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ABSTRACT

lle consider the proposal that supersymmetry is broken at a scale p
miduay between the Planck scale M and the usual weak scale. MWe shou hou
a phenomenological explicitly softly broken suéersymmetric theory can
emerge below scale . The characteristic scale for the explicit

supersymmetry breaking is of order ap?/M. Identifying this with the uweak

scale ~250 GeV gives p ~ 10'2 Gev,
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1. SUPERSYMMETRY AND THE GAUGE HIERARCHY PROBLEM

The present theory of elementary particles, SU(3)XSU(2)XU(1), contains
some 13 independent field multiplets and about 20 free dimensionless
parameters. It is widely believed that this theory is at most a lou
energy remnant of a more symmetrical theory which is manifest at some
very high energy, possibly the Planck scale M. Perhaps the most
surprising feature of such a theory is the very existence of a low energy

world characterized by masses some 17 orders of magnitude smaller than

M.t

In general such large ratios of scales are not stable. Parameters may
be adjusted to obtain these ratios in the classical Lagrangian but in
general radiative corrections will upset the delicate adjystments,
3eading to an order by order readjustiment of fundamental parameters to

many decimal places.

The only knoun remedy for this unnatural situation is to have a
symmetry which can prevent radiative corrections from spoiling the
hierarchy. This can occur if a symmetry prevents some mass term from
occurring. For example chiral and gauge symmetries can prevent fermion
and gauge boson masses. If such symmetries are violated by very small
dimensionless parameters, the resulting masses will remain small. This
idea leads to a fundamental requirement of naturalness: For every
quantity which almost vanishes, a symmetry should exist which, if
unbroken, would require that quantity to exactly vanish. The
nonvanishing is caused by small dimensionless parameters which break the

symmetry. Although this mechanism does not explain the smallness of such



_3_

quantities it does provide a framework in which the smallness is stable

against radiative corrections.

In the current "standard® theory the masses of quarks, leptons and
gauge bosons are all proportional fo a single mass paraﬁeter ~102 GeV
uhich can be identified with the quadratic (mass) terms in the scalar
Higgs potential. Unfortunately the theory contains no symmetry which
potentially could keep this scale zero. This fact manifests itself in

quadratically divergent radiative corrections to the mass of the Higgs

field.?

Two ways out have been proposed, both of which require neu physics in
the Te¥ region. In one scheme the Higgs scalars are replaced by
dynamically bound composites.?:3 The other scheme introduces
supersymmetry (8.8.) in order to control the Higgs mass parameter.%:5
Indeed, 5.S5.% is the only known symmetry which can keep a scalar mass
zero in the presence of interactions. Roughly speaking supersymmetry
introduces partners which cancel quadratic divergences in the Higgs mass.
Typically the radiative corrections to the Higgs (mass)? will be ~a times
the typical splitting within a supermultiplet. For example the graph
shown in Fig. 1 will be cancelled by a second graph in which the
fermionic partners of H and W circulate in the loop. The cgnce]lation is
exact in the limit in which the fermions are equal in mass to their
hosonic partners. More generally

gmuz ~ o Am? (1.1

where Am? is of order of the supersplitting.
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Evidently if the theory is to be free of unnatural adjustments uwe
would want Smu? to be no bigger in order of magnitude than mp? itself.

This requires

1

fm £ — X 100 GeV ~ a feu TeV . (1.2)
o

The obvious conclusion is that the scale of S.5. breaking ought to be of

the same general order of magnitude as the ueak scale.

In this paper uwe will argue that the scale for spontaneous breaking of
$.S. can be many orders of magnitude higher than the weak scale if the
S.S. breaking mechanism is in some sense distant from the ordinary
degrees of freedom. Indeed we shall show that the fundamenta)l
spontaneous S.S. breaking scale can be as large as ~10‘2_pev without

inducing a corresponding splitting among the superpartners responsible

for keeping my® small.

The possibility of supersymmetry breaking at an intermediate scale uas
raised by Witten? and Banks.® Recent models by Dine and Fischler,?
Dimopoulos and Raby!'® and Barbieri, Ferrara and Nanopoulos'! are also of
this type. Many of the features we discuss are also evident in the

M > p 1imits of the modeis of Alvarez-Gaume, Claudson and Wise'? and

Dine and Fischler.1!3

In Section 2 ue describe a toy model in which S.5. is broken by the
0’Raifeartaigh mechanism!'® at an intermediate mass scale . The S.S.
breaking however is not directly coupled to the ordinary light world.

Instead it is coupled to a world of superheavy supermultiplets of mass
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M > p. These in turn couple to the light world. This produces an

indirect coupling mediated by superheavy intermediate states.

The resulting theory at energies less than u looks like an explicitly
softly broken $.S. characterized by a scale a(p?/M). In particular if a
particle such as the Higgs scalar is protected from mass counterterms by
S.S. then its mass will be no bigger than a{pZ/M). One of the central
points of this paper is to determine the stability of such a two stage

hierarchy against radiative corrections.

In Secﬁion 3 we introduce light gauge fields into the model and
discuss new features such a gaugino mass generation. Section 4 is
devoted to the physics of the Goldstone multiplet. Section 5 analyzes an
example of Witten’s inverted hierarchy, % shouing hou it fits into our
éeneral framework. In Section 6 we discuss our conclusions and speculate

about the infliuence of gravity on this class of theories.

In Appendix A We show that the one loop gluino mass vanishes in a
class of theories. In Appendix B we discuss some features of theories in
which the supersymmetry breaking at scale p is due to the Fayet-

Iliopoulos?® mechanism rather than the 0/Raifertaigh mechanism,
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2. A TOY MODEL

Our simplest example involves four chiral superfields.'? 7Tuwo of them,

-~

B and C, are heavy with mass ~M.

It

B =B + ivps + 6B8Fp

(2.1

o>
if

C + i¥ch + 86F¢

A superfield & describes the Goldstino and its scalar partner

X = X + i¥x0 + 66Fx (2.2)

S.8. is broken by Fyx getting a v.e.v. of order p2.

The ordinary light world is replaced by a single superfield L.

L =L+ iv 6+ 86F, (2.3)

The superpotential is

w2
N(B,C,X, 1) = g% [ B2 - — ] + MB2 + M/BC
g
+ gB3 + gB2L + gBLZ + ¢i3 (2.4)

For simplicity, all dimensionless coupling constants are called g. We

assume g is small enough to do perturbation theory and that M >> .

The potential (2.4) leads to spontaneous breaking of S.S. Recall that

the equations of motion for F; aret?



U
Fi¥ = - — (2.5
P ; | e=¢
]
which gives
- Fy¥ = gBZ - p2 (2.6)
- Fc¥ = M‘B (2.7

Evidently these cannot both be zero so supersymmetry is broken.

The absoclute minimum of the potential
Vo= Y Fi¥Fj
oceurs at
B=¢Cc=L=0 » (2.8
while X is undetermined. We can always set the v.e.v. of X to zero by

adjusting M. We assume that when this is done M.# 0.

The $.5. breaking v.e.v. is (Fyx> which according to (2.6) is

Fy = p2 (2.9)

Taking w to be as large as 10'Z GeV might seem to undetermine the
original intent of the S.S., namely to keep the radiative corrections to
the quadratic light scalar effective potential of order 100 GeV or less.
Normally we would assume these would be of order g3u2/4n%2. For example
consider the ordinary Feynman graph in Fig. 2, where the cross indicates
the insertion gBZu? which appears in the Lagrangian from the term Fyx¥Fy.
On dimensional grounds it is of order g u?s4m2. Note that even though

S.8. breaking is only coupled to L through intermediate superheavies it

can potentially split L masses by ~u2,
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However by combining S.8. combinations of ordinary Feynman graphs one
finds the order u? contributions cancel to all orders in g. For example
the graph shoun in Fig. 3 is part of the same supergraph as Fig. 2. It

exactly cancels Fig. 2. This cancellation is very general and can be

expressed as a theorem:

Consider the quadratic contribution to the effective potential V(L)
which arises when S$.S. is broken at scale p. It can be written as a

series in pouers of p2/M2:

ne wt
V(L) = L2p2 colg) + cq(g) — + ¢z(g) — + ... (z2.10)
' M2 M

The theorem asserts that

Colg) = O ' SN CIRED

To see this we work in a supersymmetric formalism in which $.5. breaking
is represented by a "spurion" line in a supergraph. The spurion is Fyg

which has v.e.v. p2. For example Fig. 4 shows the supergraph containing

Figs. 2 and 3.

Calculating this graph is equivalent to computing the correction to

the term

(L L D¢ (2.12)

in the effective action. When X is given its v.e.v.

(KR> = (Fx>86 = p266) Eq. (2.12) becomes p2LL.
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Although dimensional analysis and symmetry considerations allow a log-
devergent (CAQ)F counterterm it vanishes to all orders by the Grisaru-

Rocek-Siegel (GRS) theorem which says that "F terms" are not induced by

Toop diagrams.!8

The possibility remains that a "D term" might give rise to a splitting
of the L supermultiplet. For example consider the operator
(fx € Rp | (2.13)
Giving X its v.e.v. produces the effective term
p2(* D (2.14)
We shall discuss this operator later. For now uwe note that it does not

contain anything quadrative in the scalar components of L.

Another operator of interest is
(L € %% (2.15)
yielding the effective operator
p2(l D (2.16)
Curiously this operatof is supersymmetric and although it can produce

boson masses it does so in a supersymmetric manner. We shall return to

it later.

The next class of operators contain X quadratically. Consider
(L L &* Rp (2.17)
which gives
prelx Dy = py e L (2.18)
A contributing supergraph is shoun in Fig. 5. By dimensional analysis it
is of order: (g*/4n2)(1/M2) (uith the exception of Eq. (5.13) all

coefficients are estimates). Thus the induced scalar mass-squared is
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=
L

_— s (2.19)
4nz MZ

The operator L*L induced by (2.15) splits the L-besons from their

fermionic partners but leaves the scalar and pseudoscalar degenerate.

Similarly the graph in Fig. 6 gives rise to the mass term L2 from the
operator (fﬁ?ﬁ*)o. This operator gives equal and opposite contributions
to the scalar and pseudoscalar (mass)Z. The magnitude is again given by

(2.19).
Fermion masses can also be generated. Consider the operator
(L L &%)p (2.20)
uhich is produced by Fig. 7 with the coefficient (g3/4w2)(1/M). When X
is set equal to u?86 ue obtain the effective operator
—_— - — . (L D (2.21)
which is supersymmetric. 1t produces both fermion and boson masses.

Supersymmetry violating fermion masses are suppressed by additional

pouers of p2/M2. (See houwever Section 3 for gaugino masses.)

Soft supersymmetry violating interactions cubic in boson fields can

also occur. The operator

(i L &%), (2.22)

(see Fig. 8) yields the breaking



— e =« (¥ ) (2.23)
472 M
mhich contains
g2 p2
.._._....—.L*FL
4n? M

Using the equation of motion for Fy this becomes the sum of tuok
supersymmetry violating terms
al3®+b L2

g4 p2 g3 p? )2
a~ — . — ; b~ — - — (2.25)

_ 4n2 M 472 M

Note that so far all the induced dimensional constraints have a common
scale proportional to pZ2/M. This circumstance, if general, insures the
stability of the hierarchy. Houwever the present model does have an
effect wuhich ruins this stability. Consider Fig. 9, this graph induces
wave function mixing of the Goldstino multiplet X with L through the

supersymmetric operator
(L X%)p (2.26)

With coefficient g2/4n2. 1t gives an effective operator

gZ
— n? Fy (2.27)
4q2
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This is a supersymmetric operator but it causes a shift of L by
~(gn?/7412)'72 giving it a mass ~(g3n2/4n2)'72_ 1t evidently destroys the
tuo stage hierarchy. If other light fields couple to L they too would

get masses of order pn from (2.27) even if they are forbidden to directly

mix with X.

A similar, S$.S. violating, effect is produced by the graph in Fig. 10

which gives

93

(L % 8%)p (2.28)
4n2M

The low energy effective operator is

g° pt .
—_— — L T2.29)

This explicitly breaks louw energy S.S. by an amount >> (n2/M)3. This
effect will introduce S.S. violating throughout the low energy sector.

(It is of course possible that this is the true scale of supersymmetry

violation in the real world.)

In realistic theories we can easily avoid this problem by not having
neutral chiral fields which couple difect]y to the light sector. For
example the light sector might consist of the minimal supersymmetric
extension of quarks, leptons, Higgs bosons and SU(3IXSU(2)%XU(1) gauge

bosons. All light chiral multiplets are non-neutral under
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SUC3IXSU(2)XU(1) and cannot mix with the Goldstino fields, or participate

in the graph of Fig. 10.

Thus far we have not considered graphs with internal £ Tines.
Consider for example Fig. 11. Pouer counting reveals that the only
significant contribution to this graph occurs when the internal lines
carry £2 of order M2. MWhen the momentum of an L line is of order M it is
appropriate to treat it as part of the heavy sector uhich is integrated

out. Thus Fig. 11 is essentially identical to Fig. 5 in its effects.

Sometimes loop integrations involving L tines will diverge
logarithmically when M 2 . In this case significant contributions come
both from 22 ~ MZ and £2 < M2, For example see Fig. 12. Power counting
shows that the left loop is of order

d42
— (2.30)

IQH
for all 2% (¢ MZ.

R convenient Way to separate the low energy and high energy
contributions is to subtract out the value of the right loop at zero
external momentum. This is shoun schematically in Fig. 13. The first
pieces now behave like

d¥e
— (2.313

L2

and contributes only for £ ~ M., This can be considered as part of the
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integr;tion of the large mass degrees of freedom. The second part
involves only light lines and is logarithmically divergent. 1t is just
the contribution in the effective light theory of a previoué]y computed

S.S. breaking operator. This procedure can be generalized. The

resulting logs can be treated by the usual renormalization group method.

Pouer counting shouws that the effective low energy theory has no
quadratic divergences. The effective supersymmetiry breaking operators uwe
have found all on Girardello and Grisaru’s list of soft breakings.!'? The
only logarithmic divergences of the low energy theory are supersymmetric
wave function renormalization and renormalization of the effective

supersymmetry violating interactions.

The models we have thus far considered have no particles with mass ~u.
Generalizations can contain intermediate mass particles. In particular
in Witten’s inverted hierarchy scheme!'S particles of mass ~i couple
directly to the light and heavy sectors but not to the supersymmetry
breaking. These particles do not affect the above analysis. To see this
first consider graphs with internal intermediate mass lines involving
only L lines externally. These graphs are supersymmetric and by the GRS

theorem only renormalize the wave functions of the low mass fields.

6raphs which couple to external Fyx are small as before. For example
consider the graph in Fig. 14 involving intermediate mass particles I.
This makes a mass renormalization for L from the operator (Q*Qﬁ*f)g.
This graphs can be analyzed by the same method as Fig. 12. 1Its

coefficient is of order
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-~ Afn [ —_ ] (2.32)

(4m2)2M2 w2

Apart from the log this has the same order of magnitude as other two loop

diagrams involving only heavy lines. The logs can again be summed with

the renormalization group.

Another mass term of order p that might be present (and generally is
in inverted hierarchy models) is the mixing between the heavy and light
fields: géf. Figure 15 gives rise to the supersymmetric mass term
(uzlﬁ)(ff)p. This is an F-term but is not forbidden by the GRS theorem
because it is a tree level graph. Figure 16 induces g(u2/M2)(L{R)F which
leads to the mass term g(pu*/M2)LZ. This is the same mass term induced at

one loop in Fig. 6, but the coefficient here is larger unless the mixing

is small.

The mass term puBL could have been absorbed by a small redefinition of
B and L. Then Fig. 16 appears explicitly in the Lagrangian as a small

[0¢pZ/M23] Yukawa coupling betuween the 1ight fields and Goldstino field.
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3. EXAMPLES WITH GAUGE FIELDS

A simple model involving light gauge fields utilizes heavy aajoint
fields B, € and a singlet Goldstino field . The light fields are the
gauge field V and some matter multiplets L in the fundamental and' K in
the antifundamental. The superpotential is

n2
Tr { g [ BZ - — ] + MBZ + M/CB + gB3 } + gKkBL (3.1)
g

In addition the action involves the usual gauge couplings to the gauge
bosons anq fermions. The gauge coupling is denoted e. Our goal is a low
energy theory containing the superfields V, {, and K. As before there
will be soft explicit violations of supersymmetry. Much of the
discussion is the same as Section 2.

In particular the scalar masses LL, LL* and the interaction LF¥ are
induced with the same order of magnitude. The dangerous terms linear in
L are now excluded by the unbroken gauge symmetry. If there were no
direct couplings kKBl (as may be the case in left-right asymmetrical
theories) scalar masses wWould still be generated by two loop graphs such

as Fig. 17. The resulting order of magnitude of their masses is

_ - (3.2)

In this diagram the significant contribution occurs when all lines have

momenta ~M. Accordingly it is treated as part of the high energy

integration.
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A phenomenoclogically important question is the gaugino mass. Since

this necessarily breaks 3.8. it must proceed via heavy intermediaries as

in Fig. 18. The resulting operator is

(X Vo Dz o ¥p (3.3)

where the D’s inside parentheses denote covariant derivatives.!’
Giving X its v.e.v. yields

— + — 2 (3.4)

Here A = gaugino field. Houwever, careful inspection shous that the
actualfcoefficient of this graph is zero. In Appendix A We have proved
that the one-loop contribution 1o gaugino masses.vanishes'identical\y in
a class of theories of this type. This is not so in theories uwith
superheavy vectors - see Section 5. Tuwo loop diagrams give gaugino

masses of order

e293

=

—— e (3.5
(4n%)2 M

Finally if the low energy gauge group contains U(1) then the Fayet-
Iliopoulos D-term Vp can be induced. It is not produced directly as a

counterterm in the supersymmetric Lagrangian. Houever the operator

(0% g &% %)p (3.6)
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is not exciuded by any general theorem. Giving X its v.e.v. yields

(Vip (3.7)

with coefficient ~(eg?2/4n2) (p¥/M2).

To summarize, uwe get the same general pattern here as in Section 2.
Integrating out the heavy fields and replacing % with its v.e.v. lgads to
a variety of supersymmetric and nonsupersymmetric effective interactions.
The coefficient of the effective interaction is aluays p?/M to a pouer,

times coupling constants (except for the case of the light singlet matter

field).
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4. THE GOLDSTINOG SECTOR

The operators which induce supersymmetry breaking in the low energy
theory also determine the couplings of the Goldstino. As an example

consider the operator

g‘l

(2% % [* {)p (4. 1)
LWZMZ
which was produced by Fig. 5. The term proportional to Fyx¥Fy gave a mass
splitting 6m? ~ g*p*/4n2MZ. The term proportional to Fy¥¥y is
g4p2 Am?2

Ve YL L¥ ~ —— oy P L¥ (4.2)
4n2mM2 e

This is just uwhat the Ward identities of broken supersymmetry require.
-The coupling of the Goldstino ¥y is proportiona]nto the effective
supersymmetry violation &m?%, and inversely proportional to the

supersymmetry breaking v.e.v. Fyx = n2.

It is interesting to consider also operators containing only X. The

diagrams in Fig. 19 give rise to the operators

92
— (X% Xp (4.3a)
4q2
93
(8* £ Dp (4.3b)
4nZM
g‘o
(X% % % Dp (4.3¢)
4n2me
g'i
(8% & % Dp (4.3d)
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Inserting the v.e.v. of Fx, (4.3a) becomes simply gZp%/4nZ. It is a
correction to the vacuum energy., The method used in this paper is easily

applied to the calculation of the vacuum energy (effective potential) in

these models. This will be published separately.?20

At Fx = n2, (X*XX)p becomes w*X. It represents a shift of the scalar
component of X. In the state which minimizes the effective potential,

the coefficient of this operator must vanish.

At tree level the Goldstino superfield X is massless. The Goldstino

itself remains massless (ignoring gravity). The operators (4.3c) and

(4.3d) give rise to

9" pt
_— . —— X% X (4.4)
42 M2z
and
gt T
—_— s - X2 (4.5)
4q2 M2

which are masses for the X scalars. They are of the same order as the

masses in the lTow energy sector.

In all examples so far, the Goldstino uwas part of a chiral superfield
%. In Appendix B we briefly consider models in which S$.5. is broken by a

D-term, so that the Goldstino is part of a gauge multiplet.'®
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5. THE INVERTED HIERARCHY

Witten’s inverted hierarchy model?!S prbvides us Wwith an kspecially
interesting example, in which the superheavy scale M is spontaneously
induced by radiative effects. The particular example is due to
tinsparg?! and consists of an SU(2) gauge theory with gauge superfield V,
ta = 1,2,3) coupled to adjoint chiral fields Y5 and By, and a singlet Z;

the superpotential for the chiral fields is

A B-Y + g2 B-B - g2 p2 (5. 1)

with 29 > A. The gauge interactions of the chiral fields are contained

in the gauge invariant kinetic enerugy,

(B% eV B + Y% eV § + % eoV [ + 2% 2)p (5.2)

where V is a matrix in the appropriate representation.

The full scalar potential is minimized at

22 f72
(B3> = { 1 - ]
292
(B1,2> = O
(5.3)
2g A2 Y 1/2
<Y = ——[1-———-] 2>
p 2g2
1,20 = O

The expectation value of Z is undetermined at tree level. Follouing

Witten we assume that quantum corrections produce a minimum at a value



- 22 -

{Z> such that

An (. (2>/n ) ~ 1rg?

uhich for small couplings makes <Z> many orders of magnitude larger than

. The nonvanishing auxiiiary fieids are
l.LZ;\‘Z
(Fz2? =
29

(5.4)

Az Y172
(Fyg> - p2A [ ] - ]
292

The supersymmetiry is broken at order p.

One linear combination of 2 and Y3 has a vanishing expectation value
for both scalar and auxiliary components - we call it U:
o = ?3 cos8 - Z siné (5.5

uhere

cosB = A(d4g? - A2)-1/2 (5.6)

The other linear combination

T = ¥, sing + Z cosh (5.7)
has
i 492 YV1/2
Ty = > | — -1 = M
LAz
(5.8)
¢ AZ Ytr2
CFpy = a2 | 1 - — = f
L 492 )
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The expectation value of Y3 breaks the gauge symmetry to U(1) at the
large scale M. To see the spectrum it is convenient to use a unitary

gauge !

¥4 = ¥, = 0 (5.9)

and to shift away the scalar tield expectation values

¥ = T-n
' (5.10)
Ca = Ba - 833 (B3>
The superpotential becomes
g cosb RC-¢ - R + aM cosfB ¢-¢
+ A cos® UGy - g sin® UC-C (5.11)

This has the same general form as the superpotentials studied in previous
sections. The important piece from the kinetic Lagrangian is that for

the large fields Z and Y3. In terms of the new fields 1t is
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{ ] R cos - 0 sin® + M cosh |2
+ (e®V)55 | X sine + 0 cos6 + M sing |2 }p
= | X% + 0%0 + 2M2 e2 sinze (V.2 + V,2) }p

+ interactions (5.12)

Here ¥ is in the adjoint representation:

(pe = =~ 2iV, €ape (5.13)

The only supersymmetry breaking expectation value is Fx. From (5.11),
(5.12) and (5.13) we see that all vertices involving % also include V4,
Vz, or C. These fields are all superheavy. Thus, to bri?ge between the
gupersymmetry breaking and the light fields aluays requires intermediate
states uith superheavy fields. This comes about because the auxiliary
field expectation value and the undetermined scalar expectation value

uere in the same superfield T. This is a fairly general property of

0’Raifertaigh supersymmetry breaking.

This model does contain a tight neutral field 0 which can mix with X.
This is not dangerous because U couples to the other light fields only

through superheavies.

The light sector in this model consists of the light matter field £
and the unbroken Abelian gauge field 93. The L scalars get supersymmetry
breaking masses from graphs mediated by heavy vector fields such as

Fig. 20. This induces
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el

(L* £ X* %p (5.14)
472 (eM sinB)?

The photinos can get mass from loops of heavy gauge and heavy ¢
fields, as shouwn in Figs. 21 and 22. These graphs have been caicuiated
in the supersymmetric Rg gauge of Ref. 22. The photino mass is

20242 etf2 e2f?

+ - =
872 M Jgauge loop 8nZM J € loop 81IM

and the sort of cancellation found in Appendix A does not quite occur.
This mass can also be obtained from a low energy theorem for

spontaneously broken R-symmetry.Z20
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6. CONCLUSIONS

What we have shoun in this paper is that a class of model exists in
which supersymmetry is broken at a scale p intermediate betuween a
superheavy mass M and a light scale p2/M. The breaking of $.S. manifests
itself in the light world through explicit violations with a strength
characteristic of the light scale. Most of the machinery of the
supersymmetry breaking mechanism is hidden at the superheavy scale. In
practice, this suggests a phenomenological explicitly softly broken lou
energy theory, which could contain nothing more than the quarks, leptons,
SU(3IXSU(2IxU(1) gauge fields, and twuo Higgs doublets, plus their
supersymmetric partners. Explicit masses of order p2/M would be:

1. Supersymmetric mass terms fo? the Higgs doublets.
2. Supersymmetry violating gaugino mass.
3. Supersymmetry violating scalar masses.

The only supersymmetry viclating interaction is a trilinear scalar

interactions from [L*LJr. Curiously, the constraints on the explicit

breakings are the same as in Ref. 19.

To calculate the actual value of the S.S. violating parameters
requires a detailed knowledge of the superheavy sector, perhaps including
gravity. Exchange of gravitons and gravitinos of momentum near the
Planck scale should induce the same operators we have discussed with Mg
in place of the superheavy scale. Unless the superheavy scale is
significantly smaller than My, gravity cannot be ignored. In fact, if
all other interactions connecting the Goldstino fto normal matter were

turned off or made very small, gravity would still connect the tuo.
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Indeed, one definite effect of gravity is to combine the Goldstino and

the gravitino inte a spin 372 particle of mass (4n/3)'/2 p2/M,. 23

The fact that the Goldstino and its scalar partners are massive has
cosmological implications, as noted by Weinberg2' and Hung and Suzuki.?25
Assuming that they are in thermal equilibrium in the early universe, they
would dominate the mass of the universe at helium synthesis temperatures
unless they had already decayed. This gives a lower bound on the S.S.

breaking scale of ~10'' GeV, consistent with our S.S. breaking scale.
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APPENDIX A

THE ONE LOOP GAUGINO MASS

Consider a Lagrangian of the form

A

R(BiBsgiy - w2y + My;BiB; + 2N;;38:85 + Py;0:C; (A. 1)

where éi and C; are a collection of chiral fields (i = 1,...,n). For
convenience we take them all in a real representation of the gauge group
6 - the argument is trivially extended to arbitrary representations. The

condition for S.S. to be broken is

Pi; =0 H Nij nonsingular (A.2)

The mass matrix then has the form

B ¢
r l N\
B M | N
——————— = H (A.3)
|
c N* 0
b l P

- - = I - - = 6 (A.4)

Let £ be a matrix which diagonalizes M and define
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& me

1]

M’ , diagonal (A.5B)

G 2!

G’ (A.B)

In the one loop gluino mass graph, Fig. 18, the gauge vertices are

always diagonal. By dimensional analysis the total contribution is
1
Z G’ = Tr L G672 (Y ']
= Tr L6 Mt ] (A.7)
From (A.3) it follows that
0 (N*)- !
R T (A.8)
N- 1 -N-V M(NY)-!
\ | 7

and from (A.8) and (A.4) uwe see that (A.7) vanishes.

This cancellation is curious. It takes place only at zero gluino
momentum, and the condition that it take place is precisely the
condition, (A.2), that supersymmetry be broken. 1In general it appears to
be accidental (though for a special case, see Ref. 20) and we know of no
reason for the two loop graph to vanish. 1In the case that some
eigenvalues of N are small (order p), some mass eigenvalues are order
wZ/M.  The cancellation then appears after adding the effect of the light

loops to the effective operators from the heavy loops.



- 30 -
APPENDIX B

SUPERSYMMETRY BREAKING BY D-TERMS

In this Appendix uwe consider some general features of models in uhich
the S.S. breaking at scale p is due to the Fayet-Iliopoulos mechahism.!®
A toy model has a low energy gaudge symmetry 6 and an additional U(1)’
gauge symmetry, with superfields V2 and V’ and couplings e and e’
respectively. There are heavy matter superfields B, gith
(6 representation, U(1)7 charge) = (R,+1), and C, with (R,-1), and light
superfields L with (r,0) and K with (¥,0). The Lagrangian consists of
the usual kinetic terms with minimal coupling, plus

. MIBCYF + M(B¥T¥)py + pn2(V/)p (8. 1)
The Tast term is the Fayet-Iliopouios D-term for the U(1)f gauge

~

symmetry. The auxiliary fields for V’, B, and C are given by

D’/ = -p? - e’ (B¥B - (¥*()
Fg* = - MC (B.2)
Fc*¥ = - MB

These cannot all vanish. For p <{ M, the scalar potential is minimized
at B = ¢ =0, and the only S.S. hreaking v.e.v. is D’ = -uZ. The gauge
symmetiries are unbroken (we assume L = K = 0, since this is undetermined
at tree level). Because the U(1)’ gauge invariance is unbroken, '

effective operators must be gauge invariant. Since all light fields are

neutral under U(1)’, the effective operators can only depend on the field
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1

strength

N7q = = — D2 Dg Vs = - Bq 12 (B.3)

The Vight gauge and matter fields couple to D’ only through the heavy

fields B and €. The graph in Fig. 23 induces
e2 e’2 A . X o,

(W3 W7a Hgd W/R)Yp (B.4)
4z MH '
Inserting (B.3) this becomes a supersymmetry violating wave function
renormalization, with negligible dimensionless coefficient of order
(L/M)%.  The operator [W3® {ig® {I’P {I’a1F, which leads to a gauge fermion
mass, ;s excluded by an R invariance. If additional fields are added to
break the R invariance, a two loop gaugino mass 6f order

gZ el p’2 L}

=

(B.5)
(4n2)2

pc 4
[3)

can bhe produced.

The light matter superfields couple to the supersymmetry breaking only
at tuo loops, through light gauge bosons. Direct coupling of the light
matter fields to B or € is absent in this model, because it would restore
unbroken supersymmetry. Figure 24 gives rise to the operator

et a7t

(4n2)zpMs

(f% { Qo frg 7 078y (B.6)

which, using (B.3), becomes a light scalar mass of order
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e?2 e’2 T

. (B.7)
4n? M3

The masses (B.5) and (B.7) are much smaller, for given p and M, than
those found in models uith 0’Raifeartaigh breaking. The S.S. breaking

scale p can be much closer to M than in those models.

Other effective breakings can be induced if fie]ds»are added to break
the R-symmetries of this model. Thé coefficients depend on how this is
done, bul they are generally comparable to (B.4)—(é.7). One interesting
operator, which can occur if there is a light field L® in the adjoint

representation of 6, is (H®’ Hg? L®)¢

i .
(8% Nga L) = — A% y 2 + pa L@ T (B.8)
2
It gives a Dirac mass, mixing the 1ight gauge and matter fermions, plus a
mixing hetween matter scalar and gauge auxiliary fields. Pouwer counting

and spurion analysis'? shous that it is soft in the sense of Girardello

and Grisaru, uhereas the tuo pieces AV and DL are separately hard.

Actually if 6 has a U(1) factor, there is one more operator uhich
duarfs all other effects. The graph of Fig. 25 gives
ce’ eZ er? uZ

W% Wl » ——m— D (B.92)
4n2 472

which is a Fayet-Iliopoulos term for the low energy U(1), with large

coefficient. Such a large D term for ordinary hypercharge is not
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acceptable. To make a realistic model one has to imbed hypercharge in a

semisimple group at low energy, or exclude the operator (B,9) by a

symmetiry.

The small size of (B.4)-(B.7) came about because U(1)7 gauge
invariance forced the effective operators to be of high dimension. More
general models could be built if the U(1)’ gauge invariance had been
broken at the large scale M. 1Is it possihble for the D term of a gauge
symmetry broken at scale M to break the supersymmetry by the Fayet-
Iliopoulos mechanism at a much smaller scale? No, it is not. The tree

level vacuum minimizes the energy

E = Y Fi¥ Fj (B.10)
i

The energy is stationary under all variations, including the complex

extension of the gauge group,??
§¢; = g® 1553 ¢35 (uithout the usual i) (.11

under which

§3 F; = g2 1539 ¢
(8.12)

ga pb - (M2)ab 3 ig® fabe pe

where (M2)2P g precisely the vector boson mass matrix. Going to a basis

in which (M2?) is diagonal, 83E(f;,DP) = 0 implies

Y OFi* Ti5% F;
153
D2 = 2g@ (8.13)
(Ma)2
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Since the total energy density is 0(p%), F; £ p2, and for heavy gauge

fields

Ua

I~

— < a2 (8.14)
M2

and the S.S. breaking must be due to some other auxiliary field. This
satisfies our intuition that all components of a multipiet of mass M,

including the auxiliary, should decouple from the physics at much louer

scales.?®

The model of Ref. 11 is not a counterexample to this. There, the
D term of a UC!) broken at high energy has a v.e.v. of oraer 1 Tev. As
pointed out in Ref. 11, though, there is also an.auxiliafb field, F ,
c
with an intermediate v.e.v.. This is an interesting variation on oir
models. The most direct connection betueen RS and the low energy uorld

is exchange of a single heavy gauge boson. Inserting the v.e.v. for

F , this becomes a D term for the heavy U(1),
RC
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FIGURE CAPTIONS

Renormalization of the Higgs boson mass.

Graph contributing to the mass of the L scalar. The X1
represents the order p? splitting of the B multiplet.
Another graph contribution to the mass of the L scalar.
Supergraph containing Figs. 2 and 3.

Supergraph inducing (Lx L %% Xp.

Supergraph inducing (L L &% X)p.

Supergraph inducing (L *¥)p.

Supergraph inducing (Lx L £y,

Supergraph inducing (L X%)p.

Supergraph inducing (L &% Xp.

Supergraph uwith a light internal line.

Tuo loop supergrabh with light internal lines.

Decomposition of graph of Fig. 12 into a high energy piece and
a low energy piece. The heavy circle represents the value of
the right, heavy, loop at zero external momentum.

Supergraph with intermediate mass lines which are designated I.
Supergraph inducing (L E)F. The small circle is the mass term
nBL.

Supergraph inducing (L L XF.

Supergraph inducing (L% L &= 2)0 via gauge lines.

Supergraph inducing (% fg XYp. This is shoun to vanish in

Appendix A.
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Supergraphs inducing operaiors involving X only:

(a) The operator (X% )p.

(b) The operator (8% % p.

(c) The operator (X% X% ¥ X)p.

(d) The operator (X¥ X X ¥)p.

Supergraph
Supergraph
Supergraph

Supergraph

_Supergraph

Supergraph

inducing
inducing
inducing
inducing
inducing

inducing

™

(C* { %% ¥)p via heavy gauge bosons.
(H3® W30 X)fF via heavy gauge loop.
(H3% f3¢ X)F via heavy matter loop.
(e {rg Qg 78y,

(x L Qe g firg W7y,

(Re Q7).
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