EXACT TBAHSFER functicns fCR the fep Stofage fing sagnets and SOME GENEAAL Chabacteristics and techilicues*

J.E.Spencer

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

I. Introduction

The exact, icn-oftical transfer functions fcr the difoles, quadrafoles and sextupcles cf the PEF standard 'fCDC' cell are calculated for any single particle with initial cocrdinates \mathbb{R}_{i}.
 also calculated and discussed. These functions allcy cne to characterize individual magnets cr classes of magnets $f y$ their aberrations(1) and thereby simplify their study and correction. In contrast to bigh-energy sfectrmeters where aberraticns are often 'analyzed away', those in storage rings drive series of high order resorances, even fcr 'perfect' magnets(2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate ther altcgether or failing this tc develof local and glotal corfecticn schemes. iven then, one should exfect higher crder effects to influence injection, extracticn or single-pass systems either tecause of orbit distortions or overly large phase space distortions such as map occur in Low-beta inserticns or any final-focus oftics.

[^0]The term 'exact' means that the results here are kased on solving the relativistic Lorentz force equation with accurate represertations of measured magretostatic fields. Such fields satisfy maxwell's equaticns and are the actual fields seen ky a particle as it froçagates around a real storage ring. Ihis is discussed in detail and illustrated with exarfles that show that this is possible, fractical and may even be useful.

This approach is fractical because the transfer function, When taken to sufficiently bigh order, becomes eguivalent to the exact solution cf the equations of motion from which it is derived and the series converge rafidly. Characterizing the optics of multifcles with the complete transfer function shous clearly how correctcrs are test emfloyed and also suggests new multipcle maguets which serve the same purpose as conventicral agnets but produce fewer aberrations as well as feqer symmetry allowed field harmenics. This is tantarount tc froving the possibility of aberration free oftics and suggests a sfecific program of 3 -dimersicnal, end-ficld studies in contrast to the usual expedient of igaoring the longitudinal field ccracnent. Although an cftical transfer function may te artitrarily accurate, the highest crder blich is retained is determined by the problem e.y. the use of sextufoles irflies the need for at least a third order calculacicn(3). Cn the other hanc, transfer functions arn't feally necessary and may not be harranted when systens are not purely deterainistic. The underlying afyrach used Lere remains afflicable to such prcblems and frovides an unambiguous and consistent framework with wich to study them-
II. The Possioility and Imfortance of Exact Calculaticns There are a numer of reasons why one might questicn bcth the fossibility and importance of such calculaticns. Tracing real farticles thrcugh real fields without significant affroxmaticns means you must actually be able to kncw and refresent those fields. This inevitatly raises questions concerning the inherent experimental uncertainties in magnetic $x \in a s u r e x \in n t s$, magnet alignment as well as more arcane fossibilities frca the 'Obstructionist's Handbook' such as mechanical cr aganetic relaxation processes as well as the various sources of noise.

Eather than recite the complete list, I only ccurfat that the approach used bere frcvides specific, quantitative guidance on such questions within a single, consistent framework. Thus, I have found no significant sensitivity of higher crder terms to practicaliy achievable tclerances. However, this deserves a separate, detailed study. The question of whether it is really possible to knon the actual ragnetostatic fields is discussed in Section IV and affendix I. This question has been studied in detail for the PEF difcles (4) with a conditicnal conclusion. The answer is yes but it is highly unlikely based on the usual techniques emplcyed today. Fcr instance, the use of c-magnets virtually precludes the fossibility for large rings.

Any discussion cf bigher order cptical effects ust also eventually consider sfin and quantized, radiative energy loss which are of increasing interest and may also influence toth orbit and oftics. The increasing use of rings fer froducing syachrotron radiaticn with their ungrecedented demands ca sfot
sizes and the u cssidility of high-foner, high-efficiency free eiectron lasers clearly argues fcr a more integrated affroach to storage ring design. These additional degrés cffreedcm can te treated in many ways but the most general methcd, with the fewest apprcximaticns, again would seem to ke the airect numerical solution of the ncolinear, coupled difference equations. The spin coordinate, \vec{S}_{i}, will te studied in this same frameyori but in a separate fayer dealing solely with it since that treatment should alsc include the study of cther elements required for longitudiral fclarization inserticas ano the use of skew quads in the low-beta insertions yhere cecretric and ingher chromatic ncnlinearities teccme increasingly iqfortant with decreasing β_{y}^{*}.

He are mainly concerned with the oftics of ferfect aultgoles(2). Calculaticns for all wultifoles thrcugh cotufole are given with an accuracy adequate for virtually any problew. Sextupoles and cotufcles are rather short so they ala be used to check thin lens and other apjecximations in cther codes (3). The effects of average, incremental energy loss cir orbits and transfer functicns were alsc calculated kecause there are an adequate number of photcns radiated to warrant tife as with other effects such as alignafnt errcrs, the variaticns were minor. Thus, it appears Ecssible tc improve Eredictarility of team lifetime, beam distributicn function andoftiral cperating foints in tune sface as well as give their defendence on magnetic or misaligament ericrs, RF cavity distrituticns and other effects which lower the effective and dyuaric aferture.

III．Maqnet Daszription
 desiqn hanaoook（5）．rable 0 lists the relevant pasameters usei for ray trazing．raese bave the same maninq as Eor $\operatorname{fraysporr:~}$ except for ones like the frinqiaq field coefficieats wifa are
 amployed as well as somy of the parameters and hos thay relate to the pep benj．rae Eriagiaq Eield coefficients，pole coatoars and multipole sompoaeats describing the field distribation are iefinej in the effentive field bounlary（EFB）こoorinata systems
 aevar coinside with the mectianical bouadaries of magaet ayr joes the oroit on waizh they＇re placed aorresponi to al aztazl orbit in lisoles（6）．However，in all properly alifaed and built hiqher qultipoles，the equilibriull orbit and desifu oroit are the same．Yone of this chanqes the outrome of the calyulations
 field listribution ani alignment of each maqnat for a＝：urataly orediこting the aこtual equilibrium orbit relative to the quazts．

IV．Field Jeszription

The exaztness of aly solution altimately ieperis on tie preaision aad acこurizy of the fieli dessription．$[t$ is usafil to distill the magnetic measurement data into ád paramaters Which lescribe the veatur field ia the volume of iaterast for 111 currents with neqlifible ercor．A prescription for．duiaf this is dissussel in Apsenfix 1 where it is appliei to all of
thき コきコ aultipolas．Iuき suacess of this ventace is assessel oy こumpariaf taŋ results to the measureaentse riz suこ：ass of the relatively simple asdel ls basel on an imosctat paise of naqnet desifn uhizh invjlves tha stuly of the pole sizes aja shapes cefuirei to niaigize any variations with arcent siza as oここur ia the Eriayiaf fielis anj／or the multipole aoatzat コf the iuternal Eiきはjs•

Assuaiaq one has desianed and fabricated the aaquets dell． tinere is still th三problきロ of enerfizing and geasiaing then in a reprojaziole way．「his methoj must obviously be zoدวatiole Nith how the mafnet is to be operated ia the ring．Likerise，

 inconpatiole wita tae methoas used juring measareaəots．，？ implementation of tais oaase is neaessary for any axaこと calこー دlation avaa taouqa one miaht try to skip it gy attemptinf to
 tins aspeat which is relevant to tae Pep maqnets alafialis is availaula（4）．\quad h a onsilerei aezessary if not suffizient for exazt aまlaulatioas．

V．TransEer Funztivas
Iaoles 1－4 qive the results of calaulations＝orraspoifiag raspeこtivaュy to the Eqrit four Jcders in tie inpat ajoriiagta
 are qivau ia Iable J．Ihey represent the mean values Jetasic

the same as for the aミxtupole which is the shartajt fanily of
 to thin．nomlinear laas models．Units were chosen to simoifey the stuly of the varioui terims e．q．the relative iaportanaz $\boldsymbol{f} f$ any two is Juizxly issessej by comparinf their valıes コeこause the majnitales of tae standard jeviations of taz variajles ace couqhiy soaparaple in taese units（3）．Accurazy ali praこisisn
 วE sijairizant fifuces fiven in the tables whazh arecthouft sufeizient Eor elaことroa storaye rings havinq typi＝al aınpiaf timas of a Eew hunicej turas．

First． ［able 1 shows that $(x \mid x)=\left(x^{\prime} \mid x^{\prime}\right)$ and $(y \mid y)=\left(y^{\prime}\left|y^{\prime}\right|\right.$ ．

 ocoperiy alignaj agi favcicated elements with ifazar nagbers Jf polas than quadrapoles don＇t couple infirst ocier．botio sextupoles and octupoles are pure drifts in tais oriar hariaf
 Appenłix ［II Jives i inple but qeneral demonstration JE ay the benl 1 s a spezial cise of agqnet with $(x \mid x)=\left(x^{\prime}\left|x^{\prime}\right|=1.3\right.$. It is alsu showa there that $\left(x \mid x^{n}\right)=0$ for $n>1$ dai taat $\left(x^{\prime} \mid x^{n}\right)$ $=\left(x^{\prime} \mid x^{n} x^{m} y^{\circ} \delta^{P}\right)=0$ Eor all $n>0$ ．Thus，in the meinan olanz，tais oena is a peréact paraliel－to－parallel optical syjten dita an inEinite to：al lenfat．Ihis is iaeal for storaje Eings wita their nutarilly sinall vertical amittance since this result as Lonfer appiies ia tae vertical plane．ajdinf nultipoles to
these dands destroys tais feneral pcoperty but retaias it in Eirst oryer wian only symmetry allouet multipoles of tà oeni are allowei i．ב．d＝コji is for sextupoles．Ia theverticil．

 a ction shown in Eif． 2 a is cancallej by the atural fosusiaj aこtion of tae resilciaj seator aaqaat ia the benjiay planき。 Next．Jne seas Econ Tables 1－it that all elemerts aviaf a Eieli aวaponent $2 n$ taeir lonjituiinal axes，i．e．peafeat aultipoles a טove jipole．are expected to have $\left(x \mid \delta^{n}\right)=\left(x^{\prime} J \delta^{n}\right)$ $=\left(y \mid \delta^{n}\right)=\left(y^{\prime} \mid \delta^{n}\right)=\left(z \mid \delta^{n}\right)=\left(\delta \mid \delta^{n+1}\right)=0$ Eoc all $n>0$ ．\＆opeaiix i こalls these alenents＇aon－dispersive＇because ther have no pure こhromatiz abeccations．Jufortunately，these are aeyar aこhroảtiこ 2ven thouqa tineir leadiag orier optizal teras are
 クryer abercations＇are alxad cincomati＝uith teras of oriec a ingluliaq aixes chromatics of order n－1 in d．Altaoual tais تヨy xell terpt oae tu saperimpose quals and diooles for son a appliaations，this is selaoma fool idea when ona iateads to use iron－jorinated gafnets（4）．

Jne also sees a ataral qrouping betueen the properties د£ the د1j and even majaetic elements．This result；iirevtly from the syrmatry of tha fielis ani is most easily seat feva the leading orier Jəonetrias beaause they follow ：aき leadiag oryer spatial lepenieace of the fielis and avoil tae highar
 Jenerai inolications of this pcoperty are consilezad oulua．

Since the ledinf Jrder of auv multipole aiti nu fieli on its dxis projuazs دnLy feometria terns，no sat of malti－ poles suparoosed on one of lower order aan be axpezted to Eully こorrajt that aultipole．The most aommon tasaniqua $2 E$ iealiat wita this proolea．in lowest orier，is to introduze

 （ $\left.x^{\prime} \mid x \delta\right)$ aai（ $\left.x^{\prime} \mid x^{\prime} \delta\right)=d i$ be correctad by the leainaf orje：
 （ $\left.x^{\prime} \mid x x^{\prime}\right)$ 7．A smali vertacal emittance and／or small vertizal spot comparad to the horizontal then minimizes the sextupole strenftins．The major，Leadina order abercations iatruauza？
 ay the aifor feometrazs of the octupole in exaこtly the saaz かヨ．Liкedise，the hiquer order qeonetrias of the sextup）Lき こontinue to arujely こomoensate the こorrespondiaf sizaiミiこaxt． nixed こhronitiz teras uE similar order from the f1adrus ale． 3rown has sauwn how oae こan virtually eliminate ここコssーンuロノー iina betaコax sextupoies in sone ciraunstances（1））．．

Ihe adiftiou دE suここessively hiqhar multipol2s apノきョニョ ＝onveafent ；iñe tha ser Les for the iudividuda aultipoles is converaent is shown oy the Tables．However，this lapeals oa
 Ledling oriar ahromitics of one aultipole witi feonatrizs of the next hifher muitipule by using lispersion to oisi＝ally superimpuse the oriflaal multipole on itself．こonveryきnこき دf thi．j pajzedare aan ou establishei by relations suzh as：

$$
\begin{aligned}
& \left(x \mid x^{2}\right)_{S F} \approx-(x \mid x \delta)_{Q F} /(x \mid \delta)_{B B} \\
& \left(x \mid x^{3}\right)_{C F} \approx-\left(x \mid x^{2} \delta\right)_{S F} /(x \mid \delta)_{B B}
\end{aligned}
$$

whizh, bowever, are clearly dependent on the specific opti=j. Jorevar, if $\left(x \mid x^{3}\right)_{Q F}$ or $\left(x \mid x^{3}\right)_{S F}$ is comparable to $\left(x \mid x^{3}\right)_{O F}$ it the octupale, then the =orrection is subvertel. [his is دaz of the problems of asing only the leadiaq orders is the fieliz
 terns suapletely and miscalculates others. One salation to this probiea is to ue ajie to completely eliminate suea teris in at least one plaay at a time so that one caa esoloit sfanetry. A subsequent seztion fires an exauple of how this zan oe ioue in a physically realizable yay by supecimposinq دetupsies ani faais. ihis aan be fone in a way that allous one to reju:z or ze: all higher order qeometrias proportional to x^{n} for $n \geqslant 2$. Before iiszussing tazt, it is intacesting to show some exanoles to illastrate the iaportaña si aifher urder effects. VI. Low-oteta Insertions and Einal pozus Systams The pacpose of tae low-beta insertion is to jarafaiff the
 interactioa points(If'si) and tae IP's. Generally, the optiaium Laminosity (L) zan de irareased Ly dezreasinu the rertizal beta Eunction at the $\operatorname{If}\left(\beta_{y}^{*}\right)$ whenever $\left.\beta_{y}^{*}\right) \sigma_{z}$. It can alss be iaceamjel
 the apertura limit. Either scheme will inctease aifiter oiler きffeats. fur instaace, the betatron amplitude betaeen the I ? anf the entranze to tay first quadrapole varies fadratizally with the sjparation distance. L, i. a.
lppendix i - FIELD DESCaIpTION
Here we zonsider osly the time independent, filie fizlis of a stucage ricu. The rajnetostatic. scalar potential. $\Phi(x, y, z)$. ain be witteen in the refions of intarest as

$$
\begin{equation*}
\Phi(x, y, z)=\sum_{l=0} \sum_{m=c} \Phi_{l m} \frac{x^{\ell}}{\ell!} \frac{y^{m}}{m!} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{l m}(z)=\left[\frac{\partial^{2+m}}{\partial x^{2} \partial y^{m}} \Phi(x, y, z)\right]_{x=y=0} \tag{A}
\end{equation*}
$$

Figure al saows the masured z-dependenze of the 2 ep magnets in the EFB coordinate systan i.e. the EFB is at $z=0$ Eor eizh rultidole. For z<<u, we are inside the maqnet where the fielif aan be characterizad by its prialy harmonic maqnitula B_{0}, G_{i} o or j_{2} and oniy the transversa coordinates (x, y). Outsila, tie normilizej fiells all approaca zarj whenever z/q>>1. This rapresentition is clearly valid for both frinqing fiells of the ? EP bend shoun in Fig. 1.

If oua assumes that all maquets possess mechanizal syametry about the dispersion playe(y=0) of the dipoles ani tia potantial satisfies tae =onaition $\phi(x, y, z)=-\Phi(x,-y, z)$, then $3_{y}(x, 0, z)$ is the only azapoaent alloxed in this plane i.e.

$$
\begin{equation*}
B_{y}(x, 0, z)=\left[\frac{\partial}{\partial y} \Phi(x, y, z)\right]_{y=0}=\sum_{\ell=0} \Phi_{z 1}(z) \cdot \frac{x^{\ell}}{\ell!} . \tag{A3}
\end{equation*}
$$

dlong the optiz axis $(x=y=0)$, only the dipole tarms are aozzero i.e. $\Phi_{2 l}=0$ Eur l>0. Furthermare, specifying $\Phi_{\text {al }}(z)$ far all 1 speaifias tae field over the entire volume of interest as ona
 all ona rejuires is an idequate representation for the varioss multipolas. The one usei here which Eits the data, as shoda in Pit. A1. is:

$$
\begin{array}{ll}
\text { Dipoie }: & \Phi_{01}(z)=B_{c} /\left(1+e^{S_{c}}\right) \\
\text { Quairupole: } & \Phi_{11}(z)=G_{1} /\left(1+e^{S_{i}}\right) \tag{14}\\
\text { Sextipole: } & \Phi_{21}(z)=G_{2}^{\prime} /\left(1+e^{S_{2}}\right) .
\end{array}
$$

A modifiea Permi-biraz listribution was chosea for its obrioas resemolanze to the dati as well as its Elexibility. It ajoears that one cal then wite with sutfizient accurazy Eor any alltipole. l:

$$
\begin{equation*}
\Phi_{i l}(z)=\left[\frac{\partial^{2}}{\partial x^{\ell}} B_{y}(x, 0, z)\right]_{x=0}=G_{i} /\left(1+C^{S_{l}(z)}\right), \tag{A5}
\end{equation*}
$$

where ix 13 the central field strenath and $S_{g}(z)$ is a polyaraial in z noraaiized to the total gap or bore opening (g) for eizh
auitipole． Zin is prescriotion requires sliqht modification for ourved puie boundaries out this needn＇t concern us berき．「he Eifth order nolynomial

$$
S_{l}(z) \equiv \sum_{i=0}^{5} c_{i}^{l}(z / g)^{i}
$$

is suffizieat for uar paf poses as shown by the least－sfuares fits in fia．A1．The caefficients（Cil are qiven ia raole A1．

Table A1．FIELD CUEFFICIENTS

Coefficiants	dipoze	Quadrupole	3ミxtupol？
$\because \because=ワ$	0.4789	0.296417	5．176－559
0			
c	1.911239	4.533219	7．153379
1			
c	－1．135953	－2．270982	－3．113116
2			
c	1.030554	1． 368627	3.444331
3			
c	－1．032557	－0．036391	－1．976740
c^{4}	0.318111	0.022261	3.543363
5	0．J1011		

Althoufh tie ieast－squares teshnique is best suitej to probleas where the axact functional form of the distrioutioa is known but ona uas to deal with impreaise data，it is usaj here because the exact functional form qeneraily isn＇t knowa Eor aost dises of praztical interest and the lata aeed to ba smoothed beaduse of sach things as the larie maquitude of the fiall variations，tae Einite volume of the measuranent probes ana the camolicatea spatial dependence of the fielis．raz cange ai apolicability u E these coefficients is－？（z／f）＜j．

For auy sat of initial，particle coordinates（riopiosi） in some coordinate systam．A，as shown in Fiq．1，there will oe a corresponding set，$\left(r_{f}, p_{f}, s_{f}\right)$ ，in systen B．The opti＝ ixis shoru in Fiq．1，which is usei to define su：z refereize coorinate jystens is not an actual orbit becıuse of finite Erinje fiells，radiative eneray loss and／or iaperfections ia the fiell experienzed by the particle．Iqnoring such effezts， it is clear that one $=a n$ determine the arbit at ayy value z_{0} In terms u i the assumad parameters and initial coordinates（i） asing siaple yeometriz zunstructions．However，as one refiaəs the molel tuwarjs wat they would like to call an axaet rap－ resentition，the mathols of solution becoue more rastriztal antil tae jaly prazciadiy viable means would sean to oe the

1iгeにt aumきェical solution of the differential equations，as， altimateiy，there isu＇t even a direct functional aippiaf of （i）\rightarrow（E）Eor indivijual particles．In problems $u \in$ conaera aəre，a ココгrespondease L s possible so long as one こoaside＝s only inaremantal，averafe energy loss．Thus，we are able to dse conventional raylur expansions for the transfor fuaztion．

Lat $\mathfrak{R}, 5 \mathrm{~S}$ T reureseat the first，second and third oriac zontributioas to the total transfer function，in terms of the initial coordinate variables．so the transforn fron $i \rightarrow 0$ is：

$$
\begin{equation*}
\vec{x}_{0}=R_{0}^{i} \cdot \vec{x}_{i}+S_{0}^{i j} \cdot \vec{x}_{i} \cdot \vec{x}_{j}+T_{0}^{\ddot{j} k} \cdot \vec{x}_{i} \cdot \vec{x}_{j} \cdot \vec{x}_{k}+\cdots, \tag{17}
\end{equation*}
$$

where dot products iaply summations over the comman conpozants i．f． k, e tc．The trasforia from o to f qives a similar cesilt：

$$
\begin{equation*}
\vec{x}_{\dot{F}}=R_{\dot{f}}^{0} \cdot \vec{x}_{0}+S_{f}^{0 p} \cdot \vec{x}_{c} \cdot \vec{x}_{p}+\cdots \tag{13}
\end{equation*}
$$

substitutioa of（A7）iato（A8）then leads to

$$
\begin{align*}
& \vec{x}_{f}=R_{f}^{i} \cdot \vec{x}_{i}+S_{\vec{f}}^{i j} \cdot \vec{x}_{i} \cdot \vec{x}_{j}+\ldots \tag{17}\\
& \left.\vec{x}_{f}=\left(R_{f}^{i}+\left(S_{f}^{i j}+\left(T_{f}^{i j \cdot k}+\ldots\right) \cdot \vec{x}_{k}\right) \cdot \vec{x}_{j}\right) \cdot \vec{x}_{j}\right) \cdot \ldots
\end{align*}
$$

here

$$
\begin{aligned}
& R_{f}^{i}=R_{f}^{c} \cdot R_{c}^{i} \\
& S_{f}^{i j}=R_{f}^{c} \cdot S_{0}^{i j}+S_{f}^{o p} \cdot R_{0}^{i} \cdot R_{p}^{j} \\
& T_{f}^{i j k}=R_{f}^{c} \cdot T_{0}^{i j k}+S_{f}^{0 p} \cdot\left(S_{c}^{i j} \cdot R_{p}^{k}+R_{c}^{i} \cdot S_{p}^{j R}\right)+T_{f}^{c p q} \cdot R_{c}^{i} \cdot R_{i}^{j} \cdot R_{q}^{k} \\
& F_{f}^{i j k l}=R_{f}^{c} \cdot F_{0}^{i j k \hat{k}}+S_{f}^{0 p} \cdot\left(R_{0}^{i} \cdot T_{p}^{j k Q}+S_{0}^{i j} \cdot S_{p}^{k Q l}+T_{0}^{i j k} \cdot R_{p}^{i}\right)+\cdots
\end{aligned}
$$

there are terms up to sizth order ia（Alof which ayy or may not be lropoed basel an the supposed adequacy of the oriqiaml thiry or hifier orier approximation for the indivijual traas－ Eormations．Ali terms in any order don＇t hava to be retaiaji i．e．the ianer sum ay oc compused of a siqnificaatly cedized selection of hiqher order terms above second or taird oasel on a row dy row assessaent of the individual elemeats in tae دptical array such as qiven in Tables 1－4．If thatwotrays－ forms are for the sine maqnet or arrays of maqnets whizh aye ao aberratbris e．q．there are only first order teras taen tha total transéora has oaly first ordec terms and thare will be no こcoss－coipling．
one seas that terms above second order are qanerally made ub of lower order contributions e．${ }^{\text {a }}$ the third orier transform in Eq．AlJ a as projucts of secoud order terms．If the series for the Lniivijual alanents is converqeat，then tia these terms will also be and one this has a quide on determiniaq uhica hiqt order teras to retain dased on the maqaitudes of tae lower order products． y otice tat the transfora in any order is aade up of
simple pcuiacts of the oasic building blocks su oxe az eisily determine huw muci ajiitional time is requirej to sompute any droblea to iny order jnae they are qiven the indiridual taris for eãh fanily of aajàts．It shouli be aotei that i＜j＜kilatc．

Apdendix IIL－SOAE nIGA OBDER OPTLCS THEORE：AS－JIPOLES
For taree，parallal，equienerfy，equidistant rays with a
 bend maqnet shown in Fif．2a，the vertical separation of thase rays remains constant i．a．$\delta x= \pm x$ for any z ，both ia ani oitside Jf the maqaet when $x=\varphi / 2$ and the poles are suffiaientiy wije to orovide a straiqht ég actoss the extent of the rip envelop in tine Erinqinf fielas．It then follows quite qenerilly fron tae fiqure tiat $\left(x \mid x^{n}\right)=J$ tor all $n>1$ when $\alpha=\beta=\psi / 2$ or $\alpha=\psi$ aıa $\beta=0$ or
 $\alpha+\beta=\dot{\psi}$ ．［his resdlt also remains true for realistic friaje fielas，rejardless of theic specifi＝form，so lonjas allison induction iines（linas along which $B_{y}(x, 0, z)=c o n s t a n t(e a x i a$ parallel with constant z－values for any $z=$

Similariy，the norizontal focal lenqth is ineinite ama in fact．$\left(x^{\circ} \mid x^{n}\right)=0$ for alla．requrdless of the iistances a aid B． In Eact，a less obvious out more qeneral result feomeiqual ana
the above is tinat（ $\left.x^{\prime} / x^{n} x^{\prime m} y^{\ell} f^{\prime}\right)=0$ Eor $n>0$ and any aino．Itis Eっflows 匕eaiuse any iaitially equienerqy．parallel rays renzin oarallel．iadependeat of their separation，δx ．To sumariza the rasults Eor any dipole with $\alpha+\hat{\beta}=\psi$ ．one has：

$$
\begin{align*}
\left(x \mid x^{n}\right) & =0 \\
\left(x^{\prime} \mid x^{n}\right) & =0 \tag{112}\\
\left(x^{\prime} \mid x^{n} x^{\prime m} y^{2} f^{c}\right) & =0
\end{align*} \quad n>0 \quad \text { a } 1
$$

altoqether．this cepreseats more than thirty adileional teras throuqh Eourth order that arn＇t allowed in this kiad of dipole ctat wili be present for ones like sector maqnets．Tasles 1－4 $v e r i f y$ this for tia $2 e \rho$ ipoles where $\alpha=\beta=4 / 2$ ．

Finally，we note taat because tia total path length a a bend anqies through suca maqnets are independent af x ，on has

$$
\left(S_{\mid} x^{n}\right)=0 \quad n>0
$$

When only average Lidiative enerqy loss is considerej．［isis is cledrly lot the こase Eor most dipoles．

Neejless to say，slch examples are prictically usaful ald also provide qood test iases for codes intendaj to ailalate s：lch hifiner order taris．

Ouajrusules and eliments of hiqner multipolarity whisa aave no field along taace lonaitudinal axis have 10 purely こhomatiz abercatioas wan their axes coinciule with che ooti＝ axis of taj systea．i．e．
$\left.\left(x \mid \delta^{n}\right)=\left(x^{\prime} \mid \delta^{n}\right)=\left(y \mid \delta^{n}\right)=\left(y^{\prime} \mid \delta^{n}\right)=\left(z \mid \delta^{n}\right)=\left(\delta \mid \delta^{n+1}\right)=\right)$ ．

Such elemeats may be＝alled non－disparsive＇since the ficst monents of their imaqe are iudependent of the pura shromatiz tərms．A najor distinjılshinq characteristic betamen odd ani even majaetic elements is that odd elements such is quids ani गこtupoles are odd Eunctions of the coordinate variables unich implies they can＇t shift the centroids of symetrio beims wayn Droperly ceatered reqiriless of their strength．

If ona conputes thase pure chromatic terms，they orovija another vood check on the accuracy of the calsulations．．
 Derfect aualcupole．Frua Appendix a and some analysis one aョa show that if

$$
\begin{equation*}
\int\left(\Phi_{31}-\frac{1}{12} \Phi_{11}^{\prime \prime}\right) d z=C \tag{A15}
\end{equation*}
$$

then quads nay be made to approimate the ideal quils usei ia nany calcilations．Tais will be discussed more elsewhere．

REPERENCES／FOOTNOTES

（1）Higher order teras in the partiale coordinates are＝allaj abercations bezause they modify the behavior erpected Econ the leadiaq order teras－usially in ways that aeed to be correstel．Fur iastance，perfect quadrupoles（l）are oEtea used to prodice Eirst order correlations betwesu position and antly variables 3 uch as（ $\left.x^{\prime} \mid x\right)$ ，but siñe tiey zouple transverse and loafitudinal coordinates via sezond ordar texas lise $\left\{x^{\prime} \mid x \delta\right\}$ of（y＇｜v\｛），one is then oftan foecel tu adj saxtapoles（Jc taeir equivalant）as wallas dipoles ts correct such chromatic effects．These hiqier oriar teras will ve＝alled＇aturaL＇or aharacteristic abercations to distinquish thea fron ones resulting from unintendej fieli arcors，misaliqnamens or the like．The natural abercitions of an optical arcay ice usially corcected with the oasi＝． pure aultipoles dinceas field ercors and perceived ocbit errors are fixed uy correctors＇．The natural ibercitioaj are taoulated for a Eanqe oE multipoles whiah aan ardiey the tranjfer funation throuqh third order or lessi．e．up to and invlujing ozcipoies．Suzh abercations ire usually callad ᄅither＇qeonetric＇or＇chromatic＇if they deveni ua only tiansvarse variables or also iñlude the momentua．δ ． We Jistinquish tae latter as＇pure chromatiz＇2．q．（x｜Sn）

 as one wase ceatral Eield has only a single hicmonic aad ふヨtisíцد Maxwell＇s 2quations everywhere that pi＝tiこles Jo． Sufficiently shoct mafnets，e．q．L＜2－3 bore dianeters，aiy
 maqnat waici only satisfies Maxwell＇s equations ia beailaj order suzh as aənerally ussuaed in present trajking colas． Real adauets cau be perfect wha $2-0$ simulations ara jua properiy but perfezt mafnets can not he pure maltipoles． Failure to consistantiy satisfy Maxiell in this way thea implies that such＝oles neither predict the closej srbit nor spezify aiiqument criteria properly．Similarly，taきy are aot ijequate Eur either optimizinq or shecrinq sucz thinas as chromatiz こurrections．
 the transfer Eunztion beyond first order exzedt for＇irjs＇ which is presently under development．Otier cay－traziaf coles wiach somputa nLaher order terms usually jo so olly Eor point sources unjer the assumption of median－plana． symuetry－none Ji waich is assamed here．rbis，asfar as I am diodee，this is the only cole which computes all terms throuqh third orier．
（4）J．E．Speazer，＂Karaoniz Strenqths of pep dipoles ana jomz Related Jefects and Lessons＂．PEP Note－367．Sept．1931．

（v）H．A．Enqe，Rev．S＝i．Inst．35（1964）278．
（7）J．E．Jpenzer and d．A．Ihiessen，＂Hiqh Resolution rechaiques for Use dith Negative Ion Beams＂．Proceediajs 1372 ？roton Linear azcel．Conf．，Los Alamos，N．M．，Oct．1972．LA－j11う． See also：G．Moritz，U．こzok and H．Hollnik，＂ideasurements of Second jeder abercations of a sector maqnet＂，Ni＝l．Instr． and Meth． 187 （1981）75．
（8）Ideally，the Laits would be $\left\langle\sigma_{x}\right\rangle,\left\langle\sigma_{x}\right\rangle$ ，etc．as jeterainal
 importan＝e wouli ba oasad on whether it yas qrajter than or こoaparable to one．Our choice of the transverse uait of lenati was a tradeoff between bean size and a mafaet＇s bore slze．
 2257 ．Fed． 197 ．
（1）K．L．Broan and J．E．Suenzer．＂Non－Linear Optics Eor tie piaal Foこus ue the Siaqle－Zass－Collider＂，IEEE TEans．on NuEL．SEi． NS－29（1931）256́8．

 Nuこl．Iriser．and ista．134（1976）421．
 Ion－optiaal Cocrejtion Elenent＂，Nu＝loInstr．ada $M \geq t h$ ． 134（1973）409．

Fig. Al: Dipole, quadrupole and sextupole field distributions normalized to their pure harmonic, central field values versus distance along the longitudinal axis normalized to their respective gap openings. The dots (•), pluses (+) and circles (o) are measured field data for the PEP standard bends, quads and sextupoles. The solid curves are fits corresponding to the coefficients of Table Al. The two arrows associated with each field distribution correspond to the locations of the iron-coil boundary and the outer boundary of the coils.

Fig. A2: Optics of the PEP bends and other dipoles having parallel effective field boundaries at entrance and exit. This view represents the entrance half of the dipole shown in Fig. 1.
 the transfer coefíi心lants for the PEP standari cell mafaets given ia tables 1－4．Parameters are either defined in fiq． 1 or the appendices．

	DIPOLE	Quadrjpole	SEXTUPOLE	
A $=$	20.000350	25.000000	25.000000	＝a
B＝	20.000330	25.000000	25.000000	－m
L	540.000030	$71.63+400$	24.240000	＝
9	7.012230	13.005200	11.403000	2．1
BF	0.351354	0.563207	0.556512	I
AH1 $=$	0.0	0.0	0.0	raz
Ati2	0.0	0.0	0.0	1／こ！
AH3	0.0	0.0	0.0	1／202
ait $=$	0.0	0.0	0.0	1／0：3
A Hj $^{\text {a }}$	0.0	J． 0	0.0	1だ4
dit	0.0	J． 0	0.0	1／こロう
Z11＝	20.000330	25.000000	15.000000	CII
212	－13．000300	－15．000000	－9．000000	ca
221	－13．000030	－15．000000	－9．000000	こm
222	20.000030	25.000000	15.000000	2．11
CO1	0.478959	0.296417	0.176659	
C02 $=$	1.911239	4． 533219	7.153079	
c）3 $=$	－1．185953	－2．27J932	－3．113116	
Cut $=$	1．630554	1.003027	3.444311	
c．j $=$	－1．082657	－J． 336391	－1．976740	
C05	0.318111	0．022261	0.540068	
C 11	0.478959	J． 296417	0.176659	
c $12=$	1.911289	$4.533<19$	7.153079	
C13＝	－1．135953	－2．273982	－3．113116	
C14＝	1.630554	1.063627	3.444311	
C15	－1．08265	－3． 336391	－1．976740	
C15＝	0.313111	0.022261	0.540068	
Ptic $=$	1.369270			dea
ALP：$=$	0.934635			dea
BEFA $=$	0.934635			dea
RA？ $1=$	0.0			1に1
Rap2 $=$	0.0			1／こロ
RN1 $=$	0.0			＝11
Q＊2 $=$	0.0			＝ロ1
B31 $=$	0.0			T
BR？$=$	0.0			T
CAI $1=$	0.0			1／こロ2
cat2 $=$	0.0			1／こa2
Xこa $1=$	0.0			cm
XCR2 $=$	0.3			2m
cev1＝	0.0			1た』3
CFV $2=$	0.0			1／ご3
CNA $1=$	0.0			1／この4
CNV2＝	0.0			1／こロ＇

Table 2：Second order coefficients of the eract transfer function for the pgr storage ring magnets corresfciding to the calculaticn for rahle 1 ．

$\begin{gathered} \text { COBFF. PEP BEYD } \\ \text { (BE) } \end{gathered}$	$\begin{aligned} & \text { EEY COAD } \\ & (C \bar{F}) \end{aligned}$	$\begin{gathered} \text { PEP SBXI. } \\ \text { (SF) } \end{gathered}$	$\begin{gathered} \text { OCTOPOLE } \\ (O R) \end{gathered}$	PEP EEPL （EMERGI LCSS）	OEIES
$(1111)=0.0$	0.0	－2．6500－03	0.0	0.0	cy／ci 2
$(1112)=3.2630-05$	0.0	－1．8860－04	0.0	3．263c－05	cifer－mi
$(1 / 13)=0.0$	0.0	0.0	0.0	0.0	ci／cs 2
$(1114)=0.0$	0.0	0.0	0.0	0.0	Cs／Cr－n
$(1 \mid 15)=0.0$	0.0	0.0	0.0	0.0	cr／cs 2
$(1) 16)=5.3230-06$	8．368C－04	0.0	0.0	5．323c－c6	C：／Cm－\％
$(1122)=4.7300-06$	0.0	$-3.5000-C E$	0.0	$4.7300-C \epsilon$	cıfer 2
$(1123)=0.0$	0.0	0.0	0.0	0.0	$c s / m r-c n$
$(1 \mid 24)=0.0$	0.0	0.0	0.0	0.0	cs／me2
$(1125)=0.0$	0.0	0.0	0.0	0.0	cıノCs－mr
$(1 \mid 26)=2.8750-06$	4．471c－05	0． 0	0.0	2．8750－06	ci／me－x
$(1133)=3.1830-08$	0.0	2．650Q－C3	0.0	－7．782c－C9	Cr／cs 2
$(1 \mid 34)=-3.2610-05$	0.0	1．8860－04	0.0	－3．262C－05	$c z / C \equiv-n r$
$(1135)=0.0$	0.0	0.0	0.0	0.0	cı／can
$(1136)=0.0$	0.0	0.0	0.0	0.0	c：／cm－g
$(1144)=-1.41 \pm 0-05$	0.0	3．500Q－06	0.0	－1．419Q－c5	cIfer 2
$(1145)=0.0$	0.0	0.0	0.0	0.0	$C E / B I-C E$
$(1146)=0.0$	0.0	0.0	0.0	0.0	cs／mr－s
$(1155)=0.0$	0.0	0.0	0.0	0.0	c：／cs 2
$(1 i 56)=0.0$	0.0	0.0	0.0	0.0	
$(1) 66)=-9.4580-04$	0.0	0.0	0.0	－9．4580－04	$\text { c: } / x 2$
$(2111)=0.0$	0.0	－7．1390－02	0.0	0.0	$\text { macm } 2$
$(2112)=0.0$	0.0	$-5.300 Q-03$	0.0	0.0	EI/Ca-ar
$(2113)=0.0$	0.0	0.0	0.0	0.0	Ex／Ca 2
$(2114)=0.0$	0.0	0.0	0.0	0.0	y／CM－n土
$(2115)=0.0$	0.0	0.0	0.0	0.0	
$(2116)=0.0$	1－3520－02	0.0	0.0	0.0	EI/CE-5
$\begin{aligned} & (2122)=-1.631 Q-05 \\ & (2123)=0.0 \end{aligned}$	0.0 0.0	$-1.0250-04$	0.0	$-1.6310-05$	E/fir2
$(2123)=0.0$	0.0	0.0	0.0	0.0	EIMr－C！
$(2124)=0.0$	0.0	0.0	0.0	0.0	－r／nc2
$(2125)=0.0$	0－0	0.0	0.0	0.0	I/ar-cm
$(2126)=-5.323 Q-06$	8．3C80－04	0.0	0.0	－5．323Q－CE	$1 \mathrm{x} / \mathrm{ar}-\bar{x}$
$(2133)=-8.893 Q-11$	0.0	7．1390－02	0.0	－1．3720－07	E／C！2
$(2134)=3.179 Q-08$	0.0	$5.3000-03$	0.0	$2.374 \mathrm{c}-\mathrm{CB}$	－r／CM－
$(2135)=0.0$	0.0	0.0	0.0	0.0	$\operatorname{Ic} / \cos 2$
$(2136)=0.0$	0－0	0.0	0.0	0.0	Ex/ce-5
$\begin{aligned} & (2144)=-1.6300-05 \\ & (2145)=0.0 \end{aligned}$	0.0 0.0	1．0250－04	0.0	－1．6300－05	
$(2145)=0.0$	0.0	0.0	0.0	0.0	E\％／日r－cı
$(2146)=0.0$	0．0	0.0	0.0	0.0	Eリノ゙ロー5
$(2155)=0.0$	0.0	0.0	0.0	0.0	Ex／CI2
$(2156)=0.0$	0.0	0.0	0.0	0.0	－x／cm－5
$(2166)=-3.2640-03$	0.0	0.0	0.0	－3．2640－03	mr／：2
$(3111)=0.0$	0.0	0.0	0.0	0.0	c：／cil
$(3 \mid 12)=0.0$	0.0	0.0	0.0	0.0	cı／ca－m
$(3113)=-3.1840-08$	0－0	5．3000－03	0.0	－3．1840－c8	cs／ca 2
$(3114)=3.2610-05$	0.0	1．8860－04	0.0	$3.2619-05$	cr／ca－mr
$(3) 15)=0.0$	0.0	0.0	0.0	0.0	cs／ca 2
$(3) 16)=0.0$	0.0	0.0	0.0	0.0	cafce－x

$(3122)=0.0$	0.0	0.0	0.0	0.0	ca/me2
$(3123)=-3.2650-05$	0.0	1.8860-04	0.0	-3.2650-05	cı/ar-cm
$(3124)=9.455 Q-06$	0.0	7.0000-06	0.0	9.4550-c6	cz/Er2
$(3125)=0.0$	0.0	0.0	0.0	0.0	cs/ar-c!
$(3126)=0.0$	0.0	0.0	0.0	0.0	cs/ar-8
$(3133)=0.0$	0.0	0.0	0.0	0.0	csica 2
$(3134)=0.0$	0.0	0.0	0.0	0.0	c!/ca-ar
$(3135)=0.0$	0.0	0.0	0.0	0.0	cr/ca 2
$(3136)=5.998 Q-06$	-8.7130-04	0.0	0.0	c. 9980 -66	csfca-
$(3144)=0.0$	0.0	0.0	0.0	0.0	cs/me 2
$(3145)=0.0$	0.0	0.0	0.0	0.0	cı/Br-cı
$(3146)=1.393 v-06$	-4.6360-05	0.0	0.0	1.3930-06	c3/日r-x
$(3155)=0.0$	0.0	0.0	0.0	0.0	ca/ca 2
$(3156)=0.0$	0.0	0.0	0.0	0.0	cs/ca-s
$(3166)=0.0$	0.0	0.0	0.0	0.0	c1/82
$(4111)=0.0$	0.0	0.0	0.0	0.0	ar/ca 2
$(4 \mid 12)=0.0$	0.0	0.0	0.0	0.0	-r/ca-mi
$(4113)=0.0$	0.0	0.14280	0.0	0.0	Mrcal
$(4114)=-3.184 Q-08$	0.0	5.3000-03	0.0	-3.184Q-08	-r/ca-ar
$(4115)=0.0$	0.0	0.0	0.0	0.0	-r/Ca 2
$(4) 16)=0.0$	0.0	0.0	0.0	0.0	91/cmex
$(4122)=0.0$	0.0	0.0	0.0	0.0	ar/Er2
$(4123)=3.0300-14$	0.0	5.3000-03	0.0	8.8050-10	1r/mr-ca
$(4) 24)=3.263 Q-05$	0.0	2.0490-04	0.0	3.263c-05	15/mr2
$(4) 25)=0.0$	0.0	0.0	0.0	0.0	-r/ar-ca
$(4126)=0.0$	0.0	0.0	0.0	0.0	Mr/ar-
$(4,33)=0.0$	0.0	0.0	0.0	0.0	8r/Ca 2
$(4) 34)=0.0$	0.0	0.0	0.0	0.0	-r/ca-ar
$(4135)=0.0$	0.0	0.0	0.0	0.0	Er/ca 2
$(4136)=3.9030-05$	-1.447c-02	0.0	0.0	3.903 G-CE	-r/ca-
$(4144)=0.0$	0.0	0.0	0.0	0.0	-1/Er2
$(4145)=0.0$	0.0	0.0	0.0	0.0	-r/Er-Ca
$(4146)=1.6650-05$	-8.7130-04	0.0	0.0	1.6650-05	Mr/ar-8
$(4155)=0.0$	0.0	0.0	0.0	0.0	-r/ca 2
$(4156)=0.0$	0.0	0.0	0.0	0.0	-5/ca-8
$(4166)=0.0$	0.0	0.0	0.0	0.0	Ex/82
$(5111)=0.0$	-4.E350-05	0.0	0.0	0.0	ci/ca 2
$(5112)=-5.323 Q-07$	7.885-05	0.0	0.0	-5.3230-07	cifca-mr
$(5113)=0.0$	0.0	0.0	0.0	0.0	cs/cal
$(5) 14)=0.0$	0.0	0.0	0.0	0.0	cr/ca-ar
$(5115)=0.0$	0.0	0.0	0.0	0.0	cı/cm 2
$(5116)=0.0$	0.0	0.0	0.0	0.0	c:/ca-
$(5122)=-2.9000-04$	-5.645c-05	-3.7120-05	-3.7120-05	-2.9000-04	ca/ni2
$(5123)=0.0$	0.0	0.0	0.0	0.0	cr/cemer
$(5124)=0.0$	0.0	0.0	0.0	0.0	cefar2
$(5,25)=0.0$	0.0	0.0	0.0	0.0	cr/cm-nr
$(5126)=-9.4609-05$	0.0	0.0	0.0	-9.4600-05	cr/ar-s
$(5133)=-9.7670-07$	-4.8930-05	0.0	0.0	-9.7630-C7	crica 2
$(5134)=5.3220-07$	-9.1590-05	0.0	0.0	5.3230-07	cs/ca-m
$(5135)=0.0$	0.0	0.0	0.0	0.0	cs/cm 2
$(5136)=0.0$	0.0	0.0	0.0	0.0	cs/ca-
$(5144)=-2.8998-04$	-6.5570-05	$-3.7120-05$	-3-7120-05	-2.8990-04	ca/ar 2
$(5145)=0.0$	0.0	0.0	0.0	0.0	cs/ca-mi
$(5146)=0.0$	0.0	0.0	0.0	0.0	cr/ar-s
$(5155)=0.0$	0.0	0.0	0.0	0.0	cs/cm 2
$(5156)=0.0$	0.0	0.0	0.0	0.0	cs/ca-
$(5166)=-1.058 Q-06$	0.0	0.0	0.0	-1.058g-06	c: 182

 storage ring magnetf coriesponding to the calcolations Lor Iables is haned on the as suaftion of reffect sechanicai sjouetry of each maget cype ebcet the mor-

comi. prpgand	87 (G1) (G10	${ }_{(58)} 5851 .$	$\begin{gathered} \text { OCTOPOLI } \\ \text { (O1) } \end{gathered}$	$\begin{gathered} \text { REP EEMD } \\ \text { (EABET Loss) } \end{gathered}$	elirs
$(11111)=0.0$	-8.1820-08	1.3510-06	-4.6490-04	0.0	ca/ce3
$(1) 112)=0.0$	-5.5560-07	$1.3910-c 7$	-4.9630-05	0.0	ci/ce 2-nr
$(11116)=0.0$	0.0	2.6500-05	0.0	0.0	cercazas
$(11122)=2.6610-10$	-1. Eड 10-07	4.7790-cs	-1.8420-06	2.6610-10	calcemer2
$(11126)=3.6390-17$	0.0	1.8860-06	0.0	-1.7460-15	
(11133) $=-1.4469-15$	-1.1400-06	1.3510-06	8.3950-03	-2.2300-12	cesca 3
(11134) $=1.5570-12$	-2.4470-07	$-1.8860-0 E$	$9.9250-05$	t.3340-13	crecan-ar
$(1144)=-7.9810-10$	-9.112000	2.2420-0s	1.8420-06	-7.3810-10	cycmar 2
$(11166)=5.3249-08$	-8.208c-06	0.0	0.0	$-5.324 c-68$	cspen-82
$(11222)=8.9320-07$	$3.2120-08$	2.4800-c8	1.0580-09	$29320-07$	ca/me 3
$(11226)=1.4180-07$	0.0	3.5000-C8	0.0	1.4180-07	cs/mi 2-8
$(11233)=4.8810-09$	-7.17e0-07	2.3819-08	4.9630-05	4.875c-09	cs/ca2-nt
$(11234)=1.7330-09$	-1. $1100-08$	2.5380-09	3-6E49-06	1.7330-c9	cs/ceras2
$(11244)=1.3800-10$	-3.35ec-09	5.5210-11	7.1070-08	1.3800-10	ca/nr 3
$(11266)=3.1590-09$	-4.4300-07	0.0	0.0	3.1590-c9	ca/er-\$2
$(11336)=-1.5910-10$	0.0	-2.6500-05	0.0	- $2.5930-10$	capcaz-x
$(11346)=3.2620-07$	0.0	-1.8860-06	0.0	3.262c-07	cıren-m「-
$(11446)=1.4200-07$	0.0	$-3.5000-02$	0.0	2.4200-C7	carmins
(11666) $=9.4590-06$	0.0	0.0	0.0	3.4590-CE	ces/83
$(21111)=0.0$	-8.2870-06	4.3250-05	-1.2530-02	0.0	uxfen 3
$(21112)=0.0$	-1.037-06	4.6370-0t	-1.3950-03	0.0	arfar-cil
$(21116)=0.0$	-2.222c-10	7.1390-04	0.0	0.0	-x/ce2-s
$(21122)=0.0$	-3.229¢08	1.6180007	-5.3930-05	0.0	arfarz-cs
$(21126)=0.0$	0.0	5.3000-05	0.0	0.0	-x/ce-n5:
$(21133)=0.0$	-2.7740-05	4. $4250-05$	3.7580-02	0.0	18/cal
$(21134)=2-8880-15$	-6.189 -06	-6.9610-05	2.7900-03	-5.4770-12	日rıcs 2-nr
$(21144)=5.1860-13$	-1.6270-06	7.6500-08	$5.3930-05$	3.8730-13	M/ar2-cm
$(2) 166)=0.0$	-3.326C-04	0.0	0.0	0.0	Ex/cms2
$(21222)=2.6610-10$	-2.823908	1.8970-05	-7. $20.40-07$	2.6520-10	ax/nc3
$(21226)=1.6330-07$	-5.2350-14	1.0250-06	0.0	1.6330-07	1x/922-g
$(21233)=1.9110-12$	-2.2340-07	$7.6789-07$	1.3950-0.3	2.1910-12	-18recm 2
(21234) $=-1.9500-09$	1. 3E 1c-06	8. 5280008	1.0790-04	-1.9500-69	-5/ar 2-cm
(21244) $=-8.3210-10$	-1. 1E50-08	1.8970-0S	$2.1610-06$	-8.3216-10	-x/me3
$(21266)=1.0650-07$	-8.2C8g-06	0.0	0.0	1.0650-07	85/Er-12
$(21336)=2.4432-12$	0.0	-7.1390-04	0.0	3. 1390-12	91/Cs 2-8
$(21346)=-1.2720-09$	0.0	-5.3000-05	0.0	-1.2720-55	ax/macers
$(21446)=1.6280-07$	0.0	$-1.0250-06$	0.0	1.6280-07	arper2-8
(21666) $=3.2650005$	0.0	0.0	0.0	3.2650-05	Ex/33
$(3 ; 113)=0.0$	-1.0040-06	1-3510-06	1.3950-03	0-0	ceper 3
(3) 114) $=-5.195 Q-13$	6-9050-07	2.3800-08	4.9630-05	-5.1950-13	cs/cs2-me
$(31123)-5.1950-13$	-2.360C-07	1.1539-07	9.9250-05	-5.0510-13	cs/cen-nt
$(31124)=5.3176-10$	-1.0180-08	2.5380-09	3.6849-06	5.3170-10	cs/ce-tic2
$(31136)=6.3680-10$	0.0	-5.3000-05	0.0	$6.3680-10$	c1/ca $2-8$
$(31146)=3.6950-10$	0.0	$-1.8860-06$	0.0	3.6950-10	cs/cm-am-8
$(31223)=-9.0020-10$	7-7260-08	2.2420-09	8.8420-06	-9.0020-10	calmatca
$(3,224)=2.0600-10$	2.4590-09	5.5210-11	7.1679-08	2.0600-10	cefer 3
$(31236)=3.2660-07$	0.0	-1.8860-06	0.0	$3.2669-07$	ca/er-cm-
$(31246)=9.4790-08$	0.0	-7.0000-08	0.0	2.4790-ct	ca/ar 2-8
(3! 333) $=-1.0890-07$	2.1450-08	1. 3510 -06	-4.6490-04	-1.0890-07	ca/cs 3
(3i33a)-1.6710-08	E.E650-07	$1.3910-07$	- $4.9630-05$	-1.6710-08	cs/cmerin
$(31344)=5.9620-09$	1.902007	$4.7790-09$	-1.8420-06	-5.9620-09	cz/cmescz
$(31366)=6.3340-08$	0. 815 ¢06	0.0	0.0	-6.3340-08	cs/cs-\$2
$(31444\}=1.9210-07$	5. 0100008	2.4809-08	1.0580-05	1.9210-07	cmper
$(31466)=-5.452 Q-09$	-.6789-07	0.0	0.0	-5.5520-69	cz/Er-82
$(41113)=0.0$	-2.3E30-05	4.4250-05	3.7580002	0.0	mr/cm 3
$(4114)=0.0$	$3.3810-08$	7.6780-07	1.3950-03	0.0	as/csi-st
$(4123)=0.0$	-5.861906	3. $8690-0 E$	2.7900003	0.0	9x/csi-n5
(4112*) $=-5.1950-13$	-1.518c-06	8. $5280-08$	$1.0790-04$	-5.0510-13	EI/carer2
$(51136)=0.0$	0.0	-8.3280-03	0.0	0.0	Ef/cs2-s
$(41146)=6.3680-10$	0.0	-5.3000-05	0.0	6.3680-1c	Er/ca-ars
$(14223)=5.8570009$	1.1790006	$7.6500-08$	$5.3930-05$	-5.8570-05	ar/ar ${ }^{\text {ceca }}$
$(41224)=-1.4330-09$	$-1.113 c-08$	1.8970-09	2. $1610-06$	$-1.433 \mathrm{c}-09$	-8/nr3
$(41236)=-2.2290-09$	0.0	-5. 3000-05	0.0	-2.2290-09	6r/ncrand
$(41246)=-8.8130-10$	0.0	-2.0490-06	0.0	-8.8130-10	ar/ner ${ }^{\text {ars }}$
$(41333)=-3.7530-07$	-8.895c-06	4.425005	-1.2530-02	- $3.7530-67$	
(41334) $-3.2650-07$	-1.1070-06	4.6370-06	-1.3950-03	-32650-07	
$(41344)=1.7370-07$	-3.131c-08	1.6180-07	-5.3930-05	-1.7370-07	18/cs-nct
$(41366)=5.8560-07$	1-4710-09	0.0	-7.0	-5.8560-C7	8x/cs-\$2
$(41444)=-3.2540-08$	2.84 eco-08	1.8970-0s	-7.2040-07	-3.2540-0E	arfar 3
$(41466)=-2.2339-07$	0.815c-06	0.0	0.0	-2.2330-07	01/E5-82

COEPE. PEPEEMD	$\begin{aligned} & \text { EEF CDOLD } \\ & \text { (CE) } \end{aligned}$	$\underset{(S E)}{\operatorname{PEP} S E X T}$	$\begin{aligned} & \text { OCIOPOLE } \\ & \text { (OE) } \end{aligned}$	$\begin{gathered} \text { PEP BEAD } \\ \text { (EAEBGI LCSS) } \end{gathered}$	0 HITS
$(111111)=0.0$	0.0	-5.9410-1C	0.0	0.0	ca/cal
$(111122)=0.0$	0.0	-3.9790-09	0.0	0.0	cs/cm2-min
$(111133)=0.0$	0.0	-5.4440-05	0.0	0.0	cs/cs 4
$(1) 1144)=1.693 Q-17$	0.0	-3.9690-09	0.0	4.248¢-18	cı/ca 2-s r2
$(11116 E)=0.0$	0.0	-2.6500-07	0.0	0.0	ca/ca2-x
$(112222)=-3.9120-13$	0.0	-7.5840-12	C. 0	-3.9120-13	cı/E54
$(112233)=5.5750-14$	0.0	1.3310-09	0.0	-2.302c-14	cı/CE 2-Er2
$(112244)=-1.6580-11$	0.0	8.6660-12	0.0	-1.658c-11	C3/Er 4
$(112266)=-1.4170-09$	0.0	-3.5000-10	0.0	-1.4170-09	c\#/mr 2- 52
$(113333)=4.5960-11$	0.0	-1.0470-10	0.0	-1.235c-09	CE/CE4
$(113344)=-6.5780-12$	0.0	1.3250-09	0.0	-1.20 6 Q-11	cs/ce 2-ur2
$(11336 \pm)=-4.7760-12$	0.0	2.6500-07	0.0	-4-776c-12	cı/ca 2-5
$(114444)=-3.8870-12$	0.0	6.2130-12	0.0	-3.941c-12	cs/ax
$(1) 4466)=-1.4230-09$	0.0	3.5000-10	0.0	-1.423c-C9	cx/mis2-x 2
$(115555)=0.0$	$0 . c$	0.0	0.0	0.0	cs/cm 4
$(1) 6666)=-9.4620-08$	0.0	0.0	0.0	-9.462C-c8	C $=184$
$(211111)=0.0$	0.0	-2.1350-cを	0.0	0.0	15/CM 4
$(211122)=0.0$	0.0	-3.583Q-CE	0.0	0.0	-r/ar2-cza
$(2 \mid 1133)=0.0$	0.0	-1.2750-c7	0.0	0.0	Er/Cs 4
$(217144)=-2.364 Q-20$	0.0	-3.6240-08	0.0	-3.6510-17	II/Ca2-nr2
$(2) 1166)=0.0$	0.0	-7.1390-0E	0.0	0.0	-r/cs2-52
$(212222)=-6.804 \mathrm{Q}-12$	0.0	-1.1950-10	0.0	-6.804c-12	Er/ar ${ }^{\text {c }}$
$(2 \mid 2233)=-1.6110-16$	0.0	1.0650-67	0.0	-1.373c-13	15/C=2-n52
$(212244)=4.0790-11$	0.0	5.0870-1C	C. 0	4.079c-11	55/ar4
$(2) 2266)=-1.6370-09$	0.0	-1.0250-cs	0.0	-1.637¢-09	-5/ar $2-82$
$(213333)=1.3720-10$	0.0	-3.8470-c9	0.0	-4.329c-c9	Er/cs ${ }^{\text {c }}$
$(213344)=1.4390-10$	0.0	1.0700-C7	0.0	8.3979-11	Er/Ca $2-\mathrm{min}$
$(213366)=-6.7900-14$	0.0	7.1390-06	0.0	-8.228¢-14	-5/Ca2-82
$(214444)=1.649 Q-12$	0.0	2.2190-10	0.0	-7.727c-13	85/ar4
$(21446 \epsilon)=-1.622 Q-09$	0.0	1.0250-0E	0.0	-1.622q-cs	55/ar2-82
$(215555)=0.0$	0.0	0.0	0.0	0.0	Er/CE4
$(216606)=-3.2670-07$	0.0	0.0	0.0	-3.267¢-07	15/84

Fig. 1: Cross-section through the median plane of a standard PEP dipole showing the various coordinate systems used for ray tracing. L is the average bend angle in degrees i.e. the average dipole strength. All magnet definition is done in terms of the effective field boundary coordinate systems at entrance and exit.

Fig. 2: Optical layout of the FFS showing the dispersion function (η_{x}) and betatron amplitudes ($\beta_{x, y}$). This is described in detail x in Ref. 10.

Fig. 3: Scatter plot of 3000 randomly generated rays at the input of the FFS.

Fig. 4: Scatter plot of 3000 random rays traced through the FFS. The circles are drawn with radii of one and two standard deviations which contain more than 50% and 90% of the beam, respectively.

Fig. 5: Results of ray-tracing showing the correlation between the output horizontal position (x_{0}) at the IR and input vertical angle (y_{i}^{\prime}) from the collider lattice.

Fig. 6: Predicted beam position and spread at the interaction region as a function of maximum incident momentum δ max. The mean value of vertical position $\langle y\rangle$ is very small becausex there are no vertical bending magnets in the system, i.e., $(y \mid \delta n)$ are negligible so long as there are no significant rotational misalignments.

Pole Details

Fig. 7: (Top) Transverse cross section of the iron geometry of an 'active' or variable corrective element capable of an arbitrary number of simultaneous multipole fields. (Bottom) Pole-coil configuration. Further details are available in Ref. 11.

Fig. 8: The solid lines are integral field measurements of the magnet shown in Fig. 7 and the dashed lines are curves of pure multipolarity $(x / g)^{i}$ where i is the harmonic number given by each curve.

Fig. 9: Transverse cross section of the upper half of a POISSON simultation for the general purpose magnet of Ref. 12. The coils are excited here to give a dipole distribution.

Fig. 10: Results of POISSON calculations for different types and geometries of dipole magnets compared to the dipole field of the 8-pole magnet shown as the dot-dash line. The upper curve is representative of a window-frame for the same aperture and the lower curves of H-magnets as described in Ref. 12.

Fig. A2: Optics of the PEP bends and other dipoles having parallel effective field boundaries at entrance and exit.

[^0]: * Work supported by the Defartaent cf Energy under contract DE- iC03-76SF00515. Ihis Fafer was presented at the Ercckhaven korkshop on accelerator orbit asd farticle fracking. Published in the Proceedings of the Workshop on Accelerator Orbit and Particle Tracking Programs, Upton, New York, May 3 - 6, 1982.

