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ABSTRACT ._ 

By requiring the "bound state" of particle and quantum to have the 

mass of the particle and be physically indistinguishable from the 

particle we derive fully covariant and unitary equations for particle 

particle scattering; these reduce to the Lippmann-Schwinger equation for 

Yukawa potential scattering in the nonrelativistic kinematic region and 

provide a new definition of the "nuclear potential." 
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In 'quantum electrodynamics the nonrelativistic limit to lowest order 

taken in the Coulomb gauge leads to the nonrelativistic Schroedinger 

equation with a Coulomb potential, For a scalar meson theory the corres- 

ponding reduction to the Schroedinger equation with a Yukawa potential 

has never been accomplished by a generally accepted procedure (Moravcsik 

and Noyes 1961). We believe the difference is due to the fact that for 

QED the nonrelativistic limit leads to a potential defined in classical 

physics, which is scale invariant, whereas the range d/me of the Yukawa 

potential is not scale invariant and hence intrinsically nonclassical. 

This fact has frustrated attempts to construct generally accepted unique 

models for nonrelativistic nuclear physics. In this communication we 

demonstrate that by starting from covariant Faddeev equations for two 

particles and one massive quantum we can derive integral equations defining 

covariant, unitary amplitudes describing single quantum exchange and pro- 

duction. The production channel can be closed without destroying unitarity, 

leading to fully covariant equations for elastic scattering which reduce to 

the Lippmann-Schwinger for the scattering by a Yukawa potential in the non- 

relativistic kinematic region, but which are valid at any energy. The ex- 

tension to sectors with higher particle and quantum number, the connection 

to field theory, and some possible applications are briefly discussed. 

Fully covariant Faddeev equations driven by separable two-particle 

amplitudes define unitary and time-reversal invariant three particle am- 

plitudes (Freedman et al. 1966; Brayshaw 1978). For the minimal case dis- 

cussed by Lindesay (1981), they reproduce the Efimov effect in the appro- 

priate limit in quantitative agreement with nonrelativistic calculations. 

For this communication we restrict ourselves to two scalar particles of 
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massm'm 1' 2 and a scalar quantum of mass m 
Q' 

The quantum is distinguished 

from the particles by our postulate that there is no direct particle-particle 

scattering, which reduces the number of Faddeev amplitudes from 9 to 4. 

Our second assumption is that the quantum-particle scattering input ampli- 

tudes describing mi+m 
Q 

+ mi+m 
Q 

are a single s-channel bound state of mass 

mi which is physically indistinguishable from the particle m i (i E 1,2). 

Following the usual convention of labeling this amplitude by the spectator 

index j (#i) and writing it as a function of the initial and final specta- 

(0) tor momenta k. , 
-J 

lcj in the three particle zero momentum system and the 

(0) invariant four momentum M this invariant amplitude tj(kj,kj ;M) = 

S%(28) -2 .3 (0) ~~6 (k.-k. If in the coordinate 
-J -J 

)C(-q2(m2))' i - (-q2(s))Y. 

system in which mi and m 
Q 

have zero total momentum we allow the spectator 

"j 
to have any momentum between zero and infinity, these limits in the 

three-particle zero momentum system transform covariantly.to (Brayshaw 1978) 

0 sk. -< (M2- ; 
J 

m )/2M where M is the invariant four momentum. Consequently 

in this system we have that s = M2+mi- 2 bz 
AMES with E. = (mi+kj) 

J 
; 

further, q2(s) = Cs- (mi+mQ)2]\s- (mi-mQ)21/4s. This model differs from 

the minimal model previously discussed in that (a) the 3(i.e., Q)-channel 

is closed and (b) we have taken 11. f p = m.. 
J iQ- 1 

By inserting this driving term in the relativistic Faddeev equation 

(Freedman et al. 1966; Brayshaw 1978; Lindesay 1981) for the three particle 

amplitudes M.., defining t. =-rjsjS J and M..=t.d +T.z. .T -and iterating 
1J J 1J i ij 113 j' 

once we find that the Z.. 
iJ 

satisfy the coupled equations Z.. = - sijR - 
iJ 

I 
xikRrkZkj=-xijR- 

/ 
ZikrkR;-g 

kj 
where s ij =l-6 ij' R is the three parti- 

cle propagator and the variable content is defined below. To isolate the 

elastic scattering and rearrangement amplitudes we rationalize the denomi- 
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nator in z. 
J 

and separate the pole by defining T. = r2(s -mi) 
2 -l+; a . 

J ij J 

Following Osborn and Boll; (1973, Eq. (IV.7)) we isolate the primary 

singularities in M.. 
1J 

and define the physical amplitudes whose squares 

are directly related to cross sections by 

M = 
ij 

t-6 + F.. + 2 -1 2 -1 2 
1 ij iJ 

GijTj(s.-mi) 
J 

+ Tj(si-mj) ij 

2 -1 + ri(si-mj) 2 -1 r Kij(sj -mi) j . (1) 

From this definition it follows immediately that F ij (the 3-3 amplitude) 

is equal to q.Z q i ij j' that the amplitudes needed to compute breakup and 

coalesence (cf., OB Eq. (1.2)) are G.. = T.Z..I'. and E = r.z..q while 
1J 1 1J J ij 11J j' 

the elastic scattering and rearrangement amplitudes are K.. = r.Z..T.. 1J 1 iJ J 

Since we are primarily concerned here with two particle elastic - 

scattering, we note that we can close the quantum production channel 
. 

simply by taking ? = 0. Noting that the three particle propagator 

R(k,kj;M) = s.?(e 1J ij +Ei+E. 
+ -1 

J 
-M-i0 ) with E ij 

= Cmi+(lci+&j)214 

(0) and that since M = ~~ +dO) 
j 

when we start from.a two body channel, 

2 
S. -m. = -2M(&.-s (0) _ 
J 1 J j 

iO+) Z -P(k k('))-l 
j' j 

, we find that the equations 

for the physical amplitudes are 

Kij(ki,kco);M) + 3.. r.R(lcx,lcj(O);M) I'. 
iJ 1 J 

(M2-m$2M 

= 'ik s 
3 

d kk $ ri R(_ki,kk;m rk P(kkhk (O)) sj (k+,kj(" ;M) 

0 = s K ik pk rk R rj 6kj . (2) 

If the bound states m iQ 
were physically distinguishable from the particles 

m i all four of these amplitudes would describe different observable 
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processes. Actually, so far as observation goes we have only elastic 

scattering, and since we are in the zero momentum system k. = -ki and 
-J 

we can describe everything in terms of one vector variable. Taking this 

vector to be k the momentum of m 1 as a spectator, and noting that we can 

tell, relative to this direction, whether it is ml or m2 that had initial 

momentum k', the physical amplitude whose square gives the elastic 

scattering cross section is T(k,k';M) = Kll(~,k';M)+K21(-k,k';M) = 

K22(-&,-k';M)+K12(k,-k';M); the second form expresses the time reversal 

invariance guaranteed by the two forms of Eq. (2). 

We note that Eq. (2) is a coupled channel relativistic Lippmann- 

Schwinger equation with the exchange potential V ij = -8 r Rr ij i j' Since 

the form of the equation automatically guarantees two particle unitarity 

independent of the (finite) value of the product r.l'. we can treat the 
1J 

strength of this potential as arbitrary and call it g.g...- Since the r's 
1J 

are the asymptotic normalization of the "bound state" wave function, this 

amounts to saying that the "zero range" or pole form of the wave function 

does not hold down to infinitessimal distance, but other than the reflec- 

2 tion of this fact in the "reduced width" gz # r., 1 we need not specify this 

behavior, a point we will return to below. Further, since on shell where 

2 
in the zero momentum system (lci+lcj =0 =kl~+lcj) we have that t = (E~-E~) - 

(kl~-k~)~ = -(lfi+lf~)2 and M = E~+E~, or in the nonrelativistic kinematic 

2 -1 region, our "potential" is -g g [m2+(k-k') 1 12 Q -- =glg2/(t-mt) and hence can 

be interpreted as either a nonrelativistic Yukawa potential or as the lowest 

order field theory result for single quantum exchange. Further, in the non- 

relativistic kinematic region Pi1 reduces to the nonrelativistic propagator 

(k2-k'2-i()+)-1 and we can add the two equations to obtain the usual 

Lippmann-Schwinger equation for T due to a Yukawa potential. Thus our 
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equation'for single quantum exchange, although fully unitary and covariant, 

has an unambiguous nonrelativistic limit. 

The generalization of our treatment to a first approximation for the 

nuclear force problem is immediate. Instead of scalar particle functions 

we can use spinors, and since our driving term in the three particle space 

with which we start is, kinematically, simply the s-channel absorption and 

re-emission of the quantum, we know how to put in the vertex operators for 

pseudoscalar, vector, or pseudovector quanta; they are the same as lowest 

order field theory. Thus we can write three-particle coupled channel 

equations, and by isolating the pole terms as before obtain a fully 

covariant and unitary "one-boson-exchange' model for nucleon nucleon 

scattering. Solving these equations then gives us directly the fully 

off shell TNN (k,k';M) which could be used directly to compute three -- 

nucleon observables from relativistic Faddeev equations, or N-nucleon 

observables from relativistic Faddeev-Yakubovsky equations. Noyes (1982) 

has shown that the Faddeev-Yakubovsky equations for N=4 can easily be 

derived using our "zero range" approach. Simply by comparing the results 

with the same equations using nonrelativistic kinematics we can find out 

quantitatively how important relativistic 'recoil corrections" are for 

nuclear physics. But we can go further; by using Faddeev-Yakubovsky 

equations for N nucleons plus one meson and comparing them with the 

(relativistic) equations for N nucleons, we can isolate (within our model) 

the effect of "three body forces" from the effect of "two body off shell" 

behavior. A still simpler way to test the adequacy of the static potential 

concept for nuclear physics is to use our fully off shell TNN to compute 

the potential, starting from the Low equation (Noyes 1968). Explicitly, 
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since the nonrelativistic energy parameter z is related to M by 

M= z+m +m 1 2' 

m 2 

v(k,k') = T(k,k' ;z+ml+m2) - 
it 

q dq T(&,q;i2+ml+m2) T*(q,k';q2+ml+m2) 

0 c2 -z 

(3) 

where G2 2 = q /2~, P = mlm2/(ml+m2), and the c is included with the 

integral to remind us to include any bound state pole terms predicted by 

our interaction. Thus we can determine up to what energy and to what 

accuracy the V so computed is indeed independent of z, and hence can be 

used in a nonrelativistic Schroedinger equation for nuclear physics. 

Returning to our covariant equation, we note that it is not the 

ladder approximation to the Salpeter-Bethe equation (1951), because it is a 

single time equation, and it is not the Blankenbecler-Sugar equation (1966) 

because it has no spurious singularities. Since we have shown above that 

it has an unambiguous and reasonable limit in nonrelativistic scattering 

theory, we claim to have obtained the correct equation for single quantum 

exchange. Note that if we make one of the particles a spinor, let mQ -+ 0 

and the mass of the second particle go to infinity, we obtain the momentum 

space Dirac equation for a Coulomb potential. Clearly if we do not take 

these limits we have a correct relativistic equation with full "recoil" 

and as noted above can introduce spin for the quantum (or quanta) as 

easily as for the particles. If we have ml=m2 and treat the two particles 

as identical, then we must, as usual, symmetrize or antisymmetrize the 

amplitude depending on whether the particles are bosons or fermions. AS 

can be seen from the expressions discussed above, this will give us t-u 
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"crossing." Clearly we cannot have s-t or s-u "crossing" in a finite 

particle number theory since our ladder would imply an infinite number 

of particles in the intermediate states when crossed. We can, however, 

introduce antiparticles in a straightforward way, and compute unitary 

amplitudes for particle-antiparticle processes with appropriate symmetries, 

as we will discuss elsewhere. 

To extend our theory to higher particle number is, as already noted, 

straightforward. Since our equations will always give finite results, 

the test of whether our theory can be generalized in a way consistent 

with known physics will come when we compute four particle (or more 

specifically two particle and two quantum) processes and compare to 

renormalized perturbation theory in the weak coupling limit. So far as 

we can see, we are including the same physics as quantum field theories 

with Yukawa-type couplings at that level, and should anticipate the same 

results. If we fail, this will show that even though, once renormalized, 

perturbation theory to order g4 seems only to refer to a finite number of 

real particles, some trace of the infinite renormalization was left behind; 

this would also be interesting. 

It remains to extend our three particle theory to quantum production, 

by restoring the elastic scattering amplitude T to our two particle input. 

This leads to coupled equations for the K.. and G.. which are easy to write 
1J 1J 

down. The three particle amplitudes calculated from them are clearly 

2 unitary so long as we retain the residues Ti, Ti at the poles which come 

from a unitarity two particle amplitude, since it is easy to show 

(Freedman et al. 1966 and Noyes 1982) that this plus the Faddeev 

form of the equations guarantees this. Whether we can in this case 

take g: arbitrary depends to some extend on interpretation. 
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Again, i'f we introduce a "form factor" so that the normalization of the 

bound state wave function corresponds to precisely two particles, we have 

simply gone back to the more general model discussed by Freedman et al. 

(1966) and Brayshaw (1978), and there is no problem with unitarity; however 

the form factors then enter the equations and change our fundamental theory 

to a phenomenology, which we wish to avoid doing. But if we retain the 

simple pole form for the bound state wave function with an arbitrary residue, 

we in some sense saying that the bound state is partly elementary and partly 

composite. With this interpretation flux conservation is preserved, as can 

be seen from the way it is achieved in OB. In their "nonrelativistic field 

theory" for n-d scattering, Aaron et al, (1965) have used a similar argument 

in treating the n-d vertex constant as a free parameter, and we do not see 

why we do not have the same freedom in our context. A fuller discussion 

of this point, and an approach in which we use the density matrix to 

describe physical states which are partly "bare" and partly "composite" 

will be presented elsewhere. 

We conclude that we have achieved a unitary and covariant description 

of single quantum exchange with immediate application in nuclear physics, 

and with possible interesting extensions to a much broader class of 

problems. 
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DEDICATION 

This article is dedicated to the memory of Stewart Butler, who was 

the office mate of one of us (HPN) in Birmingham at the time when Stewart 

was completing his thesis on deuteron stripping reactions. As is well 

known, Stewart's fundamental contribution became one of the primary tools 

for making progress in the analysis of nuclear reactions and nuclear 

structure, neatly avoiding the ambiguities discussed in this paper. At 

the time HPN was struggling with the problems discussed here, but in 

contrast to Stewart's success, it has taken until now to achieve what 

might be a satisfactory resolution of them, We can only wish that we 

could still profit from his comments on this work, 
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