space 

of three particles of mass m and m a'"b c represented in the coordinate 

system in which ka+kb+lcc = 0 and the invariant four-momentum 

M = E~+E~+E~ to be 

where 

and 

with 

t ab z tc(k&cc;M) = G (27~)-~ - $1 D,; (sab) (1) 

Dab(s) = [-&ha,,)]' - [-q2(d] 4 
(2) 

qtb(s) = [s- (ma+%)2]Is- (ma-%)21/4s (3) 

E = E a ma(ka) = (rni+kt)% . (4) 

In this model we see that the entire dynamics is specified by the "bound 

state mass" 1-1 ab where the two particle amplitude has an "s-channel pole." 

Since sab is the invariant four momentum squared of the ab pair, the 

requirement that the two particle scattering be unaffected by the 

"spectator" mc in our basic description (the "cluster property") tells 

us that in coordinate system where 2 s ab = qab +u:b (the ab zero momentum 

system), ab the momentum of the spectator kc ranges from zero to infinity. 

Making a Lorentz transformation of these limits to the three particle zero 
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momentum system, we find that kc lies between zero and (M2-mE)/2M. We 

emphasize this point since it is not always understood that the asymptotic 

variables in a relativistic three particle problem are bounded once PI is 

fixed, and hence in a separable model lead to finite integral equations. 

Given that the two particle input is unitary, as holds for this model, the 

form of these equations guarantees the unitarity of the three particle 

amplitudes computed from them, as was proved by Freedman, Lovelace and 

Namyslowski,' by Brayshaw2 and again by Lindesay.3 

For the two nucleon one meson model we first consider, we call the 

nucleons m 1 and m 2 and the meson m 
Q' 

and make two postulates: (a) there 

is no elementary nucleon-nucleon scattering (i.e., t 12 ' tQ = 0) and 

(b) that the bound state mass uiQ E m. 1 and is asymptotically indistinguish- 
- 

able physically from the particle m.. 1 The equations then describe a model 
. 

for single particle exchange and production which is still covariant and 

unitary, as has been claimed previously.4'5 For the current application 

to nuclear physics we specialize the model still further by postulating 

(c) that the meson never appears as a free asymptotic particle. That we 

can achieve "confinement" in this sense without destroying covariance or 

unitarity may not be immediately obvious, so we will spell out the steps 

with some care. 

Our first step, in the two-nucleon, one meson space, is to note that 

under postulates (a) and (b) we have only two input amplitudes t 
iQ 

E t. 
J 

with i,j E 1,2 and that in the three particle zero momentum system 

S 
iQ 

= (E~+E~)~- (kl~+lc~)~ = (M-cj)2-kz = M2+mi-2Mcj. Further, if 

(0) we start with a spectator m. with momentum k. 
J -J 

the "bound state" (with 

mass 1-1. (0) 
1Q 

E mi) has momentum -k. 
-J 

and M = c(')+c('). i j 
Thus if we 
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rationalize the denominator in Eq. (1) and define ti = E; 63~i we find that 

r2 
T j(kj,k;o);M) = - - + T 

~M(E~-E;~)) 

J J J 

i-2 

j = 
- 2 Pj(kJ k;')) + r^ *, * j (5) 

* 

where T. contains the branch cut in s 
iQ 

starting at mi+m 
Q 

which in the 
J 

two particle space describes meson-nucleon scattering. With these initial 

conditions all we need do to prevent meson production is to define 

M ij = t.6.. 
1 1J 

+T.Z. .T 
1lJ j' 

iterate the covariant Faddeev equations once to 

obtain an equation for Z.., 
1J 

and take G = 0 closing the production channel. 

For reasons we discuss below, the physical amplitudes for ml+m2 scattering 

are not Z ij but T.Z..T. E K... 
1 1J J 1J 

Following the above procedure we find that 

they satisfy the coupled equations 

Kij (lcc,k;;M) + 3 ij ri R$,$ ;M) r. . 
J (6) 

1 
(M2- + /2M d3kll 

=2M J ~ ~ik ri R(ki,~;M) ‘k ‘k(k;:,k;o Kkj (~~,kJ ;M) 
0 Ek 

(I+*- + /2M 3 

1 
I 

d E;I 

=2M II Kik(ki,~;M) pk(_kk9kL) rk R($,k; ;M) rj ~kj 

0 ck 

where 

R-'(kj,k;;") = ~~~~~~~ + Q+ Ed) ; xij = 1-"ii 

and 

E = 
ij b; + (ki+kj)2J'1 . 

(7) 

(8) 

We see immediately that these are covariant coupled channel equations of 

the Lippmann-Schwinger type and hence define unitary amplitudes. Further, 
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the unitarity is independent of the (finite) value of Ilr2, a point which 

we exploit below. 

In order to understand why the residue at the pole which, if we start 

from Eq. (l), would appear to be fixed by two particle unitarity can be 

treated as an arbitrary parameter in our context, it is convenient to 

isolate the primary singularities by using Eq. (5), which gives 

Mij = ti6ij + (.,'.: + pi) 'ij(~ + '~ 
(') 

and compare this with the relation between the Faddeev amplitudes and the 

physical amplitudes whose squares are related to cross sections as given 

by Osborn and B0116,~ Eq. (IV.7), which in our notation is 
- 

Mi j 
=t.6 +F 1 ij ij + Gij $j (siQ - m:)-' + ~i(SiQ -mt)yT1 ~ij 

+ $i(s. -m:) K..(s 
1Q 

m2> $ 1~ iQ- j j ' (10) 

This shows us that if the bound state wave functions oi are identified, as 

they should be in our s-channel (or zero range, or on shell) model, with 

the asymptotic normalization of the bound state Ti, the 3-3 amplitude is 

F ij =;.z ; i ij j' the amplitude from which breakup can be computed (cf. OB 

Eq. (1.2)) Gij = TiZij Tj, the amplitude from which coalesence can be 

computed E ij =r.z Q 1 ij j' and the elastic scattering and rearrangement 

amplitudes are given by K.. = I'. Z.. r., 
iJ = iJ J 

as asserted without proof above. 

But then we see that indeed if we take q = 0, the only scattering processes 

are elastic and rearrangement scattering. As is well known in nuclear 

physics, the asymptotic normalization of the bound state wave function, 

or "reduced width," need not correspond to what we would compute from a 
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zero range theory. Thus in a sense it is model dependent, but in fact 

it can be determined by experiments which break up a two particle bound 

state and shown to be independent of the particle used for the breakup. 

Thus, so long as we confine our theory to the region below meson produc- 

tion threshold, as is appropriate for our discussion of nuclear physics, 

we can treat this parameter as empirical without interfering with the flux 

conservation of the nucleonic degrees of freedom. A similar freedom was 

used by Amado in his "nonrelativistic field theory" for n-d scattering7 

in which he treats the residue at the np-d vertex as an adjustable 

parameter. We return to the consideration of this constant as measuring 

how much of the nucleon is "composite" and how much "elementary" in our 

final discussion. 

Our final step at the two nucleon, one meson level is to note that 

since k = -i -kj in either the initial or the final-state, and our postulate 

(c) does not allow us to distinguish the "bound state" 1-1 
iQ 

from the "bare 

nucleon" m i, we only have one amplitude T12(k,k';M) = Kll(k,lf';M) + - - 

K21(-k,k') = K12(k,-k';M) + K22(-k,-k';M) where we have taken as our 

reference direction the direction of the momentum k' of particle 1 in 

the initial state, and the equality of the two forms expresses time 

reversal invariance, as guaranteed by the equivalence of the two forms 

of Eq. (6). To relate our theory to more familiar modes we note that 

with the arbitrary parameter g1g2 replacing T1r2 the equations do indeed 

reduce in the nonrelativistic kinematic region (where M = c1+c2) to the 

Lippmann-Schwinger equation of scattering by a Yukawa potential since 

r1r2 R(k,k’;M) + glg2[mi+ (k-&')2]-1 and Pk goes to the usual nonrela- 

tivistic propagator. But of course we need not take this limit. The T12 

we have obtained is a fully covariant off shell two particle amplitude 
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which can be used, for example, in covariant three particle Faddeev 

equations, or their nonrelativistic limit. 

We believe the above suggested use of the amplitude we have obtained 

is a better way to do nuclear physics that using a "potential" for the 

n,n,p system, but until we have shown how to include Coulomb effects in 

this covariant description, the construction of the corresponding potential 

will have its importance. This can easily be accomplished, since we showed 

long ago8 that the Low equation can be used as a defining equation given a 

half off shell two particle amplitude consistent with time reversal invari- 

ance. Explicitly for the case at hand the nonrelativistic energy parameter 

z=M-m -m 1 2' and we can write 

V(k,k') - = T(k,k';ml+m2+z) 
(11) 

03 

-f 

q2 dq 
T(k,q;ml+m2+G2) T*(q,k';ml+m2+q2) 

0 G2 -2 

where we have for simplicity confined ourselves to s-waves and the c 

superimposed on the integral is supposed to remind us to include any m m 12 

bound states predicted by the model in our calculation. Since the 

z-dependence of the right hand side is not necessarily negligible (except 

for high energy where we go to the Born approximation), this calculation 

will tell us to what accuracy and over what energy range our model can 

indeed be represented by a static potential. 

Another application of our approach looks interesting. Instead of 

using relativistic Faddeev equations and T.. 
iJ 

computed from the two nucleon 

one meson system to calculate the three nucleon system, we can formulate 

relativistic four particle Faddeev-Yakubovsky equations for three nucleons 
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and one meson and use our same postulates to restrict the asymptotic 

degrees of freedom to the three nucleons. The zero range nonrelativistic 

equations are easy to derive9 and the generalization of these to separable 

relativistic two particle driving terms is equally straightforward. For 

our special model the fact that we allow no elementary particle-particle 

scattering immediately eliminates the (2,2) configurations. Normally there 

are 4x3 = 12 (3,l) configurations, but since Q is not allowed to be a 

spectator either of the three particle systems or within the subsystems, 

this reduces the number of amplitudes to 3x2 = 6. We symbolize these by 

F; where the superscript i labels the spectator of the two nucleon one 

meson subsystem and the subscript j labels the spectator in that subsystem. 

Since j fi, the inclusion symbol of the Faddeev-Yakubovsky hierarchy" 

can in-our case simply be replaced by a 3 
ij' and our four particle ampli- 

tudes with i,j,k,R,m E 1,2,3 satisfy the six coupled equations 

Fi(k k 'M ) + M;;)(k.,k!');Mii)) = -z xik c x j -i’-j’ 4 -J -J k im 
c xkL 

m R 

2 (M4-m%)/2M (,W2 

3 
-mi)/2M 

X 

1 d3kk 

sk 

1 d3kE 
M;;)(kj,kk;M;3)) 

0 0 Et 

where 

Mii)(ki,M4) = Mi + rn: - 2M4ci 

XR ik Fk($kp;M4) ml? (12) 

(13) 

and 
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~~ = [m2 + ikR 
Q 

mi - 
EkR - [m: + ($+$j2]' . (14) 

In contrast, if we do not include the mesonic degree of freedom in 

the internal dynamics, we will have only three coupled equations for the 

three Faddeev components (3) Fi(ki,gi;M) given by the three coupled equations 

(3) (0) Fi(ki,qi;M) + Ti(9i'9. 
1 

;M) 6 S3(k ii, -i -k(O)) 
l0 

(M2- m$/2m. 

c 
J 

J d3k d3q. 
= - x.. -i - j 'J 

0 7 / 9 
Tj ('li,Pi;M) 

- 

X 63 (s-i+ _ki+ lfj > Rij <ki ,qj ;M) Fj ‘lfj ,qj ;M) .. (15) 

where 

R-l = E~~(E.. + E. + E.) ij iJ 1 J 

E ij = [< + (k.+k.)2]?i 
-1 -J 

E i 
= (m: + ki)% 

2% 
5 

= Cm: + kj) . (16) 

Since we have seen above that Ti E T. 
Jk 

= M..+M 
JJ jk' 

the Faddeev equation 

can be derived from the four particle equation by forming (31F 
i = F;+F; 

where the approximation will be good so long as the significant momenta 

in the equations are all small compared to m c. 
Q 

Quantitative investigation 

of this approximation will then reveal to what extent the usual nuclear 
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physics approximation is valid, and where the internal dynamics ("three 

body force" and modification of the two body off shell effects) becomes 

important in the three nucleon problem in the one meson exchange approxi- 

mation. 

We anticipate that to the extent that a one meson exchange model 

gives a reasonable description of nucleon-nucleon scattering, these mesonic 

effects will be small at low energy. But this does not mean that they are 

physically unimportant for nuclear physics. For an adequate test of this 

question we must go beyond the one meson exchange approximation and 

formulate the nucleon-nucleon problem itself as a two-nucleon two-meson 

system using Faddeev-Yakubovsky equations. To be realistic we must of 

course use a pseudoscalar pion and also include IT-V scattering and the 

nucleon-antinucleon channels. In this way we might hope to unify the 

one-boson exchange models and the dispersion-theoretic models, provided 

our description of TTTT scattering produces the p and we can couple in the 

w phenomenologically. At this point we must also face the problem 

mentioned above of precisely how our replacement of T.T. by 8.8. treats 
iJ 13 

the nucleon as partly composite and partly bare. The three nucleon problem 

then becomes a five body problem, but judging-by the simplifications our 

model led to in the case discussed in this paper, we can hope that this 

will still prove tractible. Our conclusion is that this approach could 

provide a systematic way to investigate mesonic degrees of freedom in 

nuclei in a systematic way using finite and controlled approximations 

at each step. 
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