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ABSTRACT 

The effect of grating errors on transverse beam stability is 
analyzed. We,characterize grating errors by random groove displace- 
ments and find that transverse displacements due to such errors ap- 
proach limiting values of the same order as the grating displacements 
themselves. It therefore appears that transverse stability require- 
ments will not impose unusually stringent precision requirements on 
the grating structure. 

- INTRODUCTION 

As described by Palmer,I the grating structure for a laser 
driven grating linac requires shaped groove spacings of the order of 
one half the laser wavelength and an overall length of several hundred 
meters. Random errors in the grooves are surely inevitable, and in 
view of the vast number of grooves, the effect of such errors upon 
beam stability must be assessed. We provide here an estimate of the 
relation between the magnitude of these errors and that of the mean 
deviation from the nominal orbit which these errors induce, 

FORMULATION OF THE PROBLEM 

We begin with a brief description of the strong focussing design 
discussed elsewhere in these proceedings.1'2 The field components in 
synchronism with the electrons are written 

* 
Work supported in part by the Department of Energy, contracts 
DE-AC03-76SF00515 (SLAC) and DE-AT03-81ER40029 (UCSD). 

I- Permanent address. 

(Presented at the Laser Acceleration of Particles Workshop, 
Los Alamos, New Mexico, February 18-23, 1982.) 



- 2- 

2 = E. cos py eepx (2 cos I$ (1) 

rf = E. empx i sin py cos Q - x (2) 

cos py sin 9 + B. Sq(z) G 1 . 

Sq(z) is a square wave of amplitude +l and slowly increasing period 
L(z) l The electron phase C$ is given by 

o=+ 
0 

- + A Sq(z) (3) 

where here z is the coordinate of a particular electron. Over a 
grating section of length L/2 the fields vary as expi(kz-ot) with 
k 25 w/c. The electron motion is ultra relativistic so that the 
variation of this quantity over a section is negligible. The value 
of (kz-tit) for a particular electron is designated by $I. The phase 
shift, +A, which occurs between sections is brought about by a shift 
of magnitude A/k of the grooves from section to section. The instan- 
taneo_us shifts in the above formulas are, of course, an idealisation 
of shifts which occur in a distance small compared to L, and the 
modifications in the fields at these junctures which are required by 
Maxwell's equations are neglected in the analysis. .- 

The transverse equations of motion of the electron are (taking 
z M ct as the independent variable) 

B 
cos py e -px sin I$ + $ Sq(z) 1 (4) 

0 

d iY 
eE 

dzmy dz - - -+f sin py e -px sin I$ . 
C 

As described in Refs. 1 and 2, due to the operation of the strong 
focusing principle these equations have a stable straight line orbit 
with $. = 0, y = 0, and x0 determined by 

; e-pxo ; 
B 

sin-== . 
EO 

(6) 

There is also a family of more complicated stable orbits with slowly 
varying period L whose I$, values lie in a relatively narrow band 
about zero. Here, however, we shall confine our attention to the 
simple +, = 0 orbit and discuss the effect which grating errors have 
upon it alone. Setting x1 = x-x0 and assuming both x1 and y small 
we have 
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1 d dxl -- __ 
y dz ' dz + K2 Sq(z) x1 = 0 

ld c& -- 
Y dz y dz - K2 Sq(z) y = 0 

with 

leEol -pxo K2=-e 
ym c2 

(7) 

(8) 

(9) 

= 1 dv t-n A p2 -- 

Y dz 2k 

where the second line of (9) follows from Eq. (1) and the obvious 
relation between E, and the acceleration rate. Following Ref. 2 we 
choose the z variation of L so that KL(z) Z + is constant. 

It is apparent that the x1 and y motion present identical problems 
so we confine our attention to the xl motion in the following. To take 
account of grating errors we introduce a driving force F(z) to the RHS 
of (7) 

1 d dxl -- - 
y dz ' dz +K2Sqx 1 (10) 

where F(z) represents corrections to the RHS of (4) which arise from 
these errors. The general form of the displacements induced by f is 
given by 

J 
Z 

x1(z) = 

0 
dzl g(z,z,) f(zl) (11) 

where g(z,z,) is the solution of Eq. (7) satisfying the boundary 
conditions 

g(z,z,) = 0 
(12) 

2s =1 
az I 

. 
z=z 1 

2 The quantity of interest is, of course, the expectation value of 

x1 induced by the fluctuating force. It is given by 

<x;> = Lz dzl fOz dz2 g(z,zl) g(z,z,) <f(zl) f(z2)> (13) 
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EVALUATION OF <x;> 

In order to evaluate Eq. (13) we need an expression for the 
force correlation function <f(zl) f(z2)> and for the Green's function 
g(Z,Zi) l 

Let ym fL represent the x component of force in Eq. (4) due to 
the laser, that is 

eE 
fL = _ + E evpxo 

w c 
(14) 

= _ 1 d-f E tan d -- 

y dz k 2 l 

Taking account of the fact that the grating spacing s, the wavelength, 
and x0 are all of the same order of magnitude, we estimate that the 
value of f(z2) due to a displacement 6s of a single groove at zl may 
be written 

f(z2) = y fL(Z1) C(zl-z2) (15) 

where C(0) = 1. C may be expected to fall off on a scale of the 
order of s as 22 recedes from zl. Thus 

. 

f(z$ f(z2) M 2 f$zl) C(zl- z2) . (16) 

We next estimate that the principal effect on <f(zl) f(z2)> may be 
attributed entirely to the displacement of the nearest groove, whence 

<f(zl) f(z2)> = <&i2> f$z,) C(zl- z2) . 
S 

(17) 

Finally, as will be clear below, the scale over which ft and g(Z,zi> 
vary is enormous compared to s. Hence for insertion into (13) we 
write C(z 1 -z2) X s6(z 1-z2) yielding finally 

2 
<f(zl) f(z2)> = + 6(z1-z2) f;(z,) l (18) 

It seems clear that Eq. (18) h as the correct dependence (for the 
purposes of Eq. (13)) on zl, 22, the laser field strength and <6s2>. 
The effect of the crude approximations which we have made can only be 
to replace s by a quantity of the same order of magnitude. There- 
fore, we shall henceforth think of s as a quantity of the order of 
the grating spacing rather than as the grating spacing itself. 

The determination of g by solving (7) subject to the boundary 
conditions (12) is simple in principle, especially if one takes 
advantage of the fact that y, and hence K2 and L vary very slowly . 
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with z. In the interest of obtaining our final result in a simple 
form, however, we prefer to proceed in a more approximate manner. 
In particular we wish to replace (7) by 

ld -- 
Y dz Y 2 + Q2(d g = 0 (19) 

where 

cos QL $ = cos - cash 2 (20) 

This has the effect of replacing the strongly focused betatron 
oscillations of wave number Q described by (7) by simple harmonic 
oscillations with the same wave number. As shown in the appendix, 
this procedure is well justified when $/2 is small. (Q/2 < n/4 is 
small enough.) Continuing then with (19) and assuming y slowly vary- 
ing we obtain by inspection 

&,z,> = 

Y (z,) 
Y(Z) Q(z) Q(y) 

Q(z')dz' . (21) 

Substitution of (21), (18), and (14) into (13) yields 

tan2 d 
2 p2 

y(z) K(z) k2 

. 

(22) 

dzl .2 z 
y(y) K(y) 'ln J 

Q(z')dz' . 

z1 

In writing (22) we have made use of the fact that K/Q is z independent 
and have, in addition, assumed dy/dz to be constant. To complete the 
evaluation we replace the sin2 factor by its average value and make 
use of (8) to obtain 

<x2> _ <6s2> K2 1 Z 1 _--- 
1 

2sk Q2 Jy';-('iTj- 
dy dz 

w dzl ' 

(23) 

<6s2> K2 = sk s’ [l - ($r2] 
Equation (23) is our main result. It shows that while the beam 
fluctuations grow initially, the effect quickly saturates on account 
of the "adiabatic damping" effect in (21). 
implies Q2/K2 z J12/48 

For J, < IT/~ Eq. (20) 
. 
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As shown by the discussion of Ref. 2, the allowable 9, range 
becomes small as J, becomes small and $ < ~r/2 is probably a smaller 
value than one would want to use. The specific design proposed in 
Ref. 2 has $J = IT, a value which is outside the established region of 
validity of the replacement of Eq. (7).by Eq. (18). The discussion 
in the appendix does, however, encourage one to believe that the 
qualitative behavior implied by (23) continues to hold, and for a 
preliminary estimate even to risk a quantitative application. Then 
we have K/Q = 2 and taking s M l/2 X we obtain 

<6s2> = ; <xi> (24) 

so that the groove displacement induces a particle displacement of 
the same order of magnitude. 

Before concluding we recall that the above analysis has been con- 
fined to I$~ = 0. Depending upon the sign, either the horizontal or 
vertical betatron wave number is reduced as $. is varied from zero, 
and approaches zero as the limit of stability is reached.2 Since 
the betatron wave number Q2 appears in the denominator of Eq. (23) 
it seems very likely that the <xf> induced by a specified <6s2> 
will increase and diverge as the stability limit of the $. range is 
approached. A further investigation to determine the effect which 
limitation on the attainable precision of grating ruling has upon 
the +. range would be desirable. . 
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APPENDIX 

Following Bruck3 we note that Eq. 
formed to (we neglect the z dependence 
L also) 

ld 2 -- 
yd& ii+Q ? 

where 

(10) can be formally trans- 
of y here, and hence of K2 and 

= i(z(Z)) 

suggested 

(Al) 

(AZ) 

(A3) 
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? = (QB)3'2 f (A4) 

and the Twiss matrix function S(z) is the periodic solution of 

2 ;! + K Sq(z) B2 = 1 . (fi) 

We find that 

QB(z) = Q - J! K sin QL 'in 2 cash f + cos ($ - 2Kz) sinh $1 

O<z<$ 
(A61 

Q 
= K sin QL sinh $ cos + + cosh(+ J, - 2Kz) sin $1 

&z<L 2 

with B(z+L) = B(z). One can readily verify that (A6) satisfies (A5) 
and continuity conditions on 6 and dB/dz at z =-l/2 L and z = 0, L 
(periodicity condition). In the small $ limit (A6) becomes 

QB(z) =1+$J O<z<$ 

(A7) 

so that QB oscillates about 1 with an amplitude q2/16. The treat- 
ment given in the main text amounts to the neglect of the difference 
between the barred and unbarred quantities and in view of (A2), (A3), 
(A4), and (A7) appears to be well justified for $ < IT/~. For the 
IJJ = 71 case, inspection of (A6) indicates similar behavior for Qf3 
but with a maximum value of 2.41, minimum value of 0.5 and average 
value of 1.36. Hence the application of (23) to this case is not 
likely to be grossly in error. 

REFERENCES 

1. R. B. Palmer: 

Contribution to this conference. 
2. Kwang Je Kim and Norman M. Kroll; Some Effects of the Transverse 

Stability Requirement on the Design of a Grating Linac; Contribu- 
tion to this conference. 

3. Henri Bruck; Circular Particle Accelerators, pp. 112-113; LA-TR- 
72-10 Rev., Los Alamos National Laboratory. 


