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ABSTRACT 

A model for the structure of point-like fermions as tightly bound 

composite states is described. The model is based upon the premise that 

electromagnetism is the only fundamental interaction. The fundamental 

entity of the model is an object called the vorton. Vortons are semi- 

classical monopole configurations of electromagnetic charge and field, 

constructed to satisfy Maxwell's equations. Vortons carry topological 

charge and one unit each of two different kinds o-f angular momenta, and 

are placed in magnetically bound pair states having angular momentum 

R = l/2. The topological charge prevents the mutual annihilation of the 

vorton pair. The helicity eigenstates of the vortons' intrinsic angular 

momenta form the basis for a set of internal quantum numbers for the pair 

which distinguish the different (point-like) pair states. Sixteen four- 

component spinor states, eight leptonic and eight hadronic, are obtained. 

Eleven of these are identified with the quantum numbers of the experi- 

mentally known particles: e, u e, 1-1, vu5 5 vT; ps n, A, AC; and b. 

Thus one new heavy lepton with its neutrino and three new quark states 

are predicted. Some possibilities for the extension of this model are 

discussed. 
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1. INTRODUCTION 

This paper, concerned mainly with point-like fermions, is a first 

step in an effort to develop from electromagnetism alone a model for 

elementary particles and their interactions. Accordingly, the fundamental 

equations of the model are the well known Maxwell's equations. Since 

quantum effects are introduced by applying the Bohr-Sommerfeld quantum 

condition to certain angular momenta, the model is semi-classical in 

nature. The fundamental entity of the model is an object called the 

vorton. (1) It is proposed that what we now call elementary particles' 

are actually composite bound states of vortons. 

This model is most economical at its fundamental level; it has only 

one fundamental interaction and only one fundamental particle, which is 

a (static) solution to the equations of that fundamental-interaction. 

All nonfundamental (i.e., nonelectromagnetic) phenomena are to be governed 

by effective (unrenormalized) equations to be derived from the dynamics 

at a more basic level. It is postulated that the criterion of self- 

consistency will enable the determination of the parameters (e.g., masses 

and coupling constants) in these effective equations. 

1 In keeping with common usage, the word "elementary" will be used to refer 
to the (composite) elementary fermions (e.g., muon, electron, etc.), 
which in this model are elementary in the same sense as the chemical ele- 
ments are elementary. The word "fundamental" will be used to refer to 
the basic equations, from which all phenomena (are assumed to) derive, 
and to the basic building block, the vorton, which is an indivisible 
entity that is conserved at all interaction vertices (because it carries 
an absolutely conserved quantity, topological charge). 
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As'background for this model, it is useful to review some history. 2 

Dirac(7) was the first to speculate about the incorporation of magnetic 

charge into elementary particle theory. He showed that the presence of 

magnetic charge would provide a natural explanation for the quantization 

of electric charge. His quantization condition was 

where e 0 and go are respectively the basic electric and magnetic charge 

quanta and n is an integer. Gaussian units are used here; % and c have 

their usual significance. As is well known, Eq. (1) implies a very large 

magnetic coupling constant. 

Equation (1) may be viewed as a quantization condition for an angular 

momentum which may be associated with the simultaneous presence of the two 
. 

types of charges. That is, if one imagines that e 0 and g o are separated 

by a distance (vector) d, then it is easy to see that there will be an 

electromagnetic (angular) momentum 3 circulating around d. In fact, Saha 

pointed out (9) that Eq. (1) can be 

ing the Poynting vector and thence 

in the (crossed) electric field of 

of a point pole go, separated by a 

derived quite simply by first calculat- 

the classical angular momentum residing 

a point charge e. and magnetic field 

distance d, and then quantizing this 

2 
An excellent review article on Dirac monopoles, coverin both theory and 
experiment (up to 1968) has been published by Amaldi. (27 Experiment to 
1975 is covered by Eberhard et a1.(3) Stevens(b) has compiled a useful 
bibliography on this subject. 
tabulated by Jones,(5) 

Recent experimental searches have been 
and recent theoretical developments are covered 

by Goddard and Olive.(G) 

'That (classical) angular momentum can reside in the static electro- 
magnetic fields due to electromagnetic sources has been known since 
Poincare.(8) 
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angular 'momentum in units of ?i/2. (The angular momentum is a function of 

the charges alone and not of d.) This type of angular momentum will be 

referred to as the Poincar6 angular momentum, L P' 

A considerable period of time elapsed before the next step was taken, 

the consideration of a particle carrying both electric and magnetic 

charge. (10) Schwinger coined the name "dyon" for this entity of dual 

charge, and went on to develop "A Magnetic Model of Matter. I, (11) 

Schwinger's quantization condition relating electric and magnetic charge 

is 

elg2 - e2gl = n&c , (2) 

where the 1 and 2 denote two dyons and n is an integer. In his model, 

dyons are endowed with spin l/2. His dyon electric charge assignments 

parallel those of conventional quark models (*e/3- and +2e,!3), and he com- 

bines dyons in threes to form the hadronic fermions. Hadrons in his 

model, then, are magnetically neutral composite particles whose strong 

interactions derive from the superstrong magnetic force. (12) 

A variation of the Schwinger dyon model has been suggested (13) which 

entails a modification in the relationship between the electric and 

magnetic SU(3) symmetries. It, like Schwinger's model, uses a total of 

18 basic entities (9 dyons and 9 antidyons), combining them in essentially 

the same way as Schwinger to form the hadronic baryons and mesons. 

It is also appropriate to mention the dyon model of Barut. (14) His 

dyons are spinless and are electrically quite different from the vorton. 

The major similarity between his model and this one is that he combines 

dyons in pairs with orbital angular momentum R = l/2 to form (the hadronic) 

fermions. He has no explanation for the hadronic flavors and does not 

apply his dyon model to the leptons. 
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More recently, there has been considerable effort investigating the 

monopole solutions found by 't Hooft (15) and Polyakov. (16) It is important 

to note that the monopole nature of these solutions derives from the non- 

Abelian character of their associated gauge theories, while the vorton is 

a constructed solution to the (Abelian) Maxwell's equations. 4 Hence, there 

are essential differences between the 't Hooft-Polyakov monopoles and the 

vorton. 

In the following sections, the vorton and the magnetically bound vor- 

ton pair state are described. This tightly bound pair state is identified 

with the (elementary) point-like fermions. Since this model uses the 

same basic- structure for the point-like aspects of both leptonic and 

hadronic fermions, a consistent, unified picture is obtained. While 

in this-model, the point-like leptonic fermions are identified directly 

writh the physical leptons (e, 1-1, r, etc.), the point-like-hadronic fermions 

are identified with the point-like spin l/2 partons (17) as the elementary 

fermionic constituents of the hadrons, which are in turn composite struc- 

tures of a more complicated nature. These partons carry the various 

quanta of flavor which are attributed to the quarks. The structuring of 

the hadrons into the SU(4) mesonic and baryonic multiplets analogous to 

those of the quark model thus requires an additional level of dynamics 

which is not discussed in this paper. 

Finally, a brief discussion of particle interactions is-included. 

Self-interactions are designated as the (dynamical) source of particle 

masses. While it is evident that QED can be (phenomonologically) 

4 While the 't Hooft-Polyakov monopoles need not have an associated elec- 
tromagnetic charge as such, but appear to have one as a result of topo- 
logical properties of the non-Abelian vector potential At, the vorton 
derives its monopole character specifically from the presence of the 
postulated electromagnetic charge distribution.(l) 
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incorporated directly into this model, only qualitative arguments are 

given on how the other interactions might obtain. 

At present, it is a matter of subjective judgement whether or not 

having simplicity of foundation and a qualitative outline of particle 

multiplet structure furnishes enough motivation to tolerate the obscurity 

due to the complications of quantitative calculation. While it is clear 

that much work remains to be done, the results obtained to date are cause 

for some optimism. And, although certain aspects of it are speculative, 

it seems timely to present this paper with the aim to stimulate a broader 

interest in this approach. 
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11. THE VORTON 

The fundamental building block of this model for point-like fermions 

is an object called the vorton. Its analytical basis and salient features 

are reviewed in this section; further details of its construction and 

underlying analysis may be found in Ref. (1). Quantum mechanical cor- 

rections, not covered in Ref. (l), are also estimated (in Appendix A). 

The vorton is a static semiclassical configuration of electromagnetic 

charge and associated fields constructed to satisfy generalized Maxwell's 

equations. This generalization, which derives from a symmetry first 

pointed out by Rainich, (18) is one which treats the electric and magnetic 

parts of the field tensor on an equal footing, (19) and the straightforward 

extension to include both electric and magnetic charge. (=, 20, 21) Thus 

a vorton has an electromagnetic charge of magnitude Q at -an angle 0 which 

specify its electric and magnetic components of charge by 

Qsin0, QcosO (3) 

respectively. 0 is essentially the dyality angle employed by Han and 

Biedenharn, (21) and the symmetry with respect to 0 will be called the 

dyality symmetry. 

As will be seen, different vortons can have different values of Q 

and 0. These values of Q will not, in general, satisfy Eqs. (1) or (2) 

with any observed value of electric charge; thus the expected value of 

the Poincare angular momentum (measured by n) will be nonintegral. While 

this might appear to be a problem, in fact, the rigorous requirement of 

a quantum condition upon the magnetic monopole strength [i.e., Eq. (1) 

or (2)1 is subject to serious reservations. (22) The view adopted here 

is that the relationship of free vortons to other particles is non- 

stationary, and analogous to the orbital angular momentum of ordinary 
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5 
scattering states, Lp need not be quantized; i.e., the Q of free vortons 

is unrestricted by a quantum condition involving other particles. In the 

context of our semiclassical approach, one notes that for free vortons 

there are no cyclic action variables to which one could apply the Bohr- 

Sommerfeld quantum condition. On the other hand, as discussed in Sec. III, 

the bound vorton pair is a stationary state which does have such a cyclic 

variable and to which it is assumed that Eq. (2) does apply. 

The reference direction for 0 is furnished by the electrical charge 

of physical fermion states, but since fermions in this model are composed 

of bound vortons, the selection of this reference direction is, in fact, 

a.spontanebus breaking of the dyality symmetry. One expects this symmetry 

breaking to lead to a Goldstone boson, (24) which it seems appropriate to 

call the Rainon. 
. 

Rainons are oscillations or waves in the vacuum dyality angle 0 

about its quiescent or ground state reference direction 0 O( since we 

define fermions to be electrically charged, O. = 7r/2). Physically, a 

Rainon is a collective excitation of the vacuum (Dirac sea fermions), 

very much analogous to a phonon, which is a collective excitation of 

lattice nuclei. 

The possibility exists that via a Higgs mechanism (25) the Rainon 

and the photon may combine into a three component vector particle, or 

physical photon of very small mass, which could then permit the non- 

conservation of electromagnetic charge. In this model a nonzero 60 E 

o- O. (associated with the Rainon) would enable the vacuum (fennions) 

5 Recall, for example, that a plane wave has an undefined orbital angular 
momentum about an arbitrary point, 
waves(23) 

but is expandable as a sum of partial 
each of which carries an integral quantum of angular momentum. 
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to carry incremental values of electromagnetic charge, facilitating such 

nonconservation of charge. While it has been shown that vertices at 

which charge conservation is violated by a finite amount have a vanish- 

ing probability, the possibility of an infinitesimal violation was left 

open.(26) The vorton solution and the fermions constructed from vorton 

pairs offer this latter possibility, but the details are not explored 

here. The experimental upper limit on the photon mass is quite small, (27) 

but, of course, it is not possible to determine experimentally that the 

photon mass is identically zero; at present, this question remains moot. 

The construction of the vorton was motivated by the invariance 

properties of Maxwell's equations. In addition to having the dyality 

symmetry mentioned above, it is well known that Maxwell's equations are 

invariant under the operators of the conformal group, a group with 15 

generators. These include the ten generators of the Poincar& group, M 
I-iv 

and P 
1-I' 

where u,v = 0,1,2,3, as well as five additional ones: K 
1-1' 

the 

generators of special conformal transformations, and D, the generator of 

dilitations. The conformal group in Minkowski space has been shown to be 

isomorphic to the group 0(4,2) in a six dimensional pseudo-Euclidean 

space. (28) 

The vorton charge distribution is constructed to be invariant under 

the subgroup of the conformal group generated (in the t = 0 Euclidean 

3-space) by the six operators Li and Xi, where i = 1,2,3. L. = Mjk, 1 

i,j ,k cyclic, are the generators of ordinary rotations and Xi = (Ki-Pi)/2 

generate in the t = 0 Euclidean 3-space what might be called toroidal 

rotations, resembling the motion of a smoke ring. Li and Xi obey com- 

mutation relations isomorphic to those of O(4). Since [Li,Xi] = 0, no 
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summation over i, one can simultaneously diagonalize L 3 
and X 3' The 

eigenvalues of L3 and X3 have been shown to be both integer or both half- 

integer. (29) The eigenvalues, respectively labelled m 
(9 

and m 
$' 

denote 

the projections of ordinary angular momentum and toroidal angular momentum 

on the z-axis. The vorton is assumed to be in a state of "double 

rotation," and thus it carries quanta of the two different kinds of angu- 

lar momenta, the usual angular momentum, which might be called spin, and 

a toroidal angular momentum. 

In keeping with the semiclassical nature of this model, it will be 

assumed that m 6 
0 

and m 
$ 

are integral. When ";"3;)rn+ # 0, the vorton 

carries a nonzero topological or Hopf charge Q,* Specifically, 

- 
Q,=m~m~=m~m$=Cm~mg , (4) 

where C is the largest common factor in m 
4 

and m ; i.e., m' and m' 
$J 4 $ 

are 

relatively prime. Equation (4) shows that the QH of the vorton can take 

on an infinite set of possible values (the integers), indicating that it 

is additive modulo infinity. (Recall that the topological charge of the 

monopole in 't Hooft's SO(3) model (15) was additive module 2.) 

The condition 

(5) 

defines the "ground state" vorton,the one with the lowest value of Q having 

also a nonzero value of Q,. Equation (5) then specifies 

Q, = +l , (6) 

6 One could not define a topological charge for half-integral m or m . 
Also, see footnote 9, below. + l4 
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the sign being determined by the relative sense of m 
+ 

and m 
JI' 

The ground 

state vorton will be used as the fundamental particle of this model. 

From the assumption that mass is dynamically generated by self- 

interactions, the "mass" of the vorton is taken to be equal to the total 

energy (over c*) contained in the electromagnetic field, which is given 

where a sets the scale of the vorton's toroidal coordinate system. (31) 

Equation (7) means that vorton mass goes inversely with size, very 

small vortons being very massive; there is no intrinsic scale or mass 

associated with the semiclassical vorton. 

In Appendix A is given a recapitulation of the analysis in Ref. (1), 

which shows that in semiclassical approximation Q satisfies 

Q2 = ~4 d- die , (8) 

independent of the vorton scale a. Using Eq. (5) and e2/%c = c1 Z l/137 

yields Qi 2 4.87 %c and 

Q, G 25.8e , (9) 

where the subscript on Q, indicates that this is the asymptotic value of 

Q for a ground state vorton valid for a >> X e' the (reduced) Compton 

wavelength of the election; e is the positron charge. 

Once a < %e, one expects that there should be quantum mechanical 

corrections which would cause the Bohr-Sommerfeld quantum condition to 

entail an a dependence. This a dependence, which turns out to be an 

important feature in this model is investigated in Appendix A. Thus one 

writes 
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Q2 = Q2(a) . (A-1) 

It was found that initially Q2(a) tends to drop slowly (logarithmically) 

and then at extremely small scale can be expected to rise fairly rapidly. 

In the range X < a < Xe 
lJ 

2 

Q2(a) 2 QO 
1 + Rll(a) ' 

(A-18) 

where Rll(a) is a Uehling potential function due to electrons in a vacuum 

polarization loop (Fig. 1). When one goes to sufficiently small scale, 

such that all N f point-like fermions that electromagnetically couple to 

the photon are active in the vacuum polarization loops (and sums over all 

concatenations of such loops, Fig. 2), then one has the approximation 

Q2(a) 2 Qi (A-23) 

where A =%/a is the momentum associated with the scale a, and G is the 

r.m.s. mass of the N f fermions. (As will be seen below, this model 

predicts that Nf = 8.) Finally when at extremely small scale, beyond the 

Landau singularity(32) at PL, where PL is defined by 

Nfa 
--SF Iln 

PZ 
z=l ' 

the photon propagator cuts off, 7 and one has 

(A-24) 

7 The cutoff at PL is a crucial feature of this model. The assumptions 
which lead to this consequence are listed in Appendix A; the reasoning 
behind them is covered in more detail in Ref. (33). 
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(.A-33) 

Q2(a) as given by Eqs. (A-18, 24, and 33) is depicted in Fig. 3. 
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III. +ORT~N PAms 

A. General Description 

In this model, the magnetically bound vorton pair state is the basic 

structure for all point-like fermions. The half unit of spin of these 

states derives from an angular momentum II = l/2 to be described further 

below. This unified structure leads to the same quantization condition 

on electrical charge (0, +l) for all elementary particles, accounting 

for the exact equality of the electric charges on leptons and hadrons. 

Thus, leptons and the (point-like) spin l/2 hadronic partons are bound 

vorton pairs. The quantum numbers (e.g., flavors) associated with these 

point-like fermion states will be associated with the structure of the 

helicity eigenstates of the (bound) vortons. The hadronic fermions 

(e.g., protons, neutrons, etc.) are more complicated objects to be . 

described more fully in a later paper.8 

The mutual annihilation of the vortons in these pair states is pre- 

cluded by the conservation of topological charge. This will come about 

if both vortons of the pair have the same QH. Thus Q, = +2 for fermions 

and -2 for antifermions (or vice versa). Fermion and antifermion (of the 

same flavor), having a total Q, = 0, can mutually annihilate. 

B. Electrical Charge 

It is assumed that the bound vorton pair is represented by a 

stationary state eigenfunction in which the electromagnetic charges 

8 The quarks will be described as coherent collective states of the in- 
tegrally charged partons, accounting for quark confinement inside hadrons 
as analogous to the confinement of phonons inside solids. 
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satisfy' Eq. (2); i.e., consistent with a semiclassical view, L P = n$ 

is assumed to be integral rather than half-integral. 9 

Since the bound pair is expected to be magnetically neutral, one 

may write 

82 = -gl : 80 l (10) 

Substituting Eq. (10) into Eq. (2) yields 

(el+e2)go = nhc . 01) 

Now (el+e2) is just the total electric charge of the pair. Since the 

bound vorton pair is to be identified with the elementary fermions, it 

is natural. to set 

lel +e21 =eorO . (12) 

The quantity (el+e2) is so far specified only up to a sign. This 

ambiguity will be resolved below through a detailed consideration of the 

structure of the R = l/2 state. 

The electrical charge exhibited by the fermions in this model 

derives directly from the electromagnetic charge Q (at some angle 0) 

carried by the constituent vortons, which, using Eq. (3) gives 

go = QBcosOB 9 (13) 

and 

e = 2QBsin0 
B ' (14) 

where the subscript B denotes the final bound state configuration after 

the collapse process described in the next section has been completed. 

Using Eqs. (11) through (14) with n = 1, one finds that 

9 
As is logically simpler, only one physical aspect of the model (i.e., 
the R = l/2) is associated with half-integral angular momenta. 
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137.038 (15) 

and 

hC OB = ?j arc sin 2 = 0,209O . (16) 

QB 

We observe that as required by Eq. (15), Qi/%c Z 137 is indeed avail- 

able at scales on the other side of the Landau singularity (see Fig. 3). 

Equation (16) shows that only a slight shift of 0 away from the pure 

magnetic values, 0 and T, suffices to give us electrically charged fermions 

with the appropriate electrical charge; for the neutral fennions, of course, 

n = 0 with 0 = 0 or 1~. In this way both electrically charged and neutral 

(point-like) fermions have the same basic structure and are magnetically 

bound by (essentially) the full value of Q,. It will be argued below 

that only n=O, +l are allowed in the R = l/2 bound pair states. 

C. Spatial Scale 

When two vortons of opposite electromagnetic charge enter into a 

bound state, one expects it to be tightly bound; Q, is already a large 

charge. In fact, 2 since Q fit = 4.87 > 1, one expects from general argu- 0 

ments that this bound state will collapse. (34) As the state collapses, 

the reduction in scale would apply to the vortons themselves as well as 

to the intervorton distance. As the collapse proceeds, then, this 

reduction in scale is assumed to induce, due to the quantum mechanical 

corrections discussed in Appendix A, a change in the vorton charges. 

The ultimate bound state configuration has Q = Q,, the scale of which is 

given by the Landau length RL. 
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It'is not clear what mechanism would stop this collapse process at 

N RL. One possibility is that a new phenomenon, not included in this 

model could enter the picture. As one looks at smaller and smaller 

scales to find this new phenomenon, the possibility of the Planck length 

Rp = (%k/c3)1'2 = 1.616 x lO-33 cm, where k is the gravitational constant, 

suggests itself. This would imply that the gravitational force may play 

a role at a very small scale(32); RP is -20 orders of magnitude smaller 

than a hadron (and possibly related to RL). Discussions of possible 

phenomena at this scale may be found in the literature. (35) 

Another possibility, which is more in keeping with the precepts of 

this model, is that the limit of collapse arises from phenomena already 

contained in the model. Since an ultimate resolution of this question - 

by the latter means is not essential to the other aspects of the model 

discussed in this paper, this topic will not be taken up here, 

D. Angular Momentum Eigenfunctions 

The fact that in the tightly bound state, the vorton sizes are 

expected to be comparable to their separation furnishes an additional 

degree of rotational freedom; in classical terms, there are three signi- 

ficant (and comparable) moments of inertia. As a consequence, the bound 

vorton pair is appropriately analyzed as an object in a state of general 

rotation" requiring for a proper description all three Euler- angles, 

a B Y, rather than in one of simple orbital motion, which requires only 

10 It is assumed that there is a rest frame in which to describe this 
rotation. Such a frame becomes conceptually possible through the 
existence of a very small bare mass m. which is associated with each 
point-like bound R = l/2 vorton pair. See Sec. V below. 
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two. To obtain this description, one writes the eigenvalue equation for 

a general angular momentum (36-38) 

L2qJ = -jj2 [ a2 - + cot 6 aB a+- - 1 a2 

u2 
2 ( 1 +a2- - 2~0~6 a2 

sin 8 aa ay2 sin28 aah * I 

= a(R+l)* , (17) 

where a and f3 can be thought of as equivalent to the usual angles (p and 

6 of spherical coordinates and y is the angle of (body) rotation about 

the figure axis. 

It is well known that Eq. (17) is the quantum mechanical equation 

for the symmetric top (36,39) which has for solutions the matrix elements 

cd m,m(a,B,y) of the general rotation operator D(a,B,y)." In likening 

the bound vorton pair to a symmetric top, one observes that the location 

of the two vortons will define the axis of symmetry, or figure axis, for 
. 

the configuration. 

The gi,, are irreducible representations of the rotation group 

SO(3)12 [as well as its covering group SU(2)l and are also known as the 

generalized spherical functions (38) # 
m'm of order R, where 

R = 0, l/2, 1, 312, . . . , 
(18) 

-R < m < R, and -R < m' < R . 

11 This result has been demonstrated as also applicable to the relativistic 
symmetric top. (40) Therefore, while Eq. (17), strictly speaking, is 
non-relativistic, its solutions are valid in the relativistic domain as 
well -- an important point, since in Sec. IVB a "fully" relativisitic 
(internal) motion is attributed to the magnetically bound vorton pair. 

12 In consonance with Wigner's classification scheme,(41) one wants to use 
(for an elementary particle of nonzero mass) one of the irreducible 
representations of the rotation group SO(3). 
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The quantum number m is associated with the usual projection of R upon 

the z-axis and m' with the projection of R upon the figure axis (of the 

rotating entity). Of course, m and m' are integral if R is integral and 

are half-integral if R is half-integral. It is of interest to note that(42) 

cz$&w,y) = (-Urn & ( i 
l/2 

$$4) ; 
the G@' m'm reduce to the YT when m' = 0. 

In this model, the half unit of angular momentum 13 carried by 

fermions derives from the assignment of a quantum mechanical R = l/2 to 

our symmetric top. Therefore, for the quantum mechanical description of 

the R = 1/‘2 rotational motion of our tightly bound vorton pair, we shall 

use the functions g $ 
m'm rather than the YF, which have a long history of 

- 
controversy (36,43-46) associated with R = l/2. For example, Schwinger (36) 

observed as an argument against R = l/2, that to use Yy we must, by 

Eq. (19) set m'=O, but that by Eq. (18) m' =0 is incompatible with a=1/2. 

In this model, however, m' =+1/2#0, eliminating that difficulty. 14 

The gIR are of the form (47) 
m'm 

g” = eima d:,,(B) eim’Y . 
m'm 

Substituting Eq. (20) into Eq. (17) yields 

13 The notion that strong magnetic bindin 
ground state has already been proposed 34) 7 

leads naturally to an I? = l/2 
and discussed. A key element 

in that argument was the preclusion by a strong Lamb shift of an S-state 
as the ground level. Since such a (dominant) Lamb shift is absent in 
nuclear and atomic physics, in these cases the S-state is observed as 
the energetically favored ground level (for example, the deuteron or 
hydrogen). 

14 It is also of interest to refer to the paper by Whippman, (44) who 
refutes other arguments against the notion of R = l/2. 
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d2 ' 
d +a(a-l-1) -m 

2 

--T+ cotBz 
- 2 mm'cos 8 + m' 2 

dB sin28 3 
d;,,(B) = 0 o (21) 

The solutions to Eq. (21) are tabulated. 

Since we are interested in R = l/2 we record(48) 

d (8) = cos B/2 5 (22) 

and 

d % 
+ -4 (6) = +'I (B) = sin@/2 , (23) 

which, using Eq. (20) yields four linearly independent R = l/2 symmetric 

top eigenfunctions: 

($5 
+g (Q,e ,y> = ei912 c0s e/2 e b/2 

(24) 

&5 
+-+ (wu) = eDi9j2 sin812 e iy/2 

(25) 

4 
95++ (why) = -ei9’2 sine/2 e -iy/2 

(26) 

4 ca-++ (w,Y) = e+“2 cos e/2 e -iy/2 
, (27) 

where the angles @ and 8 of the standard spherical coordinate system have 

been substituted for a and f3, respectively. It is no surprise that these 

four functions are at once recognized as (essentially) the same as the 

four spinor functions (49) which comprise the Dirac 4-component spinor. 

The only difference is the sense of 4, which comes about because we are 

considering these functions to represent the wavefunction of a physically 

rotating body rather than a result of rotating a coordinate frame, and 

the e Liy/2 
dependence, which is customarily discarded as an "irrelevant 

phase. il(f+9) 
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E. Wavefunction Interpretation 

'/2 The four functions gmlm will be interpreted as wavefunctions 

furnishing the quantum mechanical description of the rotational motion 

of the bound vorton pair, i.e., the point-like spin l/2 fermion. As a 

wavefunction a g % 
m'm specifies by the angles $,O,y the probability ampli- 

tude for the orientation of the body coordinate system of the rotating 

bound vorton pair. This is the natural generalization of a YF which 

specifies by the angles 8 and 0 the probability amplitude for the direc- 

tion of the vector spearation of an orbiting pair. (The YF has no angular 

momentum about this vector separation, whereas the 97 R mlm does.) As with 

the YT, the sense of the direction of ro-tation associated with the GBLlrn 

(in both the lab system x,y,z and in the body system x',y',z') is dis- 

played when one introduces the usual e -iwt time dependence.. The 8 

dependence of the CBaR m,m gives the probability amplitude describing the 

direction of the z' axis when viewed in the lab frame. Using this wave- 

function interpretation, we see that the probability of a spin direction 

measurement for a pair state will equal (cosB/2)L,where B is the angle 

between the maximum of the probability distribution and the quantization 

direction which is being interrogated, as one would expect from conven- 

tional spinor theory. (50) 

% Representations of the four gmlm functions are depicted-in Fig. 4, 

in which the origin of the (rotating) body coordinate frame x'y'z' is 

placed at the origin of the lab frame (x,y,z), and the z' axis is oriented 

in its most probable position. The direction of rotation associated with 

the e -iwt time dependence is also indicated. 
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IV. M~TIPLET ~TRTJCTURE 

A. Isospin 

Isospin structure in the elementary particle table derives from the 

fact that the observed elementary fermions fall naturally into a sequence 

of pairs or isodoublets, one charged and one neutral. The sets in 

this sequence are now known as families or generations. This structure 

is particularly clear in weak interaction phenomena. To see how such 

doublet structure derives from this model, we consider the placement of 

the vortons into the body frame x'y'z'. 

Since the figure axis, or z'-axis, is defined by the vorton locations, 

Lp is quantized along that axis; according to Eq. (2), n = 0, 41, t2 ..* . 

It is easy to see that the sign of n will be given by - 

S =ss n eg , 

where s e is the sign of the electric charge of the pair and s 
g 

is the sign 

of the intrinsic fermion moment due to magnetic charge. (When north is 

placed on z' > 0, s 
g 

= +l.) This intrinsic moment will be present in all 

($2 mlm bound pair functions and will be denoted by uU (U for universal). 

We now recall that m' is also quantized along the z'-axis. Therefore, 

in view of Eq. (18), and noting that R = l/2, it is reasonable to assume 

that 

In + m'l I R = l/2 , (29) 

yielding the restriction n = 0, +l. Furthermore, by Eq. (29) and depend- 

ing upon m', only one sign of n = +_l will be allowed for each g 4 
m'm* 

The (electrically charged) configurations for ]nl = 1 allowed by 

Eqs. (28) and (29) are given in Table I. Using the geometry of Fig. 4 

one can determine that for these configurations, the sense of p 
U will 

always be opposite to that of the Bohr moment uB. 
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Table I shows that when the electric and magnetic charges are taken 

into account, there are eight distinct spinor functions (or components), 

four electrically positive and four electrically negative. (The state 

counting associated with these eight states will be discussed below.) 

Because each of these electrically charges state functions will have a 

companion neutral state formed by setting n = 0, one sees that Eq. (29) 

dictates that the point-like fermions of this model exhibit an isodoublet 

charge structure. Since the R = l/2 magnetically bound vorton pair struc- 

ture of this model is to apply to both leptonic and hadronic point-like 

fermions, this model explains at once the similarities in the leptonic 

and hadronic generations. 

This result implies that, like the charged fermions, the neutral 

fermions, and in particular the neutrinos, are basically four-component 

objects. The notion that neutrinos might be four-component objects has 

been suggested before. (51) Such uniformity of description affords some 

esthetic appeal, and indeed, is a more consistent view since all of the 

quarks are also thought to comprise four components. The two component 

appearance of observed neutrinos, then, would have to derive from the 

(dynamical) structure of the weak interaction rather than be an intrinsic 

characteristic of neutrinos, 

B. Vorton Eigenstates 

The vorton eigenstates are labelled by the eigenvalues belonging to 

the operators Li and X.. 1 In looking for a role in this model for these 

eigenvalues to play, one is led by the appeal of economy to suggest that 

they become internal variables of the bound vorton pair state, and that 

as such they are conserved quantities appropriate to label the particle 
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types (e.g., electron, muon, etc.). While some arguments supporting this 

suggestion are developed below, the reader will bear in mind that a 

better understanding of vorton dynamics is required before it has the 

persuasive support of a proper mathematical analysis behind it. 

The operators Li and Xi satisfy the commutation relations of the 

generators of SO(4). The SO(4) reduces to SO(3) @SO(3) using the change 

in basis(52) 

$+) = 
Li + x. 1 

i 2 

,(-I = Li - 'i 
i 2 , 

(30) 

(31) 

where the H(a) 
i satisfy the usual angular momentum commutation relations. 

E (a) 
aa' ijk Hk ; _ (32) 

6 aa' is the Kronecker delta and E ijk is the totally antisymmetric tensor. 

It follows from Eqs. (5), (30), and (31) that vortons have either 

-+(+I one unit of H -+(-I or one unit of H . Consequently, there is a maximum 

of six distinct "angular momentum" eigenstates for each vorton; three 

will be associated with Q, = +l(H +(+> f o, j-p = 0) and three with Q, = 

-l($(+) I 0, g-) # 0). One also sees that the z and h vectors are either 

parallel or antiparallel, clarifying the nature of the vortons double 

rotation. (The direction of the z-axis is, of course, arbitrary.) This 

colinearity of z and g must remain true for all time because Q H is invariant 

as a function of time. (53) 

Now 

[po'H:i)] = -+ [Po,+Xi]= $ [,,,,Ki] 

(33) 
= k$ (goi D-Moi)#O , 
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where Eqs. (30) and (31), the definition of X., and the commutation 1 
relations for the conformal group (29) have been used. Equation (33) 

implies that one cannot diagonalize the quantities H (2) 
i and energy at 

the same time. It follows, then, that the eigenstates of 3 - do not (+I 

couple as an ordinary angular momentum in the usual way to the other 

angular momenta in the configuration, in particular to the R = l/2 

orbital angular momentum. Consequently, we do not include the % (~) in 

the total angular momentum vector for the bound pair, which we charac- 

terize by the R = l/2 alone. (And we assume that energy is sharp.) 

-+(+> This special character of the "angular momenta" H , implied by 

Eq. (33), and the fact that the vortons have become massless objects in 

the strongly bound states (their mass has been "consumed" by the binding 

(54) force) leads us to look to the helicity formalism for .the specifica- 

tion of the (stationary) vorton eigenstates. While in general, one would 

expect six such helicity states for each vorton (labelled by X (+) , A( ) - = 

0, +1>, it is well known that (free) massless particles move with the 

velocity of light and have only two projections of helicity, and we assume 

that this result also obtains for the relativistic vortons in the bound 

pair state. 15 They might therefore be called "fully" relativistic. 

15 That the helicity eigenvalues appropriately label the (stationary) 
bound vorton eigenstates is the major assumption in this section. The 
assumption that the six states reduces to four is less critical because, 
should this assumption prove false, additional particle states are pre- 
dicted by this model. Since they would be the ones with X(') = 0, they 
would be qualitatively different from those characterized by X(*) = 21. 
For example, due to the extreme relativistic nature of the vortons in 
the strongly bound pair, couplings to these possible additional states 
could be exceedingly small, making their observation difficult. 
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Since in this picture the H -+(+I are aligned (or anti-aligned) with 

the vorton momentum, so are the ?! and x' and we revert to the latter 

basis, which is more convenient. To enumerate the states, the symbols 

R, L. and r, R for ?: and 2 helicities, respectively, are used. If the 

(instantaneous) z-axis is chosen to be along the vorton momentum vector, 

Eq. (5) will still obtain. 

We now note that since Q, must be conserved, both the x' and L' 

helicities would have to flip at the same time, But since none of the 

force carrying bosons of this model (see Sec. V) carry the d type angular 

momentum, one expects such transitions to be forbidden; once established 

in a given bound pair state, these helicities should therefore remain as 

constants of the motion. - 

Due to the fully relativistic nature of the -vortons,.the same 

helicities will be manifest in all Lorentz frames. However, the expected 

value of the projection of these helicities upon any of the lab coordin- 

ate axes will be null. As a consequence, (a kind of) rotational invariance 

is maintained, but the vorton helicity eigenstructure will have the 

character of a Lorentz scalar. 

Taking the helicity eigenstates comprising this structure to be 

internal (and conserved) variables of the bound vorton pair, we shall 

associate them with the labels or quantum numbers of the different par- 

ticle types of this model (e.g., electron, proton, etc.). The 16 

helicity states that may be assigned to a pair of fully relativistic 

vortons are listed in Table II. Also included in Table II are the total 

QH of the pair and whether or not the electric moments u E and ut (due 

to the Cp and Q rotation, respectively, of the magnetic charge) of the 
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two vortbns add (yes) or cancel (no). (It is assumed that the vorton 

momenta are equal and opposite in direction.) 

Half of the 16 states listed in Table II have Q, = 0. These (eight) 

states will not be stable against self-annihilation and are therefore 

eliminated from further consideration as stable fermion states. 

Of the states with IQ,\ = 2, half of them have uE = ut = 0 and the 

other half have LI EI Ut P 0. We make the assumption that this feature 

separates leptons from hadrons, hadrons being of the latter type. As 

discussed below, the motivation for this assumption is that uE, ut # 0 

can then furnish a coupling source for the strong interactions of these 

particles. Using this feature, the states in Table II are partitioned 

into hadrons and leptons; hi stands for hadrons and R. for leptons, 
16 

1 

while ci and xi are the respective antiparticle labels. The i = 1 or 2 . 

relationships between fermion and antifermion were chosen to yield con- 

sistency under the CPT symmetry [see e.g., Eq. (49)l. 

C. C, P, T, M Transformations 

It is of interest to investigate the discrete transformations of 

the various states which have been constructed in the above sections. 

% To obtain the transformation of the gm,m functions under the 

operation of a parity inversion P, the substitutions, (56) 

cjr-q'=~+7l 

0+8'=n-8 (34) 

y+y'="-y . 

are relevant. Substituting Eqs. (34) into Eq. (24) tl-mugh (27) Yields 

16 
The baryons and leptons have arbitrarily been assigned Q, = 22, re- 
spectively. This choice will be discussed further below. 
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(35) 

% % p g&-1,= q&1/ 
2 2 22 

15 p q-b= a 
2 2 %+b 2 

p g-_,,= % 
2 2 

-%& k 

p q$-,= ‘4 
2 2 

-Q+. IN2 

2 ; 
the 9 ‘3 m,m functions are not eigenstates of parity. Eqs. (35) may be 

condensed using the notational shorthand: 

0 1 % 

O; 
=VBb3/, 1 % 2 z N 2 0 0 

+ 22$, 2 -4 (36) 

(37) 

where the +- subscript denotes the sign of m', and N is the normalization 

-1 
constant (2n) . The location of the 1 indicates spin up or spin down in 

the usual way. 

Eqs. (35) and the notation of Eqs. (36) and (37) yield 

PC >+ = t( >: 0 (38) 

It follows from Eq. (38) that the application of Pz to the C@ spinor 

functions will yield the eigenvalue -1 and P4 will yield +l. These 

results are in accord with the established behavior of spinors. 
(57) 
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It'is straightforward to use the (. )+ spinors to form spinors which 

are eigenstates of parity: one defines 17- 

and 

Using Eqs. (38) through (40), we see that 

PC = i< 

and 

Pn = -in ; 

(39) 

(40) 

(41) 

(42) 

the 5 and n have imaginary parity, enabling the naive extension of the 

R parity rule for the Yi, i.e., parity = (-1) . 

s The above results show that the four linearly-independent am,m 

functions are appropriately viewed as two distinct Pauli spinors. Of 

course, it has been known for a long time that there are two different 

spinors with "opposite“ parity, (58) and that the Dirac four-component 

spinor is a joint combination of these two two-component spinors. (59) 

The 5 and n spinors, then, are analogous to the isotropic spinors employed, 

for example, by Brinkman (60) or to the u and v spinors conventionally 

employed in quantum electrodynamics, (61) and we shall employ below them 

to construct our point-like fermion particle states. 

17 While these C; and n are eigenfunctions of L,, Eqs. (39) and (40) show 
that they are not eigenfunctions of Ls,. 
m' is not sharp and [P, L,*l Z 0. 

For these eigenfunctions 
Upon examination of Table I and 

Fig. 4, one sees that this has the interesting consequence that in 
order to obtain a uniform electrically charged state for the t; and rl 
spinors as defined by Eqs. (39) and (40), the vorton placed on the 
+z'-axis must be an equal mixture of magnetic north and south. Another 
way to view this situation is to say the the vortons remain physically 
in the same place while the z' -axis flips back and forth. 
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We now recall that Table I indicates that the (charged) 5 and n 

spinors may be electrically either positive or negative. Consultation 

with Fig. 4 and Table I and considering the placement of the vorton's 

electromagnetic charges into the body frame x'y'z' reveals that to ob- 

tain a function which satisfies Eq. (33) one must, with the application 

of the parity operator, at the same time reverse the sign of either 

electric or magnetic charge. A more consistent formalism obtains by 

doing the latter, using the magnetic charge conjugation operator M. 

Thus the appropriate form of the parity operation to be used on these 

eigenfunctions is 

P'zPM . (43) 

The need to consider these extended operations was originally pointed 

out by Ramsey. (62) With this extension, and tacitly including the 

electromagnetic charges as indicated in Table I, one writes 

and 

P's = is (41') 

P'n = -in , (42’) 

An analogous argument with the simple time reversal operator T leads 

to the extended time conjugation operator 

T'zTM . (44) 

Applied to the st,m functions, T' effects m -f -m and m' -t -ml, but 

maintains electromagnetic properties compatible with Table I. 

Similarly, the restrictions on the electromagnetic properties of 

the C?iT$m given by Eq. (29) lead to the requirement for an extended 

charge conjugation operator, 

C' - CM (45) 

where C conjugates only the electric charge. C' has no effect on the 

rotational properties of the various eigenstates. 
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The effect of the operators P', C', T' on the vorton helicity states 

R, L, r, and R are straightforward: 

P'R = PR = R 

P'L = PL = L 

P'r = Pr = g 

P'R = PR = r 

T'R = TR = L 

T'L = TL = R 

T'r = Tr = R 

T'R = TR = r 

(46) 

(47) 

C' makes no changes. 

D. State Identifications . 

We are now in a position to combine the eight surviving (9, # 0) 

vorton state labels given in column five of Table II with the four 

(electrically charged) spinor functions of Eqs. (39) and (40) to obtain 

a total of 32 possible two-component (charged) fermion spinors. l8 (Each 

of these spinors will, of course, have an electrically neutral isospin 

companion formed by setting n = 0.) These 32 spinors are collected in 

18 These two-component spinors comprise what are known as the large com- 
ponents. In the free particle rest frame, these are the only ones 
which are required. In more general situations, however, particularly 
when relativistic considerations are important, admixtures of the 
spinors of opposite parity enter the picture (proportional to v/c) as 
the so-called small components. (63) (I n some sense the spinor com- 
prising these small components is "borrowed" from the anti-fermion.) 
Thus, the Dirac fermion actually requires both types of spinor for a 
complete description, and these two spinors are used jointly to 
describe both the fermion and the anti-fermion. 
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Table III in two columns, where the superscripts on n and 5 indicate the 

sign of the electric charge. 

As remarked above, these state labels were chosen in such a way that, 

for example, 

P'C'T'Ri = ai , 

With this choice, the complete functions automatically satisfy 

P'C'T' aiS-+ - , (49) 

as one expects, (64) The arrows denote the spin direction (or helicity) 

of the pair state. 

The collection of two-component spinor functions given in Table III 

(along with their electrically neutral isospin companions) are the basis - 

functions of this model which are to be associated with the observed 
. 

point-like fermions. One sees that the set in the first column is in 

accord with observation: negative leptons and positive baryons. The 

set in the second column is merely an image of the first column related 

by a 180' dyality angle rotation. By interpolation we see that there is 

actually an infinite number of such (degenerate) sets of basis states, 

labelled by the dyality angle 0. A feature of this model, then, is that 

(at an early stage of the universe) Nature, by a spontaneous breaking of 

the dyality symmetry, has selected the set in column one. The set in 

column two is merely one of the infinite, but unrealized, possible sets 

available by symmetry; 19 the discovery of the Rainon would bear witness 

to their (conceptual) existence. 

19 This symmetry breaking process has defined the reference angle of 0, 
and consequently, what we call electric and what we call magnetic charge. 
But, of course, no matter what reference angle would be selected, we 
would by definition end up calling electric charges electric. 
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The structure of the vorton helicities along with the electric 

charge and spinor type has enabled us to construct particle eigenstates 

which are physically distinguishable from one another, By this construc- 

tion, the number of different particle types is finite and specified. 

What this model offers, then, that others do not, is a physical descrip- 

tion of an underlying structure for the point-like fermions and a physical 

explanation of the quantum numbers which label the types of particles. 

Collecting together the 16 particle and antiparticle states from 

column one of Table III, we make the identifications as shown in Table IV. 

By setting n = 0, one neutral isospin companion is obtainable from each 

of the state functions on the left-hand side of Table IV. The particles 

so obtained are indicated in parentheses. We see that there are eigen- 

functions enough to accommodate the three known lepton generations (e, 

p and T) and predict one more which we call T. 20 The eigenfunctions also 

accommodate the quark flavor isodoublets (n,p), (X,hc), (b,t), and a 

fourth doublet which we shall label (h,o). Thus, this model predicts one 

new heavy lepton the T with its neutrino and three new quark flavors t, 

h, and o. 

20 The large predicted mass, (33) -380 GeV/c2, motivated the choice of the 
letter T (capital T) for the final charged lepton. Following the sug- 
gestion of Sato,(65) who draws upon the Greek numbers, we have used 
the letters h and o to denote the seventh (hepta) and eighth (okto') 
quark flavors. 
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v. INTERACTIONS 

At this point it might be tempting to seek to incoporate the vari- 

ous particle interactions into this model along the lines of the Grand 

Unified Theories(66) (GUTS) in which electromagnetism is just one facet 

or component of a single basic, but more general interaction. However, 

the basic tenet of this model, that electromagnetism is the one and only 

fundamental interaction, is incompatible with such an approach; consist- 

ency requires that the explanation of the other interactions must be 

sought in features already existing as part of the model. It follows, 

of course, that these nonelectromagnetic interactions are in a second 

echelon of a hierarchy of interactions, and as such will be effective 

theories most easily amenable to phenomenological description. This 

entails the unhappy consequence that their complete understanding requires . 

detailed analysis of extremely difficult (underlying) dynamical processes. 

As compensation for this difficulty, this approach offers the possibility 

of achieving a maximum of economy at the fundamental level: one funda- 

mental interaction and one fundamental particle, which is a (static) 

solution to that interaction. 

In order to give a physical rationale to this approach, it is pro- 

posed that the sources of the interactions are associated with various 

electromagnetic features of the point-like bound vorton pair spin l/2 

states. The point-like fermion states which have a certain feature, 

then, will participate in the associated interaction. 

The most obvious such feature is the electric charge. Thus, once 

the value of the bound state electric charge is (properly) specified by 

Eq. (16), the conventional form of electrodynamics can automatically be 

incorporated into the model. 
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The assignment of the sources for the other well established inter- 

actions (strong, weak, and gravitation) is a reasonably straightforward 

matter. Since half of the point-like states have the (strong 21) electric 

moments uE and pt, they (one or both) are designated as the source for 

the strong interactions; since all the point-like fermions have a vu, 

this will be considered as the source of the weak interaction (histor- 

ically known as the Universal Fermi Interaction); and, motivated by 

general relativity, the energy-momentum tensor T I.lV will be taken as the 

source for gravitation. These source assignments are listed in Table V. 

In looking to already existing features of the model, it is natural 

to identif-y magnetically bound vorton pairs with integral R as the bosons 

which carry the nonelectromagnetic forces. One then assigns R = 0, 1, 
- 

and 2 to the strong, weak, and gravitational interactions respectively. 22 

These R assignments correlate logically with the above specified sources. 

Since the individual vorton helicities have no preferred orientation in 

space or relationship to the fermion spin, their associated ucIE: and ut 

are natural candidates for a scalar interaction; 23 since the n U is always 

21 These moments are "strong" because they are associated with the rota- 
tions of the magnetic charge, which in the bound pair state satisfies 
the relationship g Z 137e. 

22 
It is interesting that the strength of the interactions diminish 
rapidly as R becomes larger. 

23The question of the nature of the basic strong interaction is a diffi- 
cult one. The large coupling strength militates against clean calcu- 
lations which may be subjected to conclusive experimental tests. At 
the present time, the major contender for the strong interaction is 
most certainly QCD carried by colored vector gluons. However, while 
the evidence for QCD appears favorable, it is by no means conclusive; 
confinement has not yet been theoretically proved, and colored objects 
have not yet been experimentally observed. Before the advent of QCD, 
some felt that the evidence for a basic scalar strong interaction was 
perhaps better than that for a vector interaction.(67) Furthermore, 
it is even conceivable that the basic scalar interaction suggested here 
could give rise to a (third echelon) vector interaction much along the 
lines of QCD. 
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along the fermion spin, it is a natural candidate for a "vector" inter- 

action; and as shown by Weinberg, (68) if one has a massless spin 2 par- 

ticle, given Lorentz invariance, it will naturally couple to the TPv in 

the manner specified by general relativity. 

Feynman diagrams are a useful way to depict these interactions. For 

example, the photon, which carries the electromagentic force, couples to 

a fermion with a bare charge e 0' as shown in Fig. 5a. As is well known, 

the complete interaction vertex entails radiative corrections, and after 

renormalization the electromagnetic interaction is represented by a ver- 

tex as depicted in Fig. 5b. Similarly, the (composite) bosons as speci- 

fied above would generate their respective forces through an elemental 

vertex-as depicted in Fig. 6a, where it is seen that the vorton lines 

are continuous through the vertex. This feature -maintains the conser- 

vation of the vortons' topological charge. The vortons comprising the 

force carrying bosons are obtained at the vertex by simply diverting 

into the boson states the constituent vortons of the fermion states. 

When constructed in this manner, these boson states will have 

QH = 0, and will be amenable to treatment in an effective field theory. 

In such a field theory, since the bound vorton states have an intrinsic 

size -R L' the interactions carried by these bosons will be subject to 

a physical cutoff at "ML (and hence will not be renormalizable). Radia- 

tive corrections to these "bare" vertices, then, will be in terms of 

quasi-divergent integrals multiplied by very small intrinsic coupling 

constants. (Recall that except for QED the postulated sources contain the 

length RL.) As with electromagnetism, these radiative corrections can 
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in principle be functionally taken into account with a vertex function 

I"% as depicted in Fig. 6b. 

While these I'% can be phenomenologically assigned, the challenge of 

this approach is to calculate them from first principles. It is unfor- 

tunate that this may be an arduous task, however, for one notes that 

even now the electromagnetic vertex function r 
IJ 

is only known in low 

order and only in terms of the renormalized charge. 

On the other hand, certain advantages do accrue from this approach. 

For example, one would now be relieved from the requirement to find a 

renormalizable theory of gravitation, a task which to date has proved 

to be intractable. 

Finally, it is appropriate to reiterate here that in this model it 

is assumed that the masses of physical particles are dynamically genera- 

ted by the self-interactions of these particles, and their mass differen- 

ces from a spontaneous symmetry breaking. This idea was first proposed 

by Nambu and his collaborators. (69) 

From the assumption that interactions and mass (self-interactions) 

are described by one and the same theory, it follows that the binding 

energy causing the collapse of the magnetically bound vorton pair to a 

point-like state will be furnished by and limited to the mass (energy) 

of the original unbound, or free, vortons. This being the case, it has 

been argued(34) that in the point-like limit, the binding energy will be 

identically equal to the sum of the masses of the free vortons. One sees 

that this equality will obtain independent of the masses of the free 

vortons and of the coupling strength which binds them; the assumption 

that mass derives from self-interactions enables without contrivance the 
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formation of massless composite particles of extremely small scale- 

a difficulty for some other particle models. 

To the extent that this cancellation is not quite complete, one could 

expect the dynamical generation of a small magnetic self-energy or mass. 

This small mass, which we shall attribute to the pair and not to the 

individual vortons can be naturally accommodated in the Dirac equation 

(which would govern the spin l/2 pair state) as the bare or "mechanical" 

mass m0.24 A finite m. is conceptually useful because it enables already 

at this stage the definition of a center-of-mass coordinate frame in which 

to describe the orbital motion of the bound pair. 

The subsequent dressing of the pair by its own self-interactions 

and hence the acquisition of mass by the pair by other (self-)interac- 

tions (i.e., electric or strong) and the mass splittings by a spontaneous . 

symmetry breaking are assumed not yet to have occurred. An analysis of 

how this might come about in the (charged) leptonic sector via the QED 

self-interaction has been published. (33) The hadronic sector which 

involves also the strong interactions is more complicated and will be 

left for the future. 

24 This small mass would be associated with the presence of the uu and 
its self-interactions. 

have a small mass(70) 
Thus the recent evidence that V, may indeed 

is accommodated in a natural way in this model. 
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VI. SUMMARY AND DISCUSSION 

This paper presents a qualitative description of a model for the 

structure of point-like fermions. In this model, it is assumed that 

there is only one fundamental interaction, electromagnetism, and one 

fundamental object, the vorton, which is a semiclassical monopole 

solution of Maxwell's equations. Vortons carry a generalized electro- 

magnetic charge Q with a dyality angle @, one unit each of two different 

kinds of angular momenta, and a unit of topological charge Q,. 

Since Q is known to be large, it is argued that a pair of 

(magnetically) bound vortons will collapse to a point-like state, and 

that this point-like state will be essentially massless, the masses of 

the vortons being "consumed" by the binding force. Since the vorton 

-mass and binding energy are both due to electromagnetism.and both 

associated with the same charges, it is not unreasonable that the cancel- 

lation of these two energies should be (nearly) exact. 

It is suggested that complete collapse to an actual mathematical 

point is prevented by physics associated with the Landau singularity 

of QED, and that as a consequence the size of the point-like state is 

characterized by the Landau length, which has roughly been shown to be in 

the vicinity of the Planck length. (33) 

Since the ground state of the magnetically bound vorton pair is not, 

in fact, a mathematical point, but has a finite size, it is argued that 

such a state is describable by the generalized (symmetric top) eigen- 

function @i,m and that R = l/2. It is shown that the $?dt,m has four 

states of imaginary parity which may be mapped onto the usual Dirac 

four-component fermion spinor. 
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Using Schwinger's quantum condition for particles carrying both 

electric and magnetic charge, it is shown how the R = l/2 leads to an 

isodoublet charge structure for these point-like fermions. Neutral 

fermions are formed when the two vortons have dyality angles differing 

by IT and charged fermions when the dyality angles differ by slightly 

less than IT. 

It is argued that the vortons in the tightly bound pair state are 

fully relativistic and as such their intrinsic angular momenta are 

appropriately described in the helicity formalism. It is further 

argued that the structure of these helicities is decoupled from the 

orbital R = l/2 and, consequently, has the character of a Lorentz scalar. 

The eigenstates of this structure are identified as the basis for a set 

of internal quantum numbers of the point-like pair states-that 

distinguishes the various particle types from one another. 

All possible pair states allowed by the model are enumerated. 

After certain of these states are dropped from consideration for cause 

(helicity structure of fully relativistic vortons, mutual annihilation 

allowed by Q, = 0, and spontaneous symmetry breaking), sixteen four- 

component spinors remain, Using as a criterion, the cancellation or I 

addition of the intrinsic vorton electric moments, these spinors parti- 

tion naturally into eight leptonic and eight hadronic particle types. 

Eleven of these are identified with the quantum numbers of the experi- 

mentally known particles: e, ve, u, u,, T, v~; p, n, A, Ac and b. Thus 

one new heavy lepton the T with its neutrino and three new quark states 

are predicted by this model. 
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Since a basic premise of this model is that there is only one 

fundamental interaction, electromagnetism, the nonelectromagnetic 

interactions are placed in a second echelon in a hierarchy of inter- 

actions. Thus, in contrast to the GUTS theories which "horizontally" 

unify the interactions, this model unifies them "vertically." Unfortu- 

nately, the analysis of this aspect of the model is still at an early 

stage. While the approach in this model is expected to provide calculable 

particle masses and coupling constants (thus, in principle, enabling a 

theory unencumbered by a multitude of fundamental parameters), in fact, 

at present such calculations are too difficult. As a consequence, the 

masses and coupling constants, as well as the appropriate governing 

equations, must be introduced phenomenologically. On the other hand, 

we have seen that this model provides qualitative explanations for 

certain features of elementary particle spectra which are incorporated 

into other models by postulation. Specifically, it provides an 

enumeration of the quantum numbers (e.g., flavors) of the elementary 

particles, both hadrons and leptons, and the reason for the isodoublet 

structure of the fermion multiplets. 

It also provides a rationale for some aspects of their interactions. 

It is suggested that the sources of these interactions are found in the 

various electromagnetic features which characterize the various point- 

like fermion states, and features are identified which are appropriate 

to associate with the four (established) basic interactions. It is 

further suggested that the bosons carrying the forces of the second 

echelon interactions (strong, weak, and graviation) may be identified 

respectively with the R = 0, 1, and 2 bound vorton pair states. Thus, 
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on the 'one hand while this model provides a consistent and satisfying 

qualitative picture of these basic interactions, on the other hand 

their quantitative treatment from a fundamental point of view remains 

to be done. 

It is assumed that the masses of particles are dynamically generated 

by their self-interactions. While we are not able to predict the masses 

in the hadronic sector, a previous analysis of the QED self-interaction 

of the charged leptons (33) indicates that the mass of the T may be quite 

large, -380 GeV/c2. Consequently, from an experimental point of view, 

it appears that the most promising avenue for substantiating this model 

would be a search for its fundamental building block, i.e., the vorton. 

Finally, it is interesting to point out that the fact that the 

baryon number of the universe appears to be a large positive number is 

not of serious consequence in this model. Baryon number and lepton 

number are just certain combinations of vorton helicities and as such are 

not absolutely conserved quantities; only QH is rigorously conserved. 

It is for this reason that leptons and hadrons have been assigned 

opposite Q,. One would expect that QH = 0 for the universe as a whole 

which, of course, is possible with this assignment. A large anti-matter 

component of the universe is then neither required nor precluded by the 

restrictions of this model. 
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APPENDIX A 

Modification Due to QED of the Quantization Condition on Q 

1. Generalities 

This Appendix first recapitulates the salient points of the analysis 

in Ref. (1) that leads to the quantization condition on the magnitude of 

the vorton's electromagnetic charge Q, from which one obtains the dimen- 

sionless constant SE/&c = 4.87. Modifications of the analysis by effects 

of QED are then discussed. These modifications lead to a dependence of 

the quantized value of Q2 upon the vorton scale a; that is 

Q2 = Q2(a) , (A-1) - 

where the a dependence derives from the scale introduced by (the masses 

of) the fermions of QED. Since this discussion is meant to illuminate 

the qualitative features of these modifications, only what are viewed 

as the leading contributions are considered. 

2. Recapitulation 

The total electromagnetic energy WT of a vorton of electromagnetic 

charge Q is divided into two parts: 1) a static energy associated with 

the monopole field of the charge Q and 2) a dynamic energy associated 

with the "rotation" of that charge. For the purposes of convenient 

analysis it is assumed that the dyality angle 0 = -rr/2, making Q an electric 

charge. Since Maxwell's equations are invariant with respect to 0, the 

results of the analysis are valid for a general 0. One can assert that 

this 0 invariance applies as well to the QED modifications (due to vacuum 
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polarization loops) discussed below. For it has been argued (71) that the 

renormalization (also due to vacuum polarization loops) of electric and 

magnetic charges is the same. (Once a photon has been emitted from a 

charge, it doesn't "know" whether that charge is electric or magnetic.) 

The static or monopole energy 

'rn = KmQ2 , 

and the dynamic or dipole energy 

'd = KdQ2 
> , 

(A-2 > 

(A-3) 

where Km = 5/4ra, Kd = 1/6na, and S4 and BJ, are rotational parameters. 

% - 
is associated with the usual angular rotation about the z-axis and 

% 
with a conformal rotation (see Sec. II), also associated with the 

z-axis; it was shown that the same K d serves for both types of rotation. 

By then noting that if one uses the Bohr-Sommerfeld prescription to 

quantize the action S (specifically an integral of the 3*x/c term in 

the Lagrangian density which yields Maxwell's equations) in units of 

Planck's constant h (or the associated angular momenta in terms of%) 

one obtains the equations 

and 

,w = KS Q2 f$, =mh 9 

,w =KsQ2BJI JI =mh 9 

(A-4) 

where m 
cp 

and m 
+ 

are quantum numbers, and both types of rotations are 

again served by the same parameter, KS = 2/3c. 

Defining 

(A-6) 
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one obtains from Eqs. (A-4) and (A-5) the relation 

Q2 = & 
S 

In terms of B, the total vorton energy 

wT = wm + Wd = K;p +K;B , 

where 

Kmh 
Kli = - Ks 

and 

K; = y (mf + m;) . 

WT has a minimum with respect to B when 

Choosing i to satisfy Eq. (A-11) yields 

wm 
and the quantization condition 

Q2 h 
I J 

Kd 2 2 . 
=E-\Q- m$l+m$ 

Putting in the values for the constants gives 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

(A-13) 

(A-14) 

independent of the vorton scale a. 
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A "ground state" vorton is defined by ]rn+] = lrn+l = 1, and 

Eq. (A-14) becomes 

Q2 = 4.87 %c Z Q"o . (A-15) 

This semiclassical result applies for a >> ke, where the effects of QED 

may be neglected. 

3. Scale Dependence 

One expects a modification in the quantization condition on Q as 

a becomes small and QED effects enter the picture. In reviewing the 

analysis which led to Eq. (A-13), we see that three electromagnetic 

quantities were calculated: the static (or monopole) energy Wm, the 

dynamic energy Wd, and the action S. Thus, it is appropriate to examine 

the scale dependence of these three quantities and the QED modifications 

to their evaluation as the scale becomes small. 

Wm is the Coulomb self-interaction of the charge density given by 

an integral of q1q2/r, where ql and q2 are incremental portions of the 

charge density. Integration yields Wm = 5Q2/4na, an expected l/a 

dependence, since a sets the scale of the vorton charge distribution. 

Wd is an integral of 3,*X2, where the vorton potential L,, which is due 

to an incremental current T,, also goes like l/r. Integration (when WT 

is minimized) yields Wd = 5Q2/4sa, again the expected l/a dependence. 

With these results in mind, a glance at Eq. (A-11) shows that the B 

obtained from the minimization of WT has no a dependence; the two l/a 

factors cancel. This cancellation carries over into Eq. (A-13). 

Now S is also an integral of I-2. However, the l/a dependence of 

this z*x integral is removed by the Bohr-Sommerfeld quantization 
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condition, which specifies that the action integral is to be taken over 

one period of the relevant (cyclic) variable. Since 6 is a constant, 

the period goes like a as the vorton size diminishes, cancelling the 

l/a dependence of the d and leaving S with no a dependence. 

Using the above results in Eq. (A-13), one sees why there is no a 

dependence of QL as specified by the Bohr-Sommerfeld quantization condi- 

tion. Of course, one could have reached this conclusion on general 

grounds because electromagnetism has no intrinsic scale, (72) but the 

above discussion is a useful background for the consideration of QED 

effects. One presumes that the effects of QED on the quantization condi- 

tion can be estimated by considering the QED modification of the l/r 

potentials which figure directly in the calculation of the three electro- 

magnetic quantities Wm, Wd, and S. One expects such a modification from 

vacuum polarization, the lowest order of which is depicted in Fig. 1. 

As is the case with the renormalization of the electric charge, it 

is assumed here that vacuum polarization is the major relevant QED 

effect. For example, it is assumed that the vorton charge distribution 

is not modified by vacuum fluctuations in a way which significantly 

changes the Wm, Wd, and S. The rationale for this assumption is that 

the charge distribution is smooth and continuous; if a vacuum fluctuation 

causes a small region of the charge distribution to be displaced, an 

adjacent region will, by the same fluctuation, be caused to move over 

into the vacated location, leaving the energy of the configuration 

constant (to lowest order). 

In atomic physics, the effects of vacuum polarization lead to what 

is known as the Uehling potential. (73) Its form is well known and for 
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an electron in the field of a point charge Ze is given by (74) 

Vll(r) = - F Rll(r) . (~-16) 

where 

2a 
Rll(r) = x 

f$ (1 + 2) (1 - -$)l’2exp{- 2) (A-17) 

1 

is the ratio of the (second order approximation to the) Uehling poten- 

tial to the Coulomb potential. 

The parameter of integration t is the energy of the virtual Coulomb 

photon in units of mec2/2. Thus, as a result of the exp {-2rt/X 1, 
e 

photons of energy > %c/r effectively do not contribute to the Uehling 

potential at the distance r. This is in accord with one's intuition 

and, as will be shown below, is also true for the Coulomb potential 

itself. 

One may use Eq. (A-17) ( in the region a > kP) to estimate the modi- 

fication to the value of Q2 specified by the Bohr-Sommerfeld quantiza- 

tion condition; the quantities Km, Kd, and KS each should be increased 

by a factor of approximately 25 
1 + Rll(a)* (Whereas in Eq. (A-16), 

Vll(r) < 0, increasing the binding energy in atoms, the modification to 

W m' 'd' and S will be positive, increasing the self-energy of a vorton 

charge configuration.) In the calculation of B, the augmentation in Wm 

and Wd will (essentially) cancel, leaving the correction to K as the S 

dominant factor. Thus, for the ground state vorton, one uses Eq. (A-13) 

25 This approximation makes use of the fact that <l/r> -" l/a for the dis- 
tributions in the integrals of Wm, Wd, and S. Such an approximation 
is adequate for the purposes of this analysis, which is to illuminate 
qualitative behavior. 
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to writ; 

2 
2 QO 

Q (a)= l+Rll(a) ' (A-18) 

To get a feel for the size of this correction, we note that R11(3re) = 

5.6 x 10 -5 , Rll(O.l Xe) = 1.7 X 10 -3 , and Rll(0.01 ?v~) = 5 x 10 -3. , the 

effect increases (slowly) as a decreases, and is small because the coupl- 

ing c1 of the polarization loop to the propagating photon is small. 

As one considers smaller and smaller scales, 26 one sees from 

Eq. (A-17) that some simplifications may be made in the calculation. 

In particular, one notes that the product 
II 

1 + (1/2t2) 
I[ 

1 - (l/t2) 1 1'2 

differs from unity over only a small fraction of the range of integra- 

tion. Thus, omitting these factors and noting that the upper limit to 

the integration is effectively set by the exponential, one can write 

ke/ 2r 
2cc +i 

Rll(r) --+ g- / 
dt 
t 

= 2a 
3TT Rn 2 ' (A-19) 

1 

showing a logarithmic dependence of Rll(r) upon r. 

This result (which is appropriate to the range *P < r < -?re) is a 

manifestation of the fact that the (Feynman gauge) photon propagator 

IL-...+. a - q2 

q2 
l+3Y Rn 2 2 $ (A-20) 

m c e 

26 It is appropriate to remark here that it has been shown that at small 
distance the Uehling potential dominates other corrections to the 
Coulomb potential.(75) 



- 51 - 

when one makes the correction for the possibility of one loop of vacuum 

polarization. (76) [For q2 the four-vector notation of Bjorken and 

Dre11(77) is used: q2 = qi - G2. 1 

If one approximates the photon propagator by the summation of dia- 

grams of concatenations of all possible numbers of photon loops, as 

depicted in Fig. 2, Eq. (A-20) becomes(78) 

-i - -i 1 
. (A-21) 

1 - 2 Rn -q2 
2 2 m c e 

The next refinement is to realize that there are (effectively) Nf point- 

like fermions which electromagnetically couple to the photon. Thus, 

Eq. (A-21) is rewritten: 

. 

? -5 

1 

Nfa 2 ' 
1 -7;;Rn=q--- 

fi2 c2 

where G is the r.m.s. value of the masses of the N f fermions. 

Using Eq. (A-22) to rewrite Eq. (A-18) yields 

Q2(a) z QG 1 
2Nfa A --!Ln- 9 

3 2liic 

(A-22) 

(A-23) 

where A =?+/a is the momentum associated with the scale a. 

Since a is small and the variation with scale is logarithmic, the 

leading log approximation given in Eq. (A-23) does not get into obvious 

difficulty for many orders of magnitude. For example, using Nf = 8, the 

number expected from this model, A = 1.22 x 10 
19 GeV/c, the Planck momen- 

tum, and ii~ = 500 MeV/c2, a guess, yields Q2(Xp) = Qi (1 - 0.544). 
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Whether Eq. (A-23) applies over this range and, in particular, how 

to extend it even further depends upon one's assumptions about the short 

scale behaviour of the photon propagator function. The assumptions which 

are employed here are those which have been detailed and discussed in 

Ref. (33). 

In brief, these assumptions are: 1) that only QED bears upon the 

photon propagator (Grand Unification schemes are not adopted here), 

2) that the form of photon propagator is suitably approximated by the 

right-hand side of Eq. (A-22), and 3) that this form may be extended by 

analytic continuation beyond the point where 

Nfa 
2 

pL 
3Tr enn = 1 9 (A-24) 

which (in leading log approximation) 27 defines the Landau momentum PL as 

the location of the Landau singularity. 28 

27 There are higher order Feynman diagrams which have been omitted, but 
it is argued in Ref. (33) that these are quantitatively too small in 
effect to change the qualitative behavior of Eq. (A-22). That is, 
their inclusion will move, but not eliminate the Landau singularity. 

28 One can perform a Wick rotation (79) 
space to a P of Euclidean space: 

to go from the p of Min$owski 
pQ = iP4, pj = Pm , and p = -P2. 

In the latter space the Landau singularity lies on'the surface of 
a four-sphere. Using this concept and the above numerical-quantities 
I.e., Nf = 8, a = l/137, and iii = 500 MeV/c2, yields the Landau momen- 
tum PL = 5.6 x 1O34 
10-4gcm 

GeV/c and the Landau length ILL = ?i/P, = 3.6 x 
. The important feature of this model is that it is assumed 

that there is a physical Landau singularity at some very small scale; 
its location is not critical, Even given that this model is correct, 
these estimates are, of course, subject to computational errors of 
some orders of magnitude because of exponentiation operations involved 
in their calculation. 
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The last assumption (when one uses the principal value prescription) 

"controls" the computational problems associated with the Landau singu- 

larity, and the logarithmically divergent renormalization integrals of 

QED become well-defined and finite and may (in principle) be evaluated (33); 

in effect, they are cut off in a natural way at the Landau singularity. 

The a dependence of the quantization condition on Q2 beyond the 

Landau singularity derives (mainly) from the effect of the momentum cut- 

off on the Coulomb potential itself. To investigate this effect, one 

may write the three-dimensional Fourier expansion for the Coulomb poten- 

tial of a charge e, 

Q(r) =:= 
J-u- 

@(c) ei"' dz , (A-25) 

(80) where I/J(~) is the Coulomb potential in k-space; . 

&=‘-$ . 
2~~ k 

(A-26) 

Putting Eq. (A-26) back into Eq. (A-25) yields 

. (A-27) 

0 

Since 1; (sinx /x) dx = IT/~, one regains 4(r) = e/r, checking Eq. (A-26) 

as the solution for +(d). 

The l/c2 as a factor in I/J&), of course, derives from the usual 

momentum space form of the photon propagator. One can consider the 

corrections to the photon propagator to be equivalent to a k-space 

weighting function w(k) and simply include it in the integral expressions 
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of Eq. (A-27). That is, one may write 

$(r) = e 
21T2 

w(k) si;kr dk , (A-28) 

0 

where it is assumed that w(k) is isotropic. 

The cutoff, which in this model is found at the Landau singularity, 

may be represented by 

and 

w(k) = 1, k<kL , 

(A-29) 

w(k) = 0, krkL , 

where k L- = P,/?i. For simplicity, the slowly varying logarithmic Uehling 

potential has been omitted from Eq. (A-29) 

Putting Eq. (A-29) into the right-hand side -of Eq. (A-28) yields 

(A-30) 

This done, one notes that the major contribution to P(r) comes in the 

range 0 2 x 5 2; 1: (sinx/x) dx = 1.6054 = T/2. Beyond x = 2, the value 

of the integral oscillates about the final value of ~/2 by diminishing 

amounts. 

Qualitatively speaking, this means that the existence of an effec- 

tive maximum on the photon momentum leads to a transition at 

1 rm- 
kL 

(A-31) 

between the usual l/r Coulomb dependence and a constant potential, 

independent of r. For rkL << 1, one may replace sinkrwith kr and 

perform the final integration on the right-hand side of Eq. (A-28) 
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obtaining 

(A-32) 

the "zero range" value of the potential, 

When this result is taken into account, one notes that there will 

again be a cancellation in the ratio Kd/Km, again leaving the value of 

F (essentially) invariant. In the calculation of S, however, for 

r < ‘fi/PL the l/r variation of A' goes over to a constant, and the Bohr- 

Sommerfeld prescription discussed above introduces an uncompensated 

linear r dependence into KS. Thus for a < %/PL, one has the approximation - 

(A-33) 

from its minimum at the Landau length, the value of Q2(a) rises rapidly 

going like l/a as a diminishes. 
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Table I. Electromagnetic configuration of 
the charged bound vorton pair states. 

State Allowed sn 
53 

S e 

alf, 
2 

+1 

g!%m +1 -1 -1 
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Table II. Structure of bound vorton pairs states, 

Helicities QH 
State 
Label 

Rr Rr 

Rr RR 

Rr Lr 

Rr LQ 

RR Rr 

RR RR 

RR Lr 

RR LQ 

Lr Rr 

Lr RR 

Lr Lr 

Lr LQ 

LQ Rr 

LQ RR 

LQ Lr 

LQ LR 

2 

0 

0 

2 

0 

-2 

-2 

0 

0 

-2 

-2 

0 

2 

0 

0 

2 

yes 

yes 

no 

no 

yes 

yes 

no 

no 

no 

no 

yes 

yes 

no 

no 

yes 

yes 

yes 

no 

yes 

no 

no 

yes 

no 

yes 

yes 

no 

yes 

no 

no 

yes 

IlO 

yes 

hl 

-- 

-- 

T2 

-- 

r;2 

Ql . 

-- 

-- 

Q2 

% 

-- 

a1 

-- 

-- 

h2 
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Table III. The 32 surviving (Qu # 0) point-like 
two-component (charged) fermion-*spinors. 

I II 

Ql 5- 
Q1 n- 
I2 5- 
Q2 rl- 

hl 5+ 
hl n+ 
h2 5+ 

h2 ri+ 
ii, n+ 
Rl 5+ 
ii, n+ 

h2 c;- 

Q1 5+ 
Ql q+ 
Q2 C+ 
Q2 rl+ 
hl 5- 
hl rl- 
h2 5- 
h2 n- 
ii, n- 
ii, 5- 
ii, rl- 
F, 5- 
i;, n+ 
hl 5+ 
h2 n+ 
i;, 5+ 
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Table IV. Particle identifications of four- 
component Dirac spinors. 

Q1 P 

Ql o-9 

Q2 E-, z, ri+ 
Q2 n-, ii, 5+ J 

hl 5+, i;, rl- 
hl T-I+, I;, 5- 
h2 5+, L, n- 
h2 n+, 6, 5- 

+ 
e , e (v 

v-, u 
+ 

(v 

II . 

e’ Gel 

p, Gp) 

+ 
= , ‘c (v T’ V*) 

+ - . 

c 

(,T , T b,, ‘T) 

(n, Z> 
. 

(A, v 

(b, i;> 

6, g> 
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Type 

Table V. Particle interactions. 

Source Partic!-es Carrier 

Electromagnetism e electrically 
charged 

photon 

Strong 'E' 't hadrons Q = 0 bound vorton 
pair 

Weak +J all Q = 1 bound vorton 
pair 

Gravitation T1-lV all Q = 2 bound vorton 
pair 
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FIGURE CAPTIONS 

1. Vacuum polarization loop which yields the lowest order approximation 

to the Uehling potential. 

2. Sum of vacuum polarization loops. 

3. Estimated variation of the magnitude of the vorton charge Q as a 

function of the vorton scale a (in cm). For a >> X e, Q (4 = Q, 

of Eq. (9). As a becomes less than Xe, Q is expected to drop 

logarithmically due to quantum mechanical corrections. After a 

minimum value at a scale on the order of the Landau length R L, Q (a> 

rises, quickly reaching a value compatible with the Schwinger quanti- 

zation condition, Eq. (2). The actual location of RL is subject to 

considerable computational uncertainty. . 

4. % The four symmetric top eigenfunctions gm,m. The x,y,z frame (heavy 

lines) represents the lab frame, and the x'y',z' frame (light lines) 

represents the (most probable orientation of the) rotating body 

frame. The arrows indicate the direction of rotation. 

5. a) Bare electromagnetic interaction vertex. 

b) Renormalized electromagnet interaction vertex. 

6. a) Elemental vertex of second echelon interactions. 

b) Renormalized vertex of second echelon interactions. Lorentz 

indices are omitted from the function I? R; gQ is the coupling 

constant. 
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