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ABSTRACT 

We demonstrate that the standard factorization theorem for the Drell- 

Yan process and other hadron-induced hard-scattering inclusive reactions 

is violated order by order in QCD perturbation theory by initial state 

interactions. The initial state effects occur in leading order in l/s and 

come from the near-on-shell scattering region, whose contributions cannot 

be eliminated by the use of Ward identities. Because of the large longi- 

tudinal range of the initial state interactions, the lepton-pair cross 

section is not additive in the nucleon number of the target. At asymptotic 
n 

QL, the factorization-violating initial state effects are suppressed if one 

sums certain hard-scattering radiative corrections to all orders in per- 

turbation theory. We also discuss the concept of the formation zone in 

QCD, and show that collinear radiation cannot be induced inside a target 

whose length is shorter than a scale proportional to l/s. In general, 

initial and final state interactions in QCD lead to a number of new observ- 

able phenomena, including induced color correlations, kl fluctuations, and 

radiation in the central region. The initial and final state effects 

vanish in leading order in l/s for hard-scattering exclusive processes 

and certain semi-inclusive direct processes. 
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1. INTRODUCTION 

Recently we have shown that initial state interactions have a signi- 

ficant effect on almost any hard inclusive or semi-inclusive cross section 

for hadron-hadron scattering, including the Drell-Yan process (pp + ~irX>, 

hadronic jet production (pp + q:X), and inclusive n, production 

(PP -t rlcx)J Not only do these initial state effects invalidate previous 

analyses of such processes, but they lead to a host of new phenomena, 

many of which are experimentally accessible. Such initial state inter- 

actions are intimately related to the final state interactions that change 

quark and gluon jets into hadron jets in processes like eE + hadrons and 

ep + e + hadrons. Thus, Drell-Yan and similar reactions provide an 

important new tool for studying these little-understood aspects of the 

strong interaction. In this paper we examine the qualitative features of 

initial and final state interactions in quantum chromodynamics, focusing 

on the example of the Drell-Yan process and using perturbation theory as 

a guide. The phenomenological implications for Drell-Yan, deep inelastic 

scattering, and a variety of other processes will be explored in a sub- 

sequent paper. 

In order to illustrate the issues, let us consider the Drell-Yan 

process ITA + iiuX where an anti-quark in the pion annihilates on a quark 

in nucleus A. In conventional analyses, based upon the parton model2 and 

QCD factorization 'theorems',3 one ultimately computes only interactions 

involving the annihilating (or 'active') quark and anti-quark. Then the 

Drell-Yan cross section has the factorized form shown in Fig, 1: a con- 

volution of structure functions for the beam and target particles with a 

(hard) qq annihilation cross section. The qq cross section is calculable in 

perturbation theory, and the structure functions can be measured in deep 
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inelastic scattering. Thus both the Ql distribution of the rtv pairs and 

the normalization of the integrated cross section do/dQ2dxF are completely 

determined for large pair mass Q2. Furthermore, if one assumes that the 

factorization theorems are valid, then the cross section for nuclear 

targets scales simply as Al; the nucleus is effectively transparent to 

the active beam quark, allowing the quark to annihilate on any nucleon 

in the nucleus. 

Here we show this picture is incomplete. In fact, the active quark 

and anti-quark suffer any number of glancing collisions with the various 

spectator partons before annihilating (Fig. 2). These initial state 

interactions can profoundly alter the character of the process. It is 

sometimes argued that such interactions are negligible in the high energy 

limit because the time available vanishes as s -f a, due to Lorentz con- 

traction of the beam and target particles (in the center of mass frame). 

This argument ignores the fact that the probability amplitude for scat- 

tering grows like T N s in theories with vector exchange 'particles' - 

e.g., gluons, photons, pomerons. As we shall show, initial state inter- 

actions occur at large s for just this reason - although only between beam 

and target constituents. The quarks and gluons within the pion, for example, 

have no time to interact with each other during their passage through the 

nucleus. 

Initial state effects are, perhaps, most easily observed in the trans- 

verse momentum of the lepton pair.4 The initial state collisions transfer 

only limited momentum in the s + ~0 limit. Thus, they have a negligible 

effect upon the longitudinal momenta of the annihilating quarks, but 

provide an important new source of transverse momentum for the quarks. 

This additional transverse momentum is potentially comparable in magni- 

tude to the 'primordial pT' that originates in the hadron wave functions. 
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The quarks' transverse momentum is passed on to the ui; pairs and is re- 

flected in a broadened QL distribution for the pairs. This broadening is 

A dependent for nuclear targets, because the number of initial state col- 

lisions grows with target length (i.e., like A l/3) . The transverse momentum 

of the active anti-quark in the pion fluctuates randomly as the anti-quark 

collides with the various nucleons comprising the nucleus. This increases 

the mean 9," of the p; pair by 

S<Q 2 > -A l/3 A2 
1 Y (1.1) 

where X is the typical momentum transfer per collision (h N 100 to 500 MeV). 

There is already some indication in the data for such an A-dependent shift 

in <Qf> (see Fig. 3).5 

If the initial state interactions are both color and flavor neutral, 

their sole effect for large s and Q2 is to broaden the QL distribution. 

The cross section do/dQLdxF (integrated over Ql) is unchanged because it 

is insensitive to the limited transfers of momentum involved. This is 

easily understood from our analysis: in spite of initial state collisions, 

quark flux is conserved in the beam direction since the momenta and 

trajectories of the active quarks are essentially unchanged. The net 

effect, then, is to change the active quark and anti-quark wave functions 

by a unitary eikonal phase6 U(bL) that varies with their impact parameters. 

Although this phase obviously modifies the transverse momentum dependence, 

it cancels in the integrated cross section: 

do (TA -t wX> N 
3 [ d2b <a@-+(b, )cAf+(qq) J&Y (qq) U(b,) jrA> 

dQLdxF J -i 

= 
/ d2b <~A]&i+(q:) &?(q$ ITA> Y 

where &(q{) is the amplitude for q4 annihilation , and UtU = 1. 

(1.2) 
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The situation is radically different when the initial state inter- 

actions transfer color, as must be the case in QCD. Although quark flux 

along the beam is always conserved, the color wave functions of the active 

quarks are changed by the gluon exchanges. In the conventional picture, 

the active quark and anti-quark do not communicate until they annihilate, 

and conseqently their colors are uncorrelated. As a result, the Drell- 

Yan cross section is reduced by a factor of l/3 compared to the colorless 

case, since two times out of three the quark and anti-quark colors do not 

match. Initial state collisions involving color exchange can introduce 

color correlations, dramatically affecting the normalization even of the 

integrated cross section do/dQ2dxF. This is evident from Fig. 4, which 

shows the dominant color flow due to the exchange of a single gluon 

before the annihilation. With this color flow, annihilation can always 

occur, no matter what the initial colors of the quarks. Thus, the eikonal 

operator U can no longer be neglected in Eq. (1.2). Although U+U = 1 

(flux conservation), the eikonal is a color matrix in QCD and no longer 

commutes with the qc annihilation amplitude &(qq). This is an 

essential difference between deep inelastic scattering and the Drell-Yan 

process. In deep inelastic scattering the eikonal appears only in the 

final state and always cancels, by unitarity, in the cross section 

(cf Eq. (1.2)): 

do(eA-teX) N 
dQ2dx I d2b <AI&,??+ U(b1) Ut(bl) d(eq> iA> 

= / d2b <AI&{+ &(eq) IA> . 

That is, &(eq), the amplitude for eq -f eX, need not commute with Ut(bl), 

the eikonal operator, in order for final state interactions (Abelian 
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and no&Abelian) to be negligible. (See Appendix A for a more detailed 

illustration.) 

In order to describe the color correlation effect in Drell-Yan in a 

more quantitative way, we decompose the general cross section 

nihilation (i.e., &l +&l) into two components, corresponding 

color flows in the hard subprocess (Fig. 5): 

do ac b&q+ 6x1 = 
6ab6cd 

5 n da1 + 2(Ti)ba(Ti)cd da8 
C 

. 
where a, . . . . d are color indices, nc = 3, and the T1 are the 

for q?j an- 

to different 

(1.3) 

generators 

of color transformations in the fundamental representation (Tr(TiTj> = 

Sij/2). In the conventional analysis, the effective q?j cross section is 

obtained by color averaging, 

do 1 
eff =,2 c do ac,ac = +- da1 

C c a,c 
(1.4) 

and da8 does not contribute since Tr(T') = 0. However, color changing 

initial state interactions can result in any (normalized) mixture of color 

states for the qy. If cos28 is the probability of finding the qq in a 

singlet after initial state collisions, then the effective annihilation 

cross section is7 

do eff (44-+ uw = $ da1 + nc cos20-$ do8 , (1.5) 
C C 

where now do (Ido 8 1 > contributes. An entirely new (color) channel is 

available for the Drell-Yan process, The mixing angle 0 is determined 

by low momentum transfer initial state interactions, and as such cannot 

be computed perturbatively. 

In lowest order perturbation theory, do8 equals do1 and so we find 

that 
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0 5 daeff ( > dal (q~-G.W 5 n: n (1.6) 
C 

- i.e., due to the color correlation effect, the Drell-Yan cross section 

could be enhanced by as much as a factor of 9 relative to the conventional 

result! However, as emphasized by Mueller,8 perturbative QCD suggests 

that da8 is suppressed relative to do1 by a quark form factor: 

(1.7) 
1 
-? Q2 = 10 GeV2 

- do1 x 
12 

iE Q  = 100 GeV2 

where C =n A c = 3, B. = ll- 213 nflavor, A m 100 MeV is the QCD scale param- 

eter, and X2 = x2,A113 
A N (100-500 MeV)2 is the square of the typical momentum 

transferred per initial state collision. This form factor is absent in 

do1 because of a cancellation between real and virtual gluon emission. 

However, gluon radiation is strongly suppressed in da8 (i.e,, by a factor 

11 (n2 
C 

- 1) and the cancellation is spoiled. The detailed behavior of the 

form factor depends in part upon the low energy structure of QCD and may 

not be calculable at present. However, the form factor almost certainly 

vanishes as Q2 +- ~0, so that do8 can be ignored for very large 

Q2(>>100 GeV2>, and the conventional result becomes valid - i.e., 

da eff -+ l/ncdol. Based on the estimate given in Eq. (1.7), this is 

evidently not the case at current energies. Indeed, the Q2 dependence 

of da8 is an important new source of scaling violation, and possibly 

even the dominant source given the small values of Ags (5200 MeV) 

obtained from recent measurements. This Q2 dependence is quite different 
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from scaiing violation due to conventional structure function evolution, 

since the effective anomalous dimension of da8 varies with Q2; e.g., 

'eff = - CA/B0 In Q2/X2 in perturbation theory. 

The appearance of Sudakov double logarithms, which exponentiate to 

give the form factor in Eq. (1.7), signals the failure order by order in 

perturbation theory of the QCD factorization 'theoremst3 for Drell-Yan; 

mass singularities cannot be simply factored. Only when working to all 

orders do we recover the familiar results, and then only for Q 2 very large. 

This infrared sensitivity in leading twist was completely unexpected from - 

previous analyses. In covariant and noncovariant gauges alike, it results 

from the failure of collinear Ward identities in the eikonal region of 

phase space, where gluons transfer infinitesimal fractions (wA2/s) of the 

longitudinal momentum carried by the beam and target particles (see 

Appendix A). 

Flavor changing initial state interactions also affect the Drell-Yan 

cross section. As an extreme example, consider a Drell-Yan process for 

two mesons whose valence quarks are Zd and c'i. If we neglect sea quarks, 

the process cannot proceed at all without an initial state interaction; 

W-boson exchange between an active quark and a spectator quark (Fig. 6) 

leads to a small, but non-zero Drell-Yan cross section even as s -t ~0. 

An intriguing and important feature of the initial state (and final 

state) interactions is their range. Despite the Lorentz contraction of 

the beam and target particles in the center of mass frame, the longitudinal 

range of the interactions grows like &in this frame (see Appendix B). 

Thus, in ?TA + pjIX, for example, the beam antiquark interacts with the 

entire nucleus, even if the annihilation is at the front face. The mixing 

angle 8 in Eq. (1.5) is then A dependent. However, a large nc analysis 
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in QCD suggests that this dependence is suppressed by a factor l/n: and, 

therefore, that nuclear cross sections for Drell-Yan could still scale 

roughly as Al. 

Central to the entire analysis outlined above is the fact that the 

longitudinal momenta of the active quarks are unchanged by initial state 

eikonal collisions. However, even the softest of collisions between high 

energy quarks can induce gluonic bremsstrahlung carrying off large 

fractions of the quarks' longitudinal momenta. Such radiation, if it 

could occur in an initial state collision in Drell-Yan, would greatly 

soften the quark x-distributions, thereby substantially reducing the cross 

section at'a given Q2 and x F' and destroying any semblance of factorization. 

In fact, there is insufficient time for such collinear bremsstrahlung to 

develop during the collision of the hadrons, provided that 

Q2 >> x sLTX2A1'3 , (1.8) 

where x is the target quark momentum fraction, X the typical momentum 

transfer per collision, s the nucleon mass, and LT the target length. 

This condition is easily satisfied for a proton target, but somewhat 

larger Q2 may be required for large nuclei (e.g., Q2 >> x(24 GeV2) for 

uranium). It is also apparent from this condition that hadronic radiation 

is inevitable as the beam passes through any macroscopic target - a fact 

well appreciated by experimenters. 

Initial state interactions do create central region particles, 

carrying limited longitudinal momentum, even when condition (1.8) is 

satisfied. These interactions tend to destroy the coherence of the 

active quark wave functions, thereby diminishing the Drell-Yan cross 

section. However, their effect is negligible provided that 
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Q2 - " (y.+N> 2 x2 A2/3 

x4 x4 
. (1.9) 

Notice that the central region multiplicity produced by these inter- 

l/3 actions should grow with increasing nucleon number like A . 

The initial (and final) state interactions of interest here involve 

small momentum transfer, and therefore depend critically upon the non- 

perturbative behavior of QCD. Nevertheless, such effects do appear in 

perturbation theory, and a complete perturbative analysis leads to 

important insights into the qualitative features of these phenomena. 

Therefore, in the remainder of this paper, we outline the analysis of 

initial state corrections for qA -t u!JX, working to all orders in 

perturbation theory (A can be a meson, baryon, nucleus, . ..). These 

corrections are most easily studied 

theory in the center-of-mass frame9 

P 
9 = (P, 

pA = (P, 

using time ordered perturbation 

. - I.e., 

0 l' PI 

019 -p> 

with s = 4P 2 +- 00 and masses set to zero. The time orderings of the 

diagrams are closely related to the path orderings that appear in the 

eikonal phases. This feature is particularly useful in separating 

initial from final state effects, We work in Coulomb gauge so as to 

avoid spurious collinear singularities, which can be confused with 

initial state effects when covariant gauges are used. 

We proceed in two steps. First we examine the Drell-Yan process in 

the absence of gluonic radiation (Section II). Here we demonstrate the 

eikonalization of the initial state interactions and discuss their 

effects upon the Ql-distribution and the normalization of the hadronic 
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processc We then include gluonic radiation (both real and virtual) and 

examine scaling violations in the Drell-Yan process, given the presence 

of soft interactions between the initial particles (Section III). 

Finally, we summarize the phenomenological consequences of initial and 

final state interactions in Drell-Yan and other processes (Section IV). 

The analysis of initial state interactions in covariant gauges is 

discussed briefly in Appendix A, where we also address the discrepancy 

between our results and those of Collins et a1.l' The range of the eikonal 

potential and its relation to zitterbewegung is discussed in Appendix B. 

II. INITIAL STATE COLLISIONS WITHOUT RADIATION 

If we ignore both initial state collisions and radiation, the amplitude 

for qA + ujTX is (Fig. 7a)l' 

where for simplicity we take A to be just a qq bound state. The (active) 

anti-quark in A has momentum k = (kl, -xP), with impact parameter zl con- 

jugate to k,. Thus the lepton pair has mass Q2 = 4xP2 , Q, = kl, and xF = 

l-x. At this stage the cross section still factors in the usual fashion: 

da 
eff = 

dQ2 dxF / 
dx GA(x) 

dQ2 dxF 
(szi + uf;> , (2.2a) 

where G A (x) is a structure function, 

GA(x) = ; 
/ 

d2kl 
---& I'/JA(X,k > I2 = -& d2z1 Ii$x,Z >I2 1 

(2.2b) 

and do eff = (l/nc)dal (Eq. (1.4)). 
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This simple picture is complicated by initial state collisions. For 

example, the Abelian Coulombic interaction shown in Fig. 7b gives an ampli- 

tude 

A;; 1: AH / d3R 3 1, 
(2T) 

-2R3 

‘kL - R1j2 P2 k2 

- 2(x+y)P - 2(liy)P - 2(1-Ix)P + ic 
(2.3) 

1 
x 2(1+y)P 

g24P2(1-x+y/2)(l+y,2 J,(x+y,kL -RI> 
+-2 R 2P(x+y)(l-x-y) ' 

where t = (RI, yP) and we have neglected EL,kL relative to P, Notice that 

in this gauge the collinear region y N 1 is suppressed by l/s. The only 
+2 important contribution comes from the "Glauber region"12 J1 N X 2 

A2 

, where 

- <k:> in QA. Therefore as P + 03, we can neglect y relative to x and 

simplify the energy denominator to obtain an eikonal form for (2.3): 

&!-$~d% 
DY X 

2 ikL l zI N 
$AcX, zI) 

(2o4) 

-t where here V is just the Coulomb potential, z 
1 = (zl,O) and x = 

(SA - itq)/P = (01, -2). Using similar arguments, we find the double 

Coulomb interaction (Fig. 7c) gives 



J 

= dr' X -  V(z +;5~‘) eET’ eikL l Z-L T,(X,Z,) . i -co t 

For any number of interactions we obviously obtain 

J 
ik l z 

X 
d2zL U(zl) e ' ' ?A' x9 q 

in place of Eq. (2.1), where the (unitary) eikonal phase U is a path 

ordered exponential: 

I J 0 
U(zL) = ZPT exp -i dT V(gL+&) . 

I 
(2.5b) 

-02 

Equation (2.5) is easily understood in physical terms. The eikonal 

phase U is the probability amplitude for the beam quark to arrive at the 

annihilation point after repeated soft collisions with the spectator. 

The quark remains near mass-shell between collisions as it passes through 

A. (In Eq. (2.4), only the imaginary part of the energy denominator 

contributes, implying on-shell propagation. This is the origin of the 'i' 

in (2.5b).) The variable T may be thought of as time, and the integral 

in (2.5b) as an integral over the classical trajectory of the beam quark 

through the target up to the annihilation at T = 0. 1 zL + ~dl is the 

distance between the quark and the spectator in A. 
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Although U(z,) modifies the transverse momentum of the quarks, the 

integrated cross section 

d2z $j x, 
I 

(2.6) 

is unchanged from (2.2) for Abelian initial state interactions, since then 

U+ da U = do U+U = do. This is evident order by order in perturbation 

theory, where, for example, the contribution from the diagram in Fig. 8a 

cancels that from Fig. 8b. The situation is quite different for color 

(or flavor) changing initial state collisions (due to gluon exchange for 

example). In that case the potential V in (2.5b) is an Hermitian color 

matrix, and the eikonal phase a unitary color matrix. While U+U still 

equals unity, the U's do not in general commute with do(qq -f up) in (2.6). 

The annihilating quark and anti-quark colors are not longer uncorrelated. 

For example, the diagrams in Fig. 8 would cancel except that they have 

different color factors when colored gluons are exchanged (i.e., C$n, 

and CF(CF - CA/2)/nc. Because of the color factors, the diagrams in 

Fig. 8b add to those in Fig. 8a thereby enhancing the cross section. 

Crossed ladder diagrams and tri-gluon couplings do not contribute to the 

leading order eikonal potential (in Coulomb gauge). 

In a general Drell-Yan process AB -f ppX, the eikonal potential in 

(2.5b) includes interactions between all pairs of constituents, one taken 

from each of A and B - i.e., active-spectator (as above), active-active,13 

and spectator-spectator interactions (Fig. 9a):14 

V= c vij GLi - 2 G 
+&) , (2.7) 

icA 
jcB 
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where the impact parameters z ii are measured relative to the annihilation 

point. Of course, the interaction is not just Coulombic, even in pertur- 

bation theory. The complete leading order (in g2) potential is due to 

both Coulomb and transverse gluon exchanges - the latter giving a contri- 

bution identical to the Coulomb interaction in leading order, Beyond 

leading order, the real part of the full constituent-constituent amplitude 

(e.g., Fig. 9b) contributes with V.. N (l/s)Re T.,. (Note that only 
=J =J 

amplitudes that grow like T N s contribute as s -+ 00. Such behavior is 

associated with vector exchange; e.g., T is constant for a scalar gluon, 

so that V vanishes as l/s. The eikonal phase in energy dependent when 

T/s is not'constant.) Also, inelastic amplitudes, such as in Fig. 9c, 

must be included in the eikonal potential. Therefore U is not only a unitary 

matrix in color space, but in Fock space as well; it can create and des- 

troy spectators. Only inelastic interactions that leave the longitudinal 

momentum of the active quarks essentially unchanged eikonalize, and only 

these are included in U. Thus, the particles created or destroyed by 

these interactions are all in the central region - i.e., j--j +- lj,l - I~,1 
for the diagram in Fig. 9c. Hard bremsstrahlung from the annihilating 

quark lines must be treated separately. It is discussed in the next 

section. 

The potentials in sum (2.7) tend to cancel for large 'c (i.e., large 

longitudinal separation) since hadrons A and B are color singlets.15 Of 

course, they do not cancel in general when r is of the order or less than 

the transverse size <zl> of A or B, and this is where the dominant con- 

tribution arises.16 Given the extreme Lorentz contraction of the beam and 

target particles, it is surprising that interactions occur at such large 

longitudinal distances (-<z,>>, even in an Abelian theory. However, 
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this is 'an essential feature of eikonal interactions, which transfer only 

limited longitudinal momentum ([R31 2 RI << ~6), and consequently have only 

limited longitudinal resolution (AZ 2 l/RI >> l/&j. In fact, as we show 

in Appendix A, the collinear Ward identities used in conventional analyses 

of Drell-Yan are valid for any interaction (in any gauge) with la31 >> &t/P, 

so that the only interactions carrying I!?.,\ 5 %t/P are relevant to the new 

physics we are discussing. Thus the eikonal interaction is actually non- 

zero (and roughly constant) over a range <zL> 2 &- much longer even than 

the range in our Coulomb gauge analysis above. The Coulomb gauge analysis 

can be corrected by using collinear Ward identities to alter the potential:17 

but only R3 = 0 contributes in Eq. (2.4) anyway, so that the final result 

is unchanged as s -t a. (In the limit s + a the target is Lorentz contracted 

to a size LT M/G, so that the reduction of the range of the eikonal 

potential in Coulomb gauge has no physical consequences. For example, the 

contribution from 2:/P << lg31 2 Irtl[ in Eq. (2.3) is supressed by a factor 

+J LT at/s because of the approximate asymmetry of the integrand under 

Q3 -f -a3.> Use of Ward identities can be avoided completely by computing 

in axial gauges like A3 = 0 gauge. For these only Ia31 5 2:/P contributes 

although the calculations are somewhat more involved than in Coulomb gauge 

(see Appendix B). 

The physical origins of such long range interactions are discussed 

in Appendix B. Their consequences are important for nuclear targets. 

Because of the long range, constituents throughout the entire nucleus 

contribute to the eikonal phase.18 This leads to novel A dependence in 



- 18 - 

the normalization, Q, distribution, and associated multiplicity (central 

region). In particular we do not expect cross sections that scale exactly 

as Al. However, the deviation from A1 behavior may be small, both because 

of Sudakov suppression of du 8' and because any diagram involving inter- 

actions with a spectator nucleon is suppressed by a color factor -l/n 2 = 
C 

l/9 relative to the diagrams that contain only interactions with con- 

stituents of the annihilation nucleon. The A dependence could be modified 

in a large nucleus, since the net change in the eikonal potential is of 

relative order A l/3$ 
CO 

Finally, we note that the approximations leading from Eq. (2.3) to 

Eq. (2.4);and ultimately to the full eikonal formalism, are valid only 

at high energies. Essentially, we are neglecting the longitudinal momentum 

R3 transferred to the active quarks in comparison to the 'uncertainty' in 

the momentum they already carry. For a nuclear target, R3 of order 

A1/3 <al> E A1'3 X is lost when central region particles are produced by 

multiple interactions of the sort shown in Fig. 9c. This is negligible 

provided that IR~~L~@$/P~) << 1, where LN(MN/PN> is the Lorentz con- 

tracted length of the hadrons within which e&h of the active quarks is 

confined. Thus we require that 

A2'3 X2 (MNLN)2 << s N (2.9) 

(where s = s/A is the energy per hadron in the CM frame), if the wave N- 
functions of the active quarks are to remain coherent along the length of 

the annihilation region. Otherwise the Drell-Yan cross section is reduced. 

Notice that this condition also insures that the active quarks lose only 

a small fraction of their energy to spectators and central region particles. 

This is an obvious requirement in an eikonal analysis. 



- 19 - 

III. BREMSSTRAHLUNG 

As we have seen in Section II, multiple elastic collisions leave the 

longitudinal momentum distributions of the active quarks essentially 

unaffected. Using the notion of longitudinal flux conservation, one can 

then understand easily why elastic collisions in an Abelian theory have 

no effect on the integrated Drell-Yan cross section. However, one might 

expect bremsstrahlung, induced by collisions between active and spectator 

quarks, to carry off a finite fraction of active quarks' longitudinal 

momentum, thereby drastically altering the pair-production cross section - 

even in the Abelian case. In fact, as we shall show, the effects of all 

hard radiation (with momentum j: >> %:) can be completely absorbed into 

the q;T cross section in Eq. (2.6) - i.e., we replace do(q{ -+ uil) by 

daH(qq -t upX) where all real and virtual radiative corrections are hard. 

On the other hand, all soft radiation (jl 5 RI) must occur well before 

any initial state interactions, and is included with the spectators in 

the hadronic wavefunctions; soft radiation occurring between initial 

state collisions is suppressed at large Q2 for all but the longest targets. 

Bremsstrahlung occuring in the central region of the rapidity distribution 

contributes both to the eikonal operator and to duH(qq -f uiiX>. 

A. Real Emission 

In order to illustrate the techniques we employ in treating initial 

state bremsstrahlung, we consider the lowest order graphs for quark + 

meson + ~ln + transverse gluon + X, shown in Fig. 10. Once again, we use 

time-ordered perturbation in the center-of-mass frame. We then obtain 

the following expressions for the energy denominators: 
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1 
i 

jf 
A-5 - z(l-z) +ic I 

(3.1) 

1 B-5 
Ef - 2Rl*j (kl-Ll)2 k: 

- 4y P2 - 1 

z(l-z+y) - l- z+y - l+Y 
---f-fc 1 -x I 

1 C--E 
R2 (kl- R )2 k: 

- 4y p2 - - - 1 1 

l+Y x+Y 
-L_x+iC 1 

2 -valid when masses are negligible, y < x, 1 - z and jl, R :, k: << P2. 

Here y and z are the longitudinal momentum fractions: y = a3/P, z = j3/P0 

To leading order in l/P, the bremsstrahlung gluon simply couples to the 

quark convection current, which is 3' = C-j*, (2-z) P) + @(RI, yP) for 

each diagram in Fig. 10. Since the polarization vector is orthogonal to 

the gluon's momentum (jl, zP) in Coulomb gauge, the gluon-quark vertex is 

typically 

;. -p y _ 2c*; j* 
+ @(a*, YP) l (3.2) 

The exchanged gluon, carrying momentum 1, gives the same factor (g2/x2) 

for each diagram when one includes the energy flux factors 1/(2E) for the 

intermediate states. 

It is convenient here to consider large jl(>>%l) separately 

small jl(LRl).lg We treat each region in turn for the graphs in 

We also examine contributions from central-region radiation. 

Large il. As usual, one can make use of the collinear Ward 

from 

Fig. 10. 

identities 

to absorb the contribution from the region IyI 2 9,:/P2 into the structure 

functions (see Section II and Appendix A). For the remaining region, 

IYI 5 +p2, it is obvious from Eqs. (3.1) and (3.2) that only diagram (b) 

of those in Fig. 10 contributes to leading order in l/s for j 2~ >> R 2 20 
1' 

In the large jl region, the denominator B and the gluon-quark vertex 
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-t 
E l 3' are independent of 2. Furthermore, the denominator C is independent 

of 3. Thus the z integration decouples in this region, and the amplitude 

factors into the product of an initial state interaction and a radiative 

correction to pair production. 

Following Ref. 1,21 it can be shown that this factorization occurs 

in Coulomb gauge for s + m even if one does not use the Ward identities to 

eliminate contributions from the region a2/P2<< lyl 5 RI/P. As explained 

in Section II, this region does not contribute for targets that are suf- 

ficiently Lorentz contracted in the CM frame. 

Small jl. For j2 52 :, graphs in which the gluon emission occurs 

before all initial state interactions (e.g., Figs. 10a and 10~) can be 

treated as contributions from the higher Fock state components of the 

active quark's wavefunction. The emitted gluon plays the role of a 

spectator constituent. Thus, Fig. 10~ actually represents a spectator- 

spectator interaction in this region. Graphs in which the gluon emission 

occurs between an initial state interaction and the annihilation vertex 

(e.g., Fig. lob) tend to be suppressed because of a cancellation between 

contributions from eikonal denominators on either side of the gluon 

emission vertex. 

Let us demonstrate this cancellation for the graph in Fig. lob. The 

important contributions at large s come from the eikonal region, where 

lyl 5 $P2. In this region, the energy denominators for diagram (b) can 

be written as (Eq. (3.1)) 

B = (-y-yBfiO s/2P 
(3.3) 

C = (-y-yC+ic) s/2P , 
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with yB L yc = Ji2/s, where & is the invariant mass of the quark gluon 

system (A2 - j:/(z(l- z>) 5 + Then the contribution from Fig. lob 

is of the form (see Eq. (2.4)) 

AH 
X / 

dy d2!2 1 XP 1 
1 -y-yc+iC S 

2 Jt -y-yB+iC 12 A (x+Y, kl -R*> l 

(3.4a) 

This amplitude can be written as the difference of two terms, one cor- 

responding to gluon emission induced by the initial state interaction, and 

the other to gluon emission induced by the annihilation: 

AH 1 1 
X t 

'*j"&~ (x+y -y-yB+iC - -y-yc+iC At2 ~2 A 9 k *-x1) , 
(3.4b) 

where we have used yB - yc X &Z2/s. These two processes interfere dis- 

tructively, and they cancel completely when the wavefunction is insensi- 

tive to shifts of order (y,-yc)P N If/P in the longitudinal momentum 

carried by the annihilating anti-quark.22 By the uncertainty principle, 

we see that this is the case provided that Ak3(LTMT/P) << 1, where Ak3 = 

(y,-y&P is the shift in the longitudinal momentum and LTMT/P is the 

Lorentz contracted length of the target in the center-of-mass frame. 

Thus no bremsstrahlung occurs when 

<+ LTMT <<s . (3.5) 

If condition (3.5) is satisfied, there is insufficient time between the 

initial state collision and the annihilation to generate a soft gluon.23 

On the other hand, additional radiation can occur if (3.5) is not satis- 

fied. Indeed, radiation must occur as a hadron passes through a long 

(macroscopic) target, and, as a consequence, the incident beamis depleted 

and secondary hadron beams are produced. 
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For' nuclear targets, condition (3.5) can be rewritten (see also 

(1.8)): 

Q2 >> x sLA <R:>A N x s (1.4 Pm) A l/3 x2 All3 

(3.6) 
'v x A2A3 (0.6 GeV2) , 

where h N 100-500 MeV is the momentum exchanged per initial state col- 

lision. Thus for uranium one might require Q2 > x 24 GeV2 before radia- 

tive losses within the nucleus can be neglected. In general, the commonly 

used parameterization daA = A" daN for the Drell-Yan cross section is 

consistent with (3.6) only if a varies both with Q2 and A. 

Central-Region Radiation. The diagram in Fig. lob does contribute 

for small jl(Sl> when the radiated gluon is in the central region of the 
3 rapidity distribution - i.e., j cu j N R . 

1 1 
Then ly, - ycI m j:/(zs) can 

become large and the two terms in Eq. (3.4b) need not cancel, However, 

we see from Eq. (3.4b) that the radiated gluon is associated partly 

with the initial state interaction, in which case it contributes to the 

eikonal operator (since z 5 al/P), and partly with the annihilation, in 

which case it contributes to the radiative corrections to do,(q$ -t u!iX). 

This analysis is easily generalized in 

due to central-region radiation can be 

operator and the qq annihilation cross 

IL 

higher orders, Thus all effects 

incorporated into the eikonal 

section. 

B. Virtual Corrections to daH(qq + uiiX) 

The analysis of virtual loop corrections to the q5 subprocess fol- 

lows closely that of real emission. For the purposes of illustration, 

we consider the graph shown in Fig. lla. Just as for real emission 

(Fig. lob), the j and R integrations decouple in the large j: region 
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(j2 l >> A”) , and the amplitude factors into the product of an initial state 

interaction and a (virtual) radiative correction to pair production. The 

2 contribution from small jl(zA2) is already included in the eikonal opera- 

tor described in Section II; in this region, Fig. lla corresponds to an 

active-spectator eikonal interaction followed by an active-active eikonal 

interaction. 

Diagrams such as those in Fig. lib contribute only in the eikonal 

region and so are analyzed as in Section II. Diagrams in which quarks or 

gluons within the same hadron interact (e.g., Fig. llc) vanish for 

large s when one adds the Coulomb and transverse gluon contributions. 

The analysis for these diagrams is similar to that leading up to Eq, (3.4b). 

The conclusion is that there is insufficient time for the (time-dilated) 

internal interactions to occur during the collision. 

C. Sudakov Logarithms 

Thus far we have shown that the amplitude for emission of real and 

virtual gluons in the presence of initial state interactions can be 

factored into the form of an initial state matrix phase times ordinary 

radiative corrections to the Drell-Yan amplitude. This factorization is 

valid for emitted gluon momenta lj,] > XA. Since, in the factored form, 

the initial state color matrix appears to the outside of the ordinary 

QCD radiative corrections, the color factors associated with real emis- 

sion are different from those associated with virtual emission. As a 

consequence, the usual infrared cancellation of large double logarithms 

(Sudakov logarithms) between real and virtual emission graphs fails in 

a non-Abelian theory. 
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Let us examine these double logarithms in some detail for the order 

~1~ radiative corrections shown in Fig. 12. In general, the double 

logarithms arise as follows: one logarithm comes from the "infrared 

region" 131 W 0; a second logarithm comes from one of the "collinear 

regions" p l j = ~(131 -j,) M 0 or p' l j = P(lfl +j3) M 0 (in the case of 

virtual emission one takes the residue at the gluon pole at j O = ljl). 

In the Coulomb gauge, the Coulomb gluons never contribute to the double 

logarithms, since they are absent in the case of real emission, and they 

contain no pole at j = 151 in the case of virtual emission. In the CM 

frame, the leading part of the coupling of the quark currents to the trans- 

verse gluon polarization sum is 

JiJkbik-y) :,*$Cl~~-j31Cl~~+j3~ , (3.7) 

where the plus sign applies to the graphs of Fig. 12 (b,c,f,g) and the 

minus sign to the graphs of Fig. 12 (a,d,e). Since the numerator factor 

(3.7) cancels the quark propagator denominators p l j and p' l j that become 

singlular in the "collinear region," the vertex corrections (Fig. 12a) 

and the graphs involving real emission from different quark lines (Figs. 

12d and 12e) cannot contribute a double logarithm. Real emission graphs 

in which the transverse gluon attaches to the same quark at each end 

(Figs. 12f and 12g) contain the square of one of the singular quark propa- 

gators, and so contribute a collinear as well as an infrared logarithm. 

Neglecting color factors, one finds that the double logarithmic contribu- 

tion of the graphs of Figs. 12f and 12g is 

dof'g 2a = * Rn (3.8a) 
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If we take into account the running of the coupling constant, one of 

these logarithms is changed to a RnRn: 

daf'g = 2 F(Q2) da0 e 
@O 

(3.8b) 

where 

A self-energy correction (Figs. 12b and 12~) can also contribute col- 

linear logarithms, since subtracting the grn2 piece of the amplitude 

results in the squaring of the quark propagator. Neglecting color factors 

and taking-into account the running of the coupling constant, one finds 

that the self-energy graphs give a double logarithmic contribution 

doby= = _ -?- F(Q2) da0 o 
$0 

(3.9) 

In an Abelian theory, the double logarithms in (3.8) and (3.9) would 

cancel, However, as was first pointed out by Mueller,8 in the presence of 

color-carrying initial state interactions, the color factor associated 

with Figs, 12b and 12~ is different from the color factor associated with 

Figs. 12f and 12g, and the cancellation fails. More precisely, these 

graphs give cancelling contributions to dal: 

dubsC = e..dofpg 
1 1 = (-nc+t)t F(Q2> ; (3.10) 

however, in dug, the radiation part is suppressed relative to the real 

emission part: 

(3.11) 

Thus there is a residual contribution to da8 



- 27 - 

dab,cAg = _ ‘A 
8 - F(Q2) do0 . 

@O 
(3.12) 

(CA = nc> . 

Sudakov form factors have been studied extensively to all orders in 

perturbation theory for both Abelian and non-Abelian theories.24 The 

leading double-log terms, such as in Eq. (3.12), exponentiate to give 

dog w exp(-?F(Q2)\doo . (3.13) 

The double-log terms cancel in dol. Assuming that perturbation theory 

gives the correct asymptotic behavior as Q2 + Q), we conclude that dog 

is suppressed at large Q2 relative to da1 by a Sudakov form factor: 

IV. OTHER APPLICATIONS OF INITIAL AND FINAL STATE INTERACTIONS 

The canonical factorized form for hard scattering inclusive cross 

sections, 25 

do = I aG(xi,Q) do D(xj,Q) dXi dXj (4.1) 

has played a central role in the analyses of perturbative QCD predictions 

for the whole range of deep inelastic and large momentum transfer inclusive 

reactions. The analyses of this paper show that Eq. (4.1) is in general 

modified by the effects of initial and/or final state interactions of the 

hadrons. In QCD perturbation theory these gauge invariant leading order 

(in l/s) contributions are due to soft gluon exchange and emission and 

can be organized into unitary eikonal matrix phases 
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(4.2) 
j Q) 

'FSI '1 ( ) dT 'FSI 1 ( z3 + ET )I , 
where the Hermitian potentials U IS1 and UFSI are constructed (as in 

Eq. (2.7)) from the sum of interactions of all pairs of quark and gluon 

constituents of the interacting hadrons. These generalized potentials 

include all irreducible contributions to the scattering amplitude that 

scale with s, including (in Coulomb gauge in the CM system) Coulomb and 

transverse gluon exchange, crossed graph contributions, and the 

inelastic contributions that create (or destroy) quarks or gluons of 

finite momentum in the CM, The essential contributions come from the 

region of near-on-shell constituent propagation and finite momentum 

transfer in the CM-precisely the kinematic regime where the collinear 

Ward identities required for proving factorization are innapplicable. 

Thus, Eq. (4.1) is replaced by 

. . 
convolved with the wavefunctions $(z:, xi) of the initial and final state 

hadrons. For cases in which the final state hadrons are unobserved, as 

in deep inelastic lepton-hadron scattering, the final state interactions 

give no correction to the cross section as s + m because of unitarity: 

However, the initial and final state interactions do, in general, modify 

the transverse momentum distributions of the interacting constituents 

(giving a contribution in addition to that due to the hadron Fock state 

wavefuntions $(xi,kt)), and lead to the production of associated particles 
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in the central rapidity region. Most important, the initial state inter- 

actions due to colored vector gluon exchange introduce color correlations 

which, order by order in perturbation theory, modify the normalization of 

virtually every inclusive QCD cross section involving two incident hadrons. 

As in the Drell-Yan cross section, the eikonal color matrix U does not, 

in general commute with the hard-scattering QCD cross section: 

U IsI d; UisI # d; . (4.4) 

Again, just as in the Drell-Yan analyses, the real and virtual hard gluon 

radiative corrections to the subprocess cross section summed to all orders 

lead to asymptotic Sudakov damping of the color correlation effects. 

However, for subasymptotic momentum transfer, one has not only a renormal- 

ization of each inclusive cross section involving incident hadrons, but 

also a new source of QCD scale breaking beyond that given by standard 

evolution of the structure and fragmentation functions. 

The color correlation effects may be largest for processes such as 

gg + x, gg + n,, which have strong color suppression in lowest order. 

The lowest order color factor for these processes, l/(nE - 1) = l/8, could 

be increased by a factor as large as 64. The normalizations of leading 

twist subprocesses for high pT hadron and photon production are also 

modified by the initial state color factors. 

Although our analysis is based on QCD perturbation theory (to all 

orders) our conclusions can be expressed in terms 

principles: 

1. Critical Momentum Scale. The characteristic 

of rather general 

momentum of each hard 

subprocess must be large compared to a scale set by the length of the 

target (or beam), as in Eq. (3.5); otherwise the constituents, in passing 

through the target can lose a significant fraction of their longitudinal 



I 

- 30 - 

momentum to radiation, completely destroying any connection between the 

hadronic reaction and the distributions measured in deep inelastic 

scattering. This is related to the more general concept of the formation 

zone. 

2. Formation Zone. The state of a hadronic system cannot be modified 

significantly in a time (in its rest system) less than its intrinsic scale. 

Thus, a high energy quark cannot radiate a collinear gluon q + q + g 

inside of a target of length L if s >> A(Jec2)IN where A(d2) is the 

change in the square of the invariant mass, and LM/s is proportional to 

the Lorentz contracted length of the target in the quark rest frame. 

Similarly,- the fragmentation of a quark into collinear hadrons (or vice 

versa) occurs outside of the target volume at high energies. We also 

note that interactions between quark or gluon constituents of the same 

hadron do not occur (to leading order in l/s) during the transit through 

the target volume. Thus high energy interactions of hadrons within nuclei 

are correctly described in terms of constituent quark and gluon propagation. 

3. Large Longitudinal Range. As we have discussed in Section II, the 

change of longitudinal momentum (in the CM) due to initial or final state 

interactions is so small that longitudinal structure in the target cannot 

be resolved in a target of length L < &/<g:> (as measured in the CM 

frame). In particular, this implies that the color correlation factors 

can have non-trivial nuclear target dependence. 

4. Color Singlet Cancellations. Large momentum transfer exclusive 

reactions are controlled by the Fock states with the minimum number of 

constituents at transverse distances b 2 c-.s (l/Q2).= The initial and final 1 
state collisions can probe transverse distances no smaller than l/X. Thus, 

they cannot resolve the internal structure of the hadrons in exclusive 
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reactions, and they do not couple to these color neutral objects. 

Formally, the initial and final state interactions cancel to leading order in 

l/Q2 if one adds the contributions coming from all constituents of a color 

neutral hadron. This also implies that large momentum transfer quasi- 

elastic reactions such as eA + ep(A- 1) and ITA + ap(A- 1) can occur deep 

inside a nuclear target-without multiple scattering or bremsstrahlung in 

the target.27 Color singlet cancellations also eliminate initial and 

final state interactions of hadrons interacting directly in hard scattering 

inclusive reactions. For example, the "direct pion" has no initial state 

interactions in KDg + qq (in np + qqX),28 and no final state interactions 

in gq + nDq (in pp -+ rX).2g Similarly, the higher twist FL N l/Q2 con- 

tribution to the meson structure function30 is unaffected by initial and 

final state interactions. On the other hand, although they are power law 

suppressed at large momentum transfer, the initial and final state inter- 

actions are expected to play an important role at moderate kinematic 

values , possibly leading to non-trivial helicity and interference effects. 

A part of the difference between time-like and space-like form factors, 
+- +- -+ -+ e.g., e e -+-lT IT and e IT 3e3-r is attributable to final state inter- 

actions, although the difference is suppressed by wl/Q2. 

Virtually every large momentum transfer inclusive process in QCD is 

affected by initial and/or final state interactions. It is important to 

study the phenomenology of these interactions since they bear on the 

dynamics of quarks and gluons in hadronic matter and are evidentally 

related to the confinement mechanisms and the space-time "inside-outside" 

development of QCD jets.31 Analysis of the role played by nuclear targets 

is clearly crucial to this study. 
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In 'the remainder of this section we describe briefly some specific 

applications of the analysis of initial and final state interactions. 

A more detailed discussion will be given in a separate paper. 

A. Deep Inelastic Lepton-hadron Scattering 

Although the structure function measurements are unaffected by 

initial and final state interactions, the development of the final state 

jet distribution is modified by multiple scattering in the target. The 

transverse momentum of the struck quark relative to the current direction 

is broadened and multiplicity in the central region is increased, thus 

affecting -the fragmentation distribution of quarks into hadrons D JJ/q(’ ‘kl) ’ 

(The k1 smearing that appears here is not identical to that which affects 

incident quarks in the Drell-Yan process.) These effects should increase 

with the number of collisions in a nuclear target: 

2 6<kl> 0~ A l/3 , 6<n central > 0~ A1'3 . (4.5) 

In addition, for long targets, energy-momentum conservation implies a 

correlated degradation of the leading particle distribution at large z. 

For low quark energies, collinear radiation can be induced in the target 

and can drastically alter the longitudinal momentum fraction distributions. 

The development of hadronic multiplicity in deep inelastic lepton 

scattering3* in the nucleus is particuarly interesting, since one is study- 

ing the influence of hadronic matter on quark jet propagation. As we 

have emphasized, formation of leading particles occurs outside the nuclear 

volume at high energies. The inelastic final state interactions amount 

to cascading in the nucleus and demonstrate that, contrary to the usual 

assumptions made for the analysis of hadron-nucleus collisions, particle 
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production in the target and central rapidity region cannot be correlated 

with the number of nucleons "wounded" by the beam. A model for the shape 

of the rapidity distribution based on "color cascading" is given in Ref. 33. 

More generally any hard scattering inclusive process is accompanied 

by soft hadrons in the central rapidity region, which are the result of 

the initial state or final state interactions of the quark and gluon 

constituents. We emphasize that, even 

section can be computed as if a single 

multiplicity distribution reflects the 

dynamics. 

though the hard scattering cross 

interaction occurs, the associated 

full scope of the actual QCD 

B. Hadron Production at Large Transverse Momentum 

In addition to the change in normalization of the heading twist sub- 

process due to color correlations, hadron production at large transverse 

momentum in a nucleon or nuclear target collision is increased by the kl 

smearing effects of the initial and final state interactions. The multiple 

scattering series in a nucleus34 leads to terms roughly of order Al, 

A4'3/pf, A5'3/p:, etc. A coefficient of the Au terms with c1 > 1 can be 

very large, since one is smearing a cross section that falls very rapidly 

with p . 1 Thus, strongly suppressed cross sections such as pA + j5X and 

pA + K-X obtain a much larger nuclear enhancement from quark and gluon 

scattering effects than channels such as pA -t IT+X or pA + K+X. In the 

case of direct y production pA + yX, the photon has no final state inter- 

actions, so only initial state interactions of the active q and g con- 

stituents are important. Similarly, at large xT where direct subprocesses 

such as gq -t nDq or qq -t rDg are expected to dominate pA + TX production, 

only initial state interactions are important. 
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The nuclear initial and final state effects are, of course, enhanced 

in processes such as AlA + HX. Nuclear targets also enhance the effects 

of multiple scattering processes that lead to multiple jets in the final 

state.35 On the other hand, if the valence state of a hadron consists of 

constituents at small transverse distances, then the hadron can pass 

through the target with no color or hadronic interactions. An application 

of this idea to diffractive dissociation processes in nuclei is discussed 

by G. Bertsch et al. (Ref. 27). 

Processes such as pp -t ~~1111,~~ which occur via yy -t uii subprocesses, 

are also sensitive to the nature of initial state interactions. Unlike 

the corresponding lepton-induced reaction ee +- eeug, the initial state 

interactions of the two nucleons smear the transverse momentum distribu- 

tion of the up pair and can eliminate the strong peaking at Q, = 0 

associated with the y 

all QI is unchanged. 

Finally, we note 

L 

poles. However, the cross section integrated over 

that the techniques we have discussed in this paper 

can be used to analyze the shadowing behavior of structure functions in 

the low x, low Q2 domain. Details will be presented in a separate paper. 

ACKNOWLEDGEMENTS 

We wish to thank J. Collins, T. Jaroszewicz, A. Mueller, D. Soper, 

G. Sterman, and D. Yennie for helpful conversations. 



- 35 - 

APPENDIX A 

COLLINEAR WARD IDENTITIES AND THE EIKONAL POTENTIAL 

It is instructive to compare the calculation of initial state effects 

in Coulomb gauge (Section II) with that in Feynman gauge. Consider, for 

example, the diagram in Fig. 13a, where, as in Section II, the momenta are 

P 
q 

= (P,Ol, P) and PA = (P,Ol, -P). In Feynman gauge, unlike Coulomb gauge, 

this amplitude has leading contributions from the entire collinear region - 

i.e., from 0 5 lyl = la3/PI 5 1, where the gluon carries an appreci- 

able fraction of the target's longitudinal momentum. Such terms are 

usually simplified by noting that the gluon couples to the top (beam) 

quark line only through the y+ = y" -I- y3 vertex, since U(hq+l)y+ u(P,) N 

2P >> uy-u, iiy1u. This gluon coupling can then be replaced by 2$/a- to 

leading order in l/s, and the ordinary Ward identities can be used to 

move the gluon vertex to the annihilation point (Fig. 13b): 

.  l l .  pq I-+ $ y+ u(S,) w  .  .  .  .  

IqLF 

2R u@,) 

(A.11 
= . . . . 2 UQ l 

R-  

In this way, R is decoupled from P 
q' 

and the collinear contribution can 

be absorbed into a redefinition of the target's structure function - just 

as in deep inelastic scattering. This sort of Ward identity can be used 

for any graphs containing initial state exchanges. In particular, it 

applies to the initial state interactions with gluon bremsstrahlung dis- 

cussed in Section III (Fig. 10). Notice, however, that the substitution 

y+ + 2$/!?,- in Eq. (A.l) is valid only if R- >> 1:/P: = R:/2P - i.e., if 

z ii(sq+x) ~R/R- u(sq). Similarly, contributions from 
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t:/2P can always be absorbed into the beam quark's structure 

function. The region tl+,n- 5 !Lt/P must be treated separately. Our 

central observation is that interactions carrying infinitessimal R + and R- 

still contribute to leading order in l/s, due to singularities in the 

energy denominators. These singularities arise from the possibility of 

on-shell propagation between interactions, Thus, the collinear contribu- 

tions can be factored in the usual fashion, but the eikonal contributions 

lead to a variety of new phenomena, 

The differences between Drell-Yan and deep inelastic scattering 

become apparent if we restrict our attention to gluon momenta in the 

eikonal region, !L',!L- 5 !L:/P (in any gauge). In second order, for example, 

the eikonal contributions to these processes come only from uncrossed 

ladder diagrams as in Fig. 14a,b. Although important in the collinear 

region, crossed-ladder and tri-gluon diagrams (Fig. 14c,d) are pure 

imaginary (if non-zero) in this order, and so do not contribute in the 

eikonal region. The color factors for diagrams a and b are the same for 

deep-inelastic scattering, resulting in complete cancellation of eikonal 

corrections to the structure function. However, the color factors differ 

in Drell-Yan, leading to an enhancement of the cross section. The dif- 

ference here is simply that final state eikonal interactions 

always cancel (by unitarity), and initial state eikonal interactions do not 

cancel for processes like Drell-Yan. 

The use of Ward identities to restrict the momentum transferred by 

eikonal interactions is not arbitrary. The collinear region R+, R- >> L:/P 

gives identical contributions to the Drell-Yan and deep-inelastic cross 

sections, Thus, one can define the hadronic wave functions so that 



- 37 - 

they contain all such collinear contributions. (Indeed, one must absorb 

all collinear (mass) singularities into the wave functions in order 

to factor the deep-inelastic scattering cross section.) Then, only those 

eikonal interactions that come from the region R +, R- 5 9,:/P remain. The 

eikonal potential is gauge invariant, since the eikonal region is by 

definition the region in which intermediate states are almost exactly 

on-shell, and on-shell amplitudes are gauge invariant. This is also true 

for more complicated interactions. For example, the eikonal part of the 

diagram in Fig. 15 comes from l!L;l 5 !&f/Pi, l!Lll 5 !L:/Pi and j in the 

-+ central region (i.e., j+Pi N j P N j1G).37 
q 

It is suggested in Ref. 10 that the integration contour for terms 

such as those in Eq. (2.4) be deformed so as to avoid completely the 

eikonal region. It is then argued that collinear Ward identities apply 

to the entire contribution. However, the contour deformation is incon- 

sistent with the collinear Ward identities when, for example, radiation 

is included in non-Abelian theories. In particular, diagrams like that 

in Fig. 16a, involving tri-gluon couplings, require a contour deformation 

different from the others (Fig. 16b) if the eikonal region is to be 

avoided. The contour deformation differs because energy denominators in 

the non-Abelian Feynman diagrams contain poles that are on the opposite 

side of the real R3 axis from those in the Abelian diagrams. This is 

because the non-Abelian diagrams actually include both initial state and 

final state interactions (Fig. 16a), Both are needed to make up the com- 

plete Feynman amplitude, and, thus, both are needed in order to employ 

the collinear Ward identities. 
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A problem closely related to questions of contour deformation and 

use of collinear Ward identities is the treatment of initial state inter- 

actions between spectators. Such interactions give important contribu- 

tions to the eikonal phase in non-Abelian theories. We note that the 

expressions presented in Ref. 10 are incomplete in that they do not take 

into account the spectator-spectator interactions. 
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APPENDIX B 

THE RANGE OF THE EIKONAL POTENTIAL, AND ZITTERBEWEGUNG 

The preceding discussion of collinear Ward identities (Appendix A) 

demonstrates that elastic eikonal interactions can carry only 

R- < a2/p+ 
-14 

R+ 5 !+xp, (B.1) 

in qA -t uiiX. Consequently these initial state interactions can resolve 

longitudinal structure at distances of order &/<!Zf> or larger in the 

center of mass frame (P + 
9 

= Pi = G) . In particular the beam quark is 

completely insensitive to the longitudinal structure of any nuclear 

target smaller than -s/(<$:>M) (in the target's rest frame). This seems 

paradoxical, even in the Abelian case, since the electric and magnetic 

fields of the quarks and gluons in the target are strongly Lorentz con- 

tracted in the longitudinal direction. Thus one might expect the 

beam quark to interact with only one nucleon at a time, starting at the 

front face of the nucleus and finishing at the annihilation point. In 

fact, our analysis shows that it interacts simultaneously with the entire 

nucleus, including those nucleons located after the annihilation point. 

The difference between these pictures is not academic. In the 

first scenario, only interactions in the annihilation nucleon would con- 

tribute to the color correlation, and the cross section would still scale 

as Al. In reality, interactions with the entire nucleus contribute, and, 

in a non-Abelian theory, the A dependence could be modified. 

This phenomenon is most easily understood in the rest frame of the 

beam quark (Pz = m, Pi = s/m). There the position of the beam quark can 

at best be specified only to within a Compton wavelength3* due to the 

zitterbewegung, resulting in an effective potential with a range of order 
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the Comp'ton wavelength. This is precisely the range implied by the 

inequalities (B.l), which, in the projectile rest frame, become 

Ia31 2 <Rt>/m, where m w @  is the effective quark mass in a hadron. 39 

Thus, in this frame, the longitudinal resolution of the eikonal potential 

is -l/m. The target nucleus, being Lorentz contracted by Mm/s, is usually 

much shorter than this range. 

It is interesting that the effective eikonal potential can be obtained 

directly in gauge theories by making a suitable choice of gauge. For a 

charged particle moving at the speed of light in the z direction, the 

electric and magnetic fields are completely Lorentz contracted in that 

direction. That is, 

r 
El 9% + 6(z-vt> , 

bL I Ell + O 
05.2) 

-?- B=;xz 

as v + 1 in an Abelian theory. However, the vector potential in a 

physical gauge such as A3 = 0 gauge has a long range" - i.e., 

A +&+(z-vt) , A0 + A3 = 0 1 II I 
, (B.3) 

where r(z) = +l for +-z > 0. It is the vector potential, not the z and 
-t 
B fields, that is relevant to the quantum mechanical behavior of the beam 

quark. 

This discussion provides a new insight into the nature of collinear 

Ward identities. Intuitively, one expects initial and/or final state 

interactions in the Drell-Yan process and in deep inelastic scattering. 
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However,' due to zitterbewegung, the only physically relevant interactions 

of this type are long range - i.e., those that transfer limited longitudi- 

nal momentum (Eq. (B.l)). Thus it must be true that we can absorb any 

initial or final state interaction transferring large momentum into a 

redefinition of the structure functions. This is what is accomplished 

via collinear Ward identities. But the zitterbewegung argument tells us 

that such a redefinition of structure functions must also be possible in 

non-gauge theories, That is, the algebraic manipulations used in imple- 

menting Ward identies are not unique to gauge theories; they apply to 

any initial or final state interaction. This is easily illustrated for 

interactions due to a scalar gluon, although the eikonal potential is 

suppressed in that case by l/s. Gauge theories are unique in that the 

gauge freedom can be exploited to eliminate the large momentum contribu- 

tions to the eikonal potential from the beginning. 



- 42 - 

REFERENCES AND FOOTNOTES 

lG. T. Bodwin, S. J. Brodsky and G. P. Lepage, Phys. Rev. Lett. 47, 

1799 (1981); and in the Proceedings of the 1981 Banff Summer School on 

Particles and Fields, edited by A. N. Kamal and A. Capri (Plenum Press, 

1982). A report on this work was also presented in S. J. Brodsky et al., 

in "Perturbative Quantum Chromodynamics," edited by D. W. Duke and 

J. F. Owens (AIP Conference Proceedings No. 74, 1981>, Proceedings of the 

Tallahassee Conference, March 1981. 

2S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970). Possible 

complications in the parton model prediction due to "wee partonV exchange 

are discussed in this paper. 

3H. D. Politzer, Nucl. Phys. B 129, 301 (1977); R. K. Ellis, H. Georgi, 

M. Machacek, H. D. Politzer and G. C. Ross, Nucl. Phys. B 152, 285 (1979); 

S. Gupta and A. H. Mueller, Phys. Rev. D 20, 118 (1979). A discussion of 

final state interactions and possible problems with factorization for the 

Drell-Yan process is given in J. C. Collins and D. E. Soper, Proceedings 

of the Moriond Workshop, Les Arcs, France (1981). 

4Possible nuclear effects on transverse momentum have also been con- 

sidered by C. Michael and G. Wilk, Zeit. Phys. C 10, 169 (1981). See also 

T. Jaroszewicz and M. Jezabek, Zeit. Phys. C 4, 277 (1980); and A. Bialas 

and E. Bialas, Phys. Rev. D 21, 675 (1980), 

5G. E. Hogan, Ph.D. Dissertation, Princeton University (1979). 

6See, for example, Hung Cheng andTai Tsun Wu, Phys. Rev. D 1, 2775 

(1970). An eikonal model for the effects of soft-scattering for large 

transverse momentum in nuclei has been given by Paul M. Fishbane and 

J. S. Trefil, Phys. Rev. D 12, 2113 (1975). 



- 43- 

70nly the colors of the annihilating quark and anti-quark are impor- 

tant here. If together they are in the color singlet state, then daeff = 

(l/nc)dol + (nc- l/nc)da8. If they are in any of the eight color octet 

states, then do eff = (l/nc)(dol- dag). In general the quark and anti-quark 

are in some mixture of these nine states where cos26 is the probability of 

finding the singlet state. When the quark colors are uncorrelated, each 

of the nine states occurs with equal probability and therefore cos20 = 

l/n: = l/9 (which leads to Eq. (1.4)). If one allows only pure active- 

spectator exchanges, it is easy to show that the requirement of unitarity 

leads to the condition cos26 ?Z l/n2 
C’ 

so the cross section is always enhanced. 

'A. B. Mueller, Phys. Lett. 108B, 365 (1982). 

'Time ordered perturbation theory in this frame is somewhat similar 

to time ordered perturbation theory in the infinite momentum frame. See, 

for example, S. J. Brodsky, R. Roskies and R. Suaya, Phys. Rev. D 8, 4574 

(1973). 

'OJ. Collins, D. Soper and G. Sterman, Phys. Lett, 109B, 388 (1982). 

llThe wavefunction used in Eq. (2.1) specifies the relative momenta 

of the constituents of A at a given time. Such an "equal-time" wave- 

function becomes identical to the "light-cone" wavefunction, defined at a 

given z- = t- z, in the limit Pi = 2P + m. The equal-time wavefunction is 

obtained in this limit by replacing k- by -2k3 in the light-cone wave- 

function. In fact, the light-cone wavefunction is the most natural in 

all frames, including the target's rest frame, since the beam quark probes 

the wavefunction at a particular z- (the classical trajectory of the beam 

quark is z- = constant as s + Q)). The analysis is manifestly invariant 

under longitudinal boosts only when one uses the light-cone wavefunction. 



- 44- 

Light-cone wavefunctions appear naturally when one makes use of light- 

cone perturbation theory, as in Ref. 1, but the analysis is then somewhat 

more complicated. The wavefunction used in Ref. 1 equals $A(x,k*)/w 

in the infinite momentum frame. Further discussion of light-cone wave- 

functions can be found in G. P. Lepage and S, J. Brodsky, Phys. Rev, D 22, 

2157 (1980); and in the Proceedings of the 1981 Banff Summer School on 

Particles and Fields, edited by A. Kamal and A. Capri (Plenum Press, 1982). 

12R. J. Glauber in Lectures in Theoretical Physics, edited by W. E. 

Brittin and L. G. Dunham, Wiley Interscience (New York), Vol. I, 315 (1959). 

13The active-active interactions result in an ultra-violet divergence 

in the eikonal phase, because, in this case, the hadronic wave function 

does not limit the transverse momentum exchanged. However, one can factor 

this divergence out of the path-ordered eikonal operator U, since it occurs 

only at T w 0. The infinite part of the phase factor can be shown easily 

to cancel in both Abelian and non-Abelian theories. 

14Abelian spectator-spectator interactions have been shown previously 

to cancel. See J. L. Cardy and G. A. Winbow, Phys. Lett. 52B, 95 (1974); 

and C. E. DeTar, S. D. Ellis and P. V, Landshoff, Nucl. Phys. B 87, 176 

(1975). 

15The potentials cancel completely for 1~1 >> lzlil in an Abelian 

theory, and the eikonal phase is infrared finite - spectator-spectator 

and active-active interactions cancel the infrared divergences in the 

active-spectator interaction. In non-Abelian theories, this cancellation 

works only for the first gluon exchanged. Thereafter the hadrons (in 

intermediate states) need no longer be color singlets. However, the first 

interaction occurs at most a distance A/A2 (i.e., the effective range 



- 45 - 

of the dikonal interaction) from the annihilation point, due to the partial 

infrared cancellation. Thus the infrared divergences are regulated in 

perturbation theory in non-Abelian theories by an s-dependent cutoff 

(i.e., G/X"), rather than the typical hadronic size <zl>, which acts as 

the cutoff in Abelian theories. This would lead to an energy independent 

eikonal phase. However, the infrared divergences in QCD are probably cut 

off by (s-independent) non-perturbative effects. We wish to thank 

T. Jaroszewicz for discussions on this point. 

161ndeed, hadrons have no transverse size for QCD in two dimensions, 

and the initial state interactions cancel in the large nc limit. See 

J. Kripfganz and M. G. Schmidt, Nucl. Phys. B 125, 323 (1977); and also 

J. H. Weis, Acta Phys. Pol. B 2, 1051 (1978)> 

17By employing collinear Ward identities, we determine the true upper 

limit of the longitudinal momentum transferred by the eikonal interactions. 

For simplicity, we represent the limitation by a e-function in the eikonal 

potential. In fact, the cutoff in R3 is not so abrupt. For example, if 

we replace (-2R3-A+ic) -' byL?(-213)-l in the energy denominator of 

Eq. (2.3), then this contribution can be eliminated for all R3 by use of 

the collinear Ward identities. Thus, the eikonal contribution is obtained 

by taking the difference of these denominators: (-2g3 -A+ic)-'+ 

(-2R3 - A+i.c)-' -~?#'(-211~)-~ = (-2R3 - A+ic)-'g(A/-2R3). The effective 

eikonal potential is then (g2/x2) P(A/-2(L3), which contributes only for 

R3 N A N $P. This is precisely the sort of potential that is obtained 

in A3 = 0 gauge. 

l*Spectators separated from the annihilation point by a longitudinal 

distance greater than the range of the eikonal potential cannot affect the 

color correlation of the active quarks. This is because the path ordering 



- 46 - 

in Eq. ('2.5b) all ows us to factor interactions with such spectators out 

of the eikonal operator, in which case they cancel in do/dxFdQ2. Thus 

only those particles within range of the annihilation point can affect 

the normalization. However, this generally incudes the entire target 

nucleus at high energies. 

lgThe large-j1 region corresponds to the range over which the "j-parts“ 

of Ref. 1 give the dominant contributions. In the small-j1 region, the 

"R-parts" also become important. Here we find it most convenient to 

define the "j-parts" to be zero in the small-j1 region, since the character- 

istic "j-part" structure is not dominant there. 

20For simplicity, we have made approximations in Eq. (3.1) that are 
2 valid only for j1 << P2. In fact, this region gives the dominant con- 

tribution for large j:. However, as can be seen by examining the exact 

energy denominators, our discussion is valid for j: - P2 as well. 

21The approach of Ref. 1 is based on the following argument. 

Diagrams (a) and (b) in Fig. 10 

except for their color factors, 

give identical contributions for j: >> R 2 
I' 

Taken together they have the same color 

factor as diagram (b). All three diagrams can be combined by noting that 

the energy denominators are approximated by 

1 
[ 

jf . 
A-E - z(l-z) +lc 1 
C-z ' [- 4 yP2+ic] 

B-C+A 

in this region, so that 



- 47 - 

A is the denominator associated with emission of a gluon and C the 

denominator associated with elastic active-spectator scattering. Thus, 

by combining the graphs with all orderings of gluon emission and active- 

spectator scattering, one again obtains an amplitude that factors. 

22For example, $(x+y) N e i(x+y)LM is the wavefunction for consti- 

tuents at fixed separation L in the rest frame. For sufficiently large L, 

the phase of J, varies rapidly with changing y and the cancellation in 

(3.4b) is destroyed. In the opposite limit, L + 0, the wavefunction 

becomes constant and the cancellation is obvious. 

23This result can be understood another way. As discussed in 

Footnote 11, the collision takes place at a particular z- = t- z and, 

for long targets, over a range Az+ w LTMT/P. Thus only gluons with 

wavelength A + 5 AZ + can be generated during the collision - i.e., gluons 

with j- = j:/zP 5 ~/AZ + 
- P/LTMT are not radiated. This is just condition 

(3.5). This argument is very similar to the discussion of the 'formation 

zone' for radiation due to a classical current given by L. Landau and 

I. Pomeranchuk, Doklady Academii Nauk SSSR 92, 535 (1953). We thank 

L. Stodolsky for bringing this work to our attention. 

24See A. Sen, Phys. Rev, D 24, 3281 (1981) and references therein. 

25A. H. Mueller, Phys. Rep. 73, 238 (1981). 

26G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980) and 

references therein. 

27This has been discussed by A. H. Mueller, to be published in 

Proceedings of the Moriond Conference (1982). Applications to elastic 

hadron-nucleus amplitudes are given in S. J. Brodsky and B. T. Chertok, 

Phys. Rev. Lett. 37, 269 (1976). Color singlet cancellations for 



- 48 - 

valence 'states interacting inclusively in nuclei are discussed in 

G. Bertsch, S. J. Brodsky, A. S. Goldhaberand J. F. Gunion, Phys. Rev. 

Lett. 47, 297 (1981). 

28E. L. Berger and S. J. Brodsky, Phys. Rev. D 5, 2428 (1981). 

2gE. L. Berger, P. Gottschalk and D. Sivers, Phys. Rev. D 23, 99 

(1981). See also G. Farrar and G. C. Fox, Nucl. Phys. B 167, 205 (1980); 

and J. A. Bagger and J. F. Gunion, U.C. Davis preprint, UCD-81/3. 

3oG. R. Farrar and D. R. Jackson, Phys. Rev. Lett. 35, 1460 (1975); 

and E. L. Berger an6 S. J. Brodsky, Phys. Rev. Lett. 42, 940 (1979). 

31J. D. Bjorken, lecture notes in Current-Induced Reactions edited 

by J. Komer et al., Springer-Verlag (New York) 1975; J. Kogut and 

L. Susskind, Phys. Rev. D 10, 732 (1974). 

32For experimental data see L. Hand et al., Acta Phys. Pol. B 2, 1087 

(1978); and H. C. Ballagh et al., Phys. Lett. E, 320 (1978). 

33S. J. Brodsky, SLAC-PUB-2395, also in Proceedings of the First 

Workshop on Nuclear Collisions, Berkeley (1979). 

34See J. Kuhn, Phys. Rev. D l-3, 2948 (1976); and A. Krzywicki, J. 

Engels, B. Petersson and V. Sukhatme, Phys. Lett. E, 407 (1979). 

35N. Paver and D. Treleani, Trieste preprint, ISAS 7/82/EP (1982) 

and references therein. 

36F. Vanucci, Contribution to the Karlsruhe Summer Institute, 

Karlsruhe (1978). 

37This discussion also has bearing on the analysis of electron- 

electron scattering for s >> Itl. For example, if one simply applies col- 

linear Ward identities to the sum of all ladder and crossed ladder diagrams 

and ignores the eikonal region, their contributions seem to vanish. (This 

is because electron lines start and end on-shell, and the electrons are not 



- 49- 

greatly deflected.) In fact, as is well known, the dominant contribution 

in this example comes only from the eikonal region (a' 2 It]/&), and is 

leading order in l/s. This observation, an obvious consequence of the 

collinear Ward identities, is a critical element in the eikonal analysis 

of electron-electron, quark-quark, scattering, etc. 

38A massless particle confined to a finite region (i.e., inside a 

hadron) has an effective mass of order l/L, where L is the length of region. 

Its effective Compton wavelength is then of order L. 

3gWhen masses are important, !&: is replaced by !J,f + m2 in inequalities 

(B.l). The implications of zitterbewegung are less transparent in the 

target's rest frame. There it must be remembered that the beam quark 

probes the target's wavefunction at a fixed value of z E t - z (see 

Footnote 11). Thus the longitudinal structure of the target is specified 

by the z+ f t + z dependence of its light-cone wavefunction. However, in 
+ 

this frame, the beam particle has a very long wavelength in the z direc- 

tion - X + 
-soy q m2+ 2:)) -l- and therefore the effective range of the 

eikonal potential again grows like s. 

40The range of the vector potential in A3 = 0 gauge is infinite, even 

though our detailed calculations in this gauge show that the range of the 

eikonal potential is O(&/h2). This difference in ranges is an artifact 

of the singularity as !Z3 + 0 in the polarization sum for A3 = 0 gauge. 

The singularity is regulated by making the replacement 

(k3)-" + l/2 {(k3+i6)-n + (k3-i6)-" } and taking 6 -+ 0 at the end. Since 

the final results are finite as 6 + 0, they are unchanged if 6 is kept 

finite and sufficiently small. With this prescription, Al in Eq. (B.3) is 

modified by a factor e -lz-vtp . Therefore, setting 6 N X2/& defines a 



- so- 

gauge iriwhich the vector potential has the correct range even for s 

finite (but large). 



- Sl- 

FIGURE CAPTIONS 

Fig. 1. The conventional view of the Drell-Yan process. 

Fig. 2. Initial state interactions in the Drell-Yan process. 

Fig. 3. Chicago-Illinois-Princeton data for the mean square transverse 

momentum of a lepton pair produced in pion-nucleon collisions. 

M is the invariant mass of the pair. 

Fig. 4. The dominant color flow due to a single non-Abelian active- 

spectator interaction. 

Fig. 5. The general decomposition of the cross section do(qq +- nDX) 

into color singlet and octet exchange pieces. 

Fig. 6. A Drell-Yan process which has a zero cross section unless there 

is an initial state interaction. Here a W-boson is exchanged. 

Fig. 7. Initial state corrections in qA + piiX. 

Fig. 8. Diagrams which cancel for Abelian interactions, but not for 

non-Abelian interactions. 

Fig. 9. Additional interactions contributing to the eikonal operator of 

Eq. (2.5b). 

Fig. 10. Examples of lowest-order contributions to the amplitude for real 

radiation with initial-state interactions in qA -f vVX. 
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Fig. 11.1 Examples of lowest-order contributions to the amplitude for 

virtual radiation with initial state interactions in 

qA + uiiX. 

Fig. 12. Some O(crs) radiative corrections to the Drell-Yan process. 

Fig. 13. Collinear Ward identities for the Drell-Yan process. 

Fig. 14. a,b) Diagrams having eikonal region contributions. 

c,d) Diagrams that contribute only in the collinear region, 

if at all. 

Fig. 15. Initial state interaction leading to particle production in 

the central region. 

Fig, 16. a) Diagram including both initial and final state interactions. 

b) Diagrams with only initial state interactions. 

c) Diagrams with only final state interactions. 
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